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Algebraic scattering theory and the geometric phase
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A nonstandard realization of the su(1, 1) algebra is used to extract a two-parameter class of scattering
potentials as well as to calculate the reAection coeKcient of the associated one-dimensional scattering
problem in the spirit of the algebraic scattering theory. The nontrivial geometric content of such reali-
zations is discussed, and an interesting connection with geometric phases is pointed out. It is argued
that using larger noncompact groups, realizations related to non-Abelian geometric phases may be useful

for obtaining analytical expressions for interaction terms corresponding to higher-dimensional scattering
problems.
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I. INTRODUCTION

The connection between solutions of partial diff'erential
equations and the theory of Lie groups is a well-known
and fruitful field of physical applications. In fact we have
learned that many of the differential equations of
mathematical physics are simply expressions of the
Casimir invariant of some Lie group in a particular repre-
sentation. Since the appearance of algebraic scattering
theory (AST) [1—3], such techniques based on the
aforementioned idea have proved to be useful not only in
describing bound-state but also scattering problems. The
main goal of AST is to determine, purely algebraically,
the S matrix of a scattering system described by a Hamil-
tonian expressed in terms of the Casimir operator of
some noncompact group. Although this task can indeed
be achieved merely by algebraic manipulations, without
any recourse to a particlar coordinate realization, some
authors [4] stressed the physical relevance of obtaining
analytical expressions for scattering potentials by using
explicit coordinate realizations of the group-theoretical
Hamiltonian.

The aim of the present paper is to show that there is a
geometrically nontrivial realization of particular interest
of the Lie algebra governing the scattering process. Us-
ing such a realization we can derive a class of solvable po-
tentials containing some of the known examples as a spe-
cial case. In this paper we explicitly work out the sim-
plest case where the symmetry group in question is
SU(1,1)—SO(2, 1)/Z~. Since we mostly use the local
properties of these groups we can write SU(1,1)=SO(2, 1)
(cf. Ref. [3]), hence we can refer to both of them inter-
changeably. This group with the Lie algebra
su(l, l)-so(2, 1), being also the archetypical example of
AST, can be used to obtain similar realizations for larger
noncompact groups.

The SU(1,1) Casimir operator C in this new realization
can be regarded as a generalization of the one in Ref. [2]
in two respects. (i) The eigenvalue problem for C yields a
Schrodinger equation for a particle in the difference of
two one-dimensional generalized Poschl-Teller potentials

indexed by theo parameters giving a generalization of the
one-parameter class of Ref. [2]. (ii) C commutes with an

effective Hamiltonian arising from a total Hamiltonian
with SU(1,1) dynamical symmetry describing two in-
teracting subsystems, usually designated by slow (collec-
tive) and fast (internal) degrees of freedom, after adiabati-
cally decoupling the fast ones from the slow ones using
the standard Born-Oppenheimer (BO) method. Although
we can get rid in this treatment of the fast variables by
"integrating them out" of the original Hamiltonian, and
forming thus the effective Hamiltonian for the slow sub-

system, terms of geometric origin will still modify the
algebra of conserved quantities [5], giving rise to a non-
standard realization of the su(1, 1)-so(2,1) algebra. Such
ideas are well known from studies dealing with geometric
phases, a topic which has raised considerable interest
during the past few years [6].

The organization of this paper is as follows. In Sec. II
we present our realization of the su(1, 1)-so(2,1) algebra
used subsequently. After calculating the Casimir invari-
ant we obtain the Schrodinger equation mentioned above
with a two-parameter class of potentials. We can easily
trace back this equation to one of the familiar equations
of mathematical physics. The S matrix is then derived, as
usual, from the asymptotic form of the eigenfunctions.

In Sec. III the same S matrix is calculated, purely alge-
braically, in the framework of AST. However, in order
to do so we have to properly identify the domain of the
generators. Indeed they act on the group manifold
SU(1, 1) rather than on the double-sheeted hyperboloid.
As a consequence we can identify two commuting sets of
SU(1, 1) generators corresponding to the right and left ac-
tions on SU(1,1) (or, equivalently, to the two parameters
needed to parametrize the potentials in Sec. II).

In Sec. IV we demonstrate that we can construct an
effective Hamiltonian that commutes with our Casimir
invariant. This is done by employing a simple SU(1, 1) in-
variant model Hamiltonian containing two types of
dynamical variables, and using the Born-Oppenheimer
approximation. The conclusions and some comments are
left for Sec. V.

47 823 1993 The American Physical Society



824 PETER LEVAY AND BARNABAS APAGYI 47

II. NONSTANDARD REALIZATION
OF THE so(2, 1)—su(1,1) ALGEBRA

The basis states satisfying Eqs. (2.6) have the form

lj, m, n &=u „(p)e' (2.8)
Let us consider the following set of operators:

X)J, = —i(X2a3+X3a2) —n
r+X3

X2J =+i(X a, +X,a ) —n
r+X3

J,= —i(X,a, —X,a, )
—n,

(2.1)

"'+
dp

yielding the equation for u „(p)

m +n +2mn coshp —
—,
'

sinh p
uj „(p)

2j+—,
' u „(p),

(2.9)

where X; (i=1,2, 3) are Cartesian coordinates in R,
a, =ayaX;, r = —X& —X2+X3)0, and n is an integer
or half integer. (Actually we can remove this last restric-
tion on n by allowing its value to be an arbitrary real
number; we will return to this point after we have
clarified the meaning of n in Sec. III.) The surface
characterized by r = 1 is the double-sheeted hyperboloid
parametrized, e.g. , by the polar coordinates (p, g) as

which generalizes Eq. (8.4) of Ref. [2]. Using a continu-
ous series of unitary representations of SU(1, 1) corre-
sponding to scattering states characterized [2] by

j=—
—,'+ik, (2.10)

where k )0 is a real number, Eq. (2.9) can be rewritten as
a Schrodinger equation

X, =r sinhp cosy, X2=r sinhp sing,

X3 =T coshp (2.2)

z+V „(p) uk „(p)=k uk „(p)
p

(2.11)

[J„Jz]= iJ3, [Jz,J—3]=iJ„ [J3,J, ]=iJ~, (2.3)

i.e., the operators give a realization of the so(2, 1)-su(1, 1)
algebra. Notice that this set of operators generalizes the
well-known one obtained from Eq. (2.1) by setting n =0.

Introducing the usual operators J+ =—J&+iJ2 and using
Eq. (2.2), after a similarity transformation by sinh'~ p, we
get

J =e+-'~ +a + cothp(+-, ' —ia n)+-0 sinhp

(2.4a)

where —co p ~, O~y &2m.. The double-sheeted hy-
perboloid can also be considered as the coset space
O(2, 1)/SO(2). This representation, expressing the fact
that our hyperboloid consists of two disconnected pieces
characterized by X3 ( —1 and X3 ) 1, will be used in Sec.
IV.

It is straightforward to check that

with the scattering potential

„(p)=
(n +m ) —

—,
'

( n —m ) —
—,
'

4sinh +
2

4cosh +
2

(2.12)

Our next task is to solve Eq. (2.11) and determine the S
matrix from the asymptotic form of the solution. After
transforming Eq. (2.9) back by the similarity transforma-
tion sinh '

p and employing the variable z=coshp in-
stead of p, we obtain an equation familiar in mathemati-
cal physics in connection with representations of SU(1,1)
studied by Vilenkin [7]. The solutions are the functions
B „' +"(z) that can be expressed in terms of the hyper-
geometric function (see Ref. [7]).

However, in order to present the solution of Eq. (2.11),
we choose a different route that is simple [8], but the
group-theoretical content is not explicit. After a change
of variable y = —sinh p/2 we obtain an equation for
uk „(y) from Eq. (2.11). The search for the solution of
this equation in the form [8]

J3= —iB —n .

[Compare with Eq. (8.3) of Ref. [2].]
We define the Casimir invariant by

C= —J —J+J =J+J —J J
and the usual basis states

(2.4b)

(2.5)

uk „(y)=y ( 1 —y ) Fk „(y)

where

2e=m+n+ —,',
2P =m n+ —,', —

(2.13)

(2.14a)

(2.14b)

clj,m, n &
=j(j+1)lj,m, n &,

J3lj, m, n & =m
I J,m, n & .

(2.6a)

(2.6b)

yields directly the hypergeometric differential equation
for I'. Choosing only the physically acceptable solution
that is regular at the origin y =0 [8], the final result is

Using Eqs. (2.4a) and (2.4b), the Casimir invariant can
be expressed as

+2ni( coshp —1)a +2n ( coshp —1)+—'
c=a,'+ '

sinh p

u„„(y)=y (1—y )~

XF(m+ —,'+ik, m+ —,
' —ik, m+n+1;y) .

(2.15)
1

4 (2.7) Exploiting the asymptotic behavior of F,
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li F(A B,c;Z)= ( ( A
(
—Z)

zI ' ' ' r(a)r(C —A )

r(c)r(A —a)+ r(A)r(c —a)

E, =Ea~ (3.5b)

commutes with the set of operators in Eqs (3.4) and also
satisfies the commutation relations of the su(1, 1) algebra.
Moreover, we have

we obtain the reAection coeKcient as C =J3+J3 J J+ %3+%3 K K+ (3.6)
I ( —,'+m i—k )I ( ,'+—n ik—) r(2;k)

e
—4ik ln2

I ( —,'+m+ik)I ( ,'+—n+ik) I ( 2ik—)

(2.16)

In closing this section we note that the class of poten-
tials in Eq. (2.12) is precisely the PI class of exactly solv-
able potentials of Ref. [9] discussed in connection with
one-dimensional bound-state problems.

III. ALGEBRAIC SCATTERING THEORY

(3.1)

For the calculation of the reOection coefficient
R „=B „/3 „by employing the concept of the Eu-
clidean connection [2], we have to establish recursion re-
lations between the functions A „(k) and

+i „(k),A „+,(k), etc. But so far we have not got-
ten any step operator raising or lowering the value of n in

~ j,m, n )" and +k, m, n )". We can remedy this
deficiency by introducing a new variable f and the associ-
ated differential operator defined by

=. aK3—=i
a

(3.2)

In order to investigate the scattering process in the
framework of algebraic scattering theory (AST), we have
to characterize also algebraically the number n entering
our Casimir operator Eq. (2.7). Indeed in Sec. II, n was
merely a number which appeared in our nonstandard
realization of the su(1, 1) algebra. This number is present
in the characterization of the su(1, 1) basis states j~, m, n )
too. However, in AST, the asymptotic states
~j, m, n )"—= lim „j,m, n ) are expanded in terms of
the incoming

~

—k, m, n ) " and outgoing
~
+k, m, n ) "

waves [algebraically characterized [2] by the Euclidean
algebra E(2)] in the form

~j, m, n )"=A „~
—k, m, n )"+8 „~+k,m, n )

P = ie '~ () + ——(+—,
—' —iB )

1

p
(3.7a)

(3.7b)

(with J3 =X), and the ones

6+= ie+'~ () +——(+ —,
' —iB~)

p

A, =ia~

(3.8a)

(3.8b)

(with K3=At) satisfy the commutation relations of the
Euclidean algebra [2], and the two sets of operators com-
mute with each other. Taking the limit p~~ in Eqs.
(3.4) and (3.5) and Eqs. (3.7) and (3.8), we can construct
the asymptotic algebras of SU(1,1)SU(1, 1) and
E (2)(8IE (2), respectively, with the corresponding eigen-
states

~j,m, n )" and ~+k, m, n ), related to each other
by Eq. (3.1). We can easily prove that

Using —(C+—') as our Hamiltonian acting on the states
of Eq. (3.3), satisfying Eqs. (2.6), and taking into account
Eq. (2.10), one obtained Eq. (2.11), which is our
Schrodinger equation.

The set of operators defined by Eqs. (3.4) and (3.5)
represents the left and right actions of the group SU(1,1)
on itself [7]. The net result is that in order to describe the
scattering process characterized by the Hamiltonian
—(C+ —,') algebraically, we have to enlarge our group
SU(1,1) to SU(1,1)SU(1, 1). As a consequence the suit-
able asymptotic description of the states ~+k, m, n ) is
provided by the algebra E(2)E(2). Note however that
such an extension of our group is needed merely to tackle
one-dimensional scattering with a two-parameter class of
potentials and not in order to investigate scattering in two
dimensions as in Ref. [3]. Actually, two operators
(J3,K3) are needed to label the strength of the interac-
tion.

It is straightforward to check that the operators

and modifying Eq. (2.8) according to

~j, m, n) =u, „(p)e' &+"~)

The operators of Eq. (2.4) now have the form

(3.3)
J n n ) oo A ( k )e

—i k Pe i ( m P + n P )

ikp i(my+ntP)
m, n (3.9)

J =e —'p +() + cothp(+ —,
' —iB ) — . 8&, (3.4a)

sinhp

The action of the operators needed to establish the neces-
sary recursion relations are the following:

J3= —ia

We next observe that the set of operators

(3.4b)
P" ~+k, m, n ) "=+k ~+k, m+ l, n )",
Q" ~+ km, n )"=+k~+k, m, n+1)",

(3.10a)

(3.10b)

J+ ~+k, m, n ) =(—,'+m+ik)~+k, m+1, n ), (3.10c)
K+=e '~ +() + cothp(+ —' —iB ) — . 8P sinhp

(3.5a)

K"
),+k, m, n )"=(—,'+n+ik)~+k, m, n+1)" .

Hence the connection formulas are as follows:

(3.10d)
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J+ =+—[(—
—,
' + ik )P+ +X"P+], (3.1 la) satisfying the commutation relations, Eqs. (2.3), of the

su(1, 1)-so(2,1) algebra ([q,p]=i, fi= 1). Now we define

E"=+—[( —
—,'+ik)6 —JM "6"],1 (3.11b) H(X;p, q)=—S X . (4.3)

where + corresponds to choosing the basis set
~+k, m, n ) . Since the operators E and J+ commute,
we can establish recursion relations by acting with J+E
on the left and using Eqs. (3.10c) and (3.10d) on the
right-hand side of Eq. (3.9). Reproducing the steps
presented in Ref. [2] yields

( —,
' +m ik )—( ,' + n——ik )

m+1, n+1
( )+ + k)(i+ + k) m, n

Moreover, in the spirit of Ref. [2] we can allow m and n

to be any real numbers corresponding to the projective
representations of SU(1,1). The final result is

I ( —,
' +m ik —)I ( —,

' + n i k)—
R k=

I ( —,'+m+ik)I ( —,'+n+ik)
where b, (k) is an entire function of k [compare with Eq.
(2.16)].

IV. NONSTANDARD REALIZATIONS
AND THE GEOMETRIC PHASE

H„„(P,X;p, q)= P P+H(X;p, q) .
1

2M
(4.1)

Here X and P are Cartesian coordinates confined to the
double-sheeted hyperboloid and the conjugated momenta,
respectively. The dot ( ) refers to the scalar product
a b = —a

& b, —a 2b2+ a 3b3. In order to ensure the validi-

ty of the BO approximation we chose the parameter M to
be sufficiently large. Note that Eq. (4.1) with
H(X;p, q)=0 and r =1 corresponds to motion on the
double-sheeted hyperboloid, which can also be represent-
ed as the coset space O(2, 1)/SO(2).

In order to define H(X;p, q ), we form the following set
of quadratic combinations from p and q:

S, =
—,'(p' —

q ),
S~ = —

—.'(qp+pq»

S3=—
—,'(p +q ),

(4.2a)

(4.2b)

(4.2c)

In this chapter we employ a simple model with SU(l, l)
symmetry realized in a nonstandard way, giving rise to
the appearance of the Casimir invariant [see Eq. (2.7)],
our main concern in this paper. The idea underlying
such a construction is based on recent reformulations
[10,11] of the molecular Born-Oppenheimer approxima-
tion exhibiting an explicit U(l) gauge invariance due to
the presence of nonintegrable phases. Such phases are
just Berry's celebrated phase factors [12] refiecting the
nontrivial topological properties of the configuration
space of the slow (e.g. , nuclear) degrees of freedom.

As our starting point we define an SO(2, 1) invariant
model Hamiltonian containing two types of dynamical
variables (P, X) and (p, q) called the slow (collective) and
fast (internal) variables, respectively. The simplest choice
for such a Hamiltonian H„, is the following (fi= 1):

Note that by defining the quantities 2x =X
&

—X3,
2y—=X2, 2z= —

X& —X3, Eq. (4.3) takes the following
form:

H(x, y, z;p, q)= —,'[xq +y(qp+pq)+zp ], (4.4)

which is the generalized harmonic oscillator, a well-
known example of studies concerning the geometric
phase [13—15]. Equation (4.3) can be regarded as a hy-
perbolic generalization of the Hamiltonian for a spin (S)
in a magnetic field (X) with the important difFerence that
now X also plays the role of a dynamic variable, not
merely an external parameter.

Let us denote the set of operators in Eq. (2.1) for n =0
by L—:(L&,Li,L3). Then one can verify the commuta-
tion rules

[L+S,H„,]=0 . (4.5)

In fact L and S generate infinitesimal SO(2, 1) rotations of
the slow and fast subsystem, respectively.

We next adiabatically decouple the slow degrees of
freedom from the fast ones using the BO approximation
[10,11,16]. We write the usual BO expansion of the total
wave function %(X,q ), satisfying

(H„, E)%=0—
in the form

(4.6)

%(X,q)= g X, (X)1',(X,q),
s=0

where P, (X,q ) are the solutions of the equation

H(X)g, (X,q) =E,(X)g, (X,q)

(4.7)

(4.8)

for every fixed value of X [with H(X) having the form of
Eq. (4.3)]. After adopting the convenient notation

~s(X) ):—itj, (X,q ), (4.9)

we multiply Eq. (4.6) from the left with (t(X)~, meaning
integration with respect to q. Using Eq. (4.7) we can
write down the projected form of the Schrodinger equa-
tion (4.6) as

oo

(P —A).(P —A)+E, (X) I X,(X)=EX,(X),
'

,
2M

L

(4.10)

where (M )„=i ( t(X)
~ V~ (sX) )—, P = i V, V—=(B/

BX,I3/BX2, t)/BX3). In the following we assume that the
motion described by the variables X is sufficiently slow
[16], hence they will not induce transitions between the
adjacent levels E,(X) and E, (X) (t&s). Consequently,
we can restrict our attention to the (one-dimensional)
subspaces with eigenvalue E,(X). In other words, in this
approximation we have to deal merely with the diagonal
terms of the infinite dimensional matrix-valued operator
appearing in the square brackets of Eq. (4.10). Isolating
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one eigensubspace with energy E,(X) for study, we ob-
tain the effective Hamiltonian for this level [10,11,16] as

with S, and Sz defined by Eqs. (4.2a) and (4.2b). Then
one can show that

+V"(X)
to be used in the equation

H",ity, (X)=Ey, (X),
where

(4.1 1)

(4.12)

H" = — [V —i A"(X)] [V—i A"(X}]+%'I(X)1

2M
H(X)=S X= U(p, IF)S XQU '(p, i()

= U(p, y)rS3 U '(p, y),
where Xo—= (0,0, r). The eigenfunctions of H(X) are

~s(X)) = U(X)~s(X,)),
S3 ls(XO) ) = —

—,'(s+ —,
'

) ~s(Xo) ),

(4.17)

(4.18)

(4.19)

V"(X)=E (X)

A"(X)=—i (s(X)
~
V ~s(X) ),

(4.13a)

(4.13b)

e"(X)—= y ( Vs(X)
~
t(X) ) ( t(X) i Vs(X) ) .

1

t(Ws)

(4.13c)

Notice that Eq. (4.12) and the BO expansion Eq. (4.7) are
invariant with respect to the local U(1) gauge transforma-
tion of the functions

~s(X)) e' '"'~s(X)),

y, (X) e -""'q,(X),
(4.14a)

(4.14b)

[H" J]=0 (4.15)

with J= (Ji, J2,J3 ) defined in Eq. (2.1), where the number
n is fixed by the quantum numbers of the fast subsystem.
As a first step we exploit the SO(2, 1) symmetry of the
Hamiltonian of Eq. (4.3) in order to solve its eigenvalue
problem yielding the eigenvectors s(X)) needed in Eqs.
(4.13a)—(4.13c). [Although we are interested in the
motion of the slow subsystem coupled to the fast one on
the double-sheeted hyperboloid (r = —X, —X2
+X3=1), it is more illustrative to restore the depen-
dence on r by demanding that r )0. In this way we ob-
tain a deeper insight into the meaning of the terms in
Eqs. (4.13a)—(4.13c). Of course we restrict our attention
in the final result to the case with r =1.] Let us define
the unitary operator

due to the presence of the Uector potential-like term or
U(1) gauge potential in Eq. (4.11).

Now we calculate the e6'ective Hamiltonian for our
model defined by Eqs. (4. 1)—(4.3). We shall show that it
can be expressed in terms of our Casimir invariant [see
Eq. (2.7)], hence

[Choosing the negative sign of the square root, i.e. ,
r= —( —Xi —Xz+X3)'~ ensures the positivity of the
energy in Eq. (4.8). Hence the set of parameters X for
r =const parametrizes the points on one sheet of the tmo-
sheeted hyperboloid [15].]

Having determined the instantaneous eigenvectors, we
are able to calculate the vector potential in Eq. (4.13b).
First notice that since the matrix U (X)VU(X) is anti-
Hermitian and UESU(l, l), U 'VU is an element of the
Lie algebra su(1, 1). Consequently the coefficients co,

" of
the one-form

co—=iU 'dU—=i U 'V UdX=co; SkdX', i, k=1,2, 3,
(4.21)

being the so-called Maurer-Cartan form [15] on the
group manifold, are independent of the particular choice
of representation used for the su(1, 1) algebra. We can
thus employ the simplest representation (S„S2,S3 )
= (cr, /2i, o.2/2i, o 3/2) to calculate co,", yielding

3"=—/'(s(X ) U '(X)(jU(X)Is(XQ))
=

—,'(s+ —,
' )(1—coshp)d y,

or in Cartesian components,

(4.22)

(s+ —,
'

)A" X =
2r(r+X3)

+X2
—X] (4.23)

where Eq. (4.19) follows from the fact that S3 is just —
—,
'

times the usual harmonic-oscillator Hamiltonian with
eigenvectors indexed by s =0, 1,2, . . . , a quantum num-
ber used also in Eq. (4.7). The first consequence of Eqs.
(4. 17)—(4. 19) is the formula

(4.20)

U(X) = U(p, y) =e (4.16)
I

For the calculation of VE"(X) in Eq. (4.13c), we use the
formula

1 (s(X}[VH(X)[t(X)) (t(X)]VH(X)[s(X))
2M (~) [E,(X)—E,(X)]

(4.24)

obtained after differentiating Eq. (4.8) and using the result in Eq. (4.13c). It can be proved [17] that it is sufficient to
perform the calculation only at one point of the hyperboloid as a consequence of the SO(2, 1) group action [15] on one
sheet of the double-sheeted hyperboloid [i.e., the coset SO(2, 1)/SO(2)-SU(1, 1)/U(1)]. Choosing this point to be Xo, we
get

VL"(r)=,[(s(XO)~S'~s(X, ) ) —(s(Xo)~S~s(X, ) ) (s(Xo) ~S~s(Xo) ) ] .1

2MT
(4.25)
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Let us now represent our operators S in terms of creation
(a ) and annihilation (a) operators ([a,a ]=1) as fol-
lows:

H;'~ =
I C —

—,
' [s(s+ 1)+—', ] I + —,'(s+ —,

' ),(s)
2M

(4.33)

S, = —
—,'(aa+a a ),

Sz=+ —(aa —a a ),
S3= —

—,'(a a+ —,'),

(4.26a)

(4.26b)

(4.26c)

S=—S —S+S=— J3
1 2 3 (4.27)

Using Eqs. (4.19) and (4.25), the final result is

with basis states s ) —= ~s(Xo) ) (a ta ~s ) =s ~s ),
a ~s ) =&s+ 1 ~s+ I ), a ~s ) =&s ~s

—I)). After some
algebra, one obtains

where we have restricted our attention to the motion on
one sheet of the hyperboloid r =1. Since the Casimir in-
variant defined by Eq. (2.7) is accompanied in Eq. (4.33)
with terms multiplied by the identity operator, the rela-
tion expressed by Eq. (4.15) is established.

Notice also that the presence of C in Eq. (4.33) can be
traced back to the appearance of the vector potential-like
term [see Eq. (4.13b)] in Eq. (4.11), which is needed to re-
store the U(1) gauge invariance. Hence the Schrodinger
equation (2.11) can be represented in the form [use Eq.
(4.32) with r =1]

I [ —(V —i A'"')'+ n ']+—,
'

j u„„(p)e' ~

'g"(r) = — [s(s+1)+1] .
1

8Mr
(4.28)

=k uk „(p)e' ~, r =1 (4.34)

As a next step we try to transform the first term in Eq.
(4.11) into a more familiar form. Using Eq. (4.23), we
have

r (V i A"} (V —i A"—)=r V V 2in. — 1
a1+ coshp

2 1 —coshp
1+ coshp

(4.29)

where

n =
—,'(s+ —,'), s=0, 1,2, . . .

Using the expression similar to the usual Laplacian

—a, —a, +a, =a, +—a, —,L,2 2 2 2 ~ 1 2

(4.30)

1 2 1 1
B„(r 8„)— . 8 ( sinhpB )

r r sinhp

', a',
sinh p

(4.31)

(V i A'"') =—1 a ar2
r2 Br Br

(J n), —(4.32)
r 2

where J is the Casimir invariant C corresponding to the
set of operators J,. in Eq. (2.1), which has been our start-
ing point. Moreover, within the framework of this mod-
el, we can interpret the number n appearing in the expli-
cit form of the operators J; as a quantum number of the
slow system inherited from the fast ones. The allowed
values of n are depending on the particular representation
of the so(2, 1)-su(1, 1) generators used to represent the
symmetry transformations for the fast subsystem (S). In—1 3 5 7our case n =—„—„—„—„.. . .

Inserting the results of Eqs. (4.20), (4.28), and (4.32)
into Eq. (4.11) and employing the usual similarity trans-
formation of sinh' p, we can represent the effective
Hamiltonian in the form

with L=(L&,L2, L3) defined in connection with Eq. (4.5)
being the usual SO(2, 1) "angular momentum" operators,
we get finally

where the value of n is fixed by Eq. (4.30). For n =0 we
obtain in Eq. (4.34) instead of the "covariant derivative"
the ordinary one which, together with the constraint
r =1, yields the usual Hamiltonian of Eq. (8.4) of Ref.

V. CONCLUSIONS

In this paper we have shown how a nonstandard reali-
zation of the noncompact group SU(1,1) can be used to
obtain a more general class of scattering potentials than
the one known from Ref. [2]. The geometrical ideas un-
derlying such a construction are embodied in Eq. (4.34).
According to the algebraic scattering theory, the Hamil-
tonian governing the scattering process is constructed
from the Casimir invariant C of SU(1,1) as H = —(C+ —,

' }
or more generally [2,3] from an arbitrary function h of C
as H =h [ —( C+ —') ]. In our case we managed to
represent C as the square of a covariant derivative plus a
constant. Our realization was achieved by the trick of
representing the SU(1,1) symmetry on two types of
dynamical variables corresponding to two subsystems
with wildly different energy scales, making it possible to
apply the Born-Oppenheimer approximation. Since the
two types of variables make their presence in the appear-
ance of two sets of quantum numbers (n, m), the
refiection coefficient Eq. (2.16) exhibits explicit depen-
dence on these numbers. This recognition can support
the idea that such realizations, by making an imprint on
the concrete form of the S matrix, may shed some light
not only on the symmetry properties of the scattering
process but also on the dynamics of the interacting sub-
systems involved.

The representation of the SU(1, 1) Casimir invariant in
a form which is manifestly U(1) gauge invariant (due to
the presence of the covariant derivative) emphasizes the
obvious connection with geometrical phases [see Eq.
(4.14)]. Hence we expect that our generators in Eq. (2.1)
can also be expressed in terms of covariant derivatives.
This form is easily shown to be [use n =(s+ —,

' )/2 in Eq.
(4.23}]
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J, = —i[X2(03—iA3"')+X3(r)2 —iA 2"')]—n
X)

J3 = —i [X,( t)2 —i A ~") )
—X2 ( t), i—A 'i" )

) ]
—n

X3

X~
Jz = +i[X3(r)&—iA I"')+Xi(83—iA 3"')]—n (5.1)

compact so that it cannot be interpreted as a geometric
phase.

Observe also that the allowed values of n in Eq. (4.34)
are depending on the particular representation of the
su(1, 1)-so(2,1) generators S, coupled to the usual ones L
via the BO approximation. Choose for instance

Notice that these generators are obtained not only by
merely replacing the ordinary derivatives by the covari-
ant one in L, but also by forming the mean value of the
operator S, i.e.,

—
—,'(s+ —,')—=(s(X)~S s(X) ) .

X

S = ——(a b ab—)1

Sz= —
—,'(a b +ab),

S~ =+—,'(a a+b b+1),
acting on the states of the form

(5.3a)

(5.3b)

(5.3c)

Heuristically we may argue that the set of operators J
satisfying Eq. (4.15) can be obtained from the operator
L+S of Eq. (4.5) by using covariant derivatives in L and
taking the "adiabatic average" of S as shown by Eq. (5.2).
In principle, the calculation of the modified set of genera-
tors J, for other groups when nonintegrable phases or its
non-Abelian generalizations [6] are present can be carried
out by using the result of Ref. [5]. We remark that the
set of operators of Eq. (5.1) is the hyperbolic generaliza-
tion of the well-known set with SU(2) symmetry describ-
ing the modification of the angular momentum algebra
when magnetic monopoles are present [5,6].

It is now obvious that the heart of our construction is
the nonintegrable U(1) geometric phase. As a by-product
we can explain why we have chosen the double-sheeted
hyperboloid instead of the single-sheeted one with
r =X, +X2 —X3, on which our operators J act. First
recall that due to the symmetry properties of H(X), the
unitary operator needed to diagonalize it can be regarded
as an element of SU(1,1). Since any eigenvector of H(X)
can be obtained from a fixed one by applying an SU(1,1)
transformation according to Eq. (4.18), we expect that
the set of eigenvectors can be indexed by the parameters
of that particular SU(1, 1) element. Of course this is not
the case. Two vectors ~s(X) ) and ~s'(X) ) related by the
local U(1) gauge transformation of Eq. (4.14a) are eigen-
vectors of H(X) corresponding to the same eigenvalue.
Hence the set of eigenvectors can be characterized by
points of the coset SU(1,1)/U(1) —SO(2, 1)/SO(2), which is
one sheet of the double-sheeted hyperboloid parametrized
by the pair (p, y) in accordance with Eq. (4.16). For the
single-sheeted hyperboloid such reasoning cannot be ap-
plied because in this case the relevant coset space is
SU(l, l)/R-SO(2, 1)/SO(1, 1), i.e., the subgroup is non-

~s„sb) =(s, !sb!) ' (a ) '(b ) '~0, 0),
with

(5.4)

s, —sb ——so =const,

and the Casimir invariant

(5.5)

S =—'(a a bb) ———'= —'(so —1) .4 4 4 (5.6)

It can be shown [18] that the states in Eq. (5.4) with the
constraint given by Eq. (5.5) represent a basis for the
discrete series unitary irreducible representation of
SU(1,1) labeled by the number ~so~. Hence the allowed
values for n are

n =ss+ —,'(so+ I) . (5.7)
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This "coupling of representations" can be used to gain
some information from the range of the parameter n in
the formula for the refiexion coefficient Eq. (2.16) on the
concrete form of SU(1,1) representations characterizing
the dynamics of the internal degrees of freedom.

The generalization of the present nonstandard realiza-
tion to larger noncompact groups, e.g. , for the group
SO(3,2) used in Ref. [4], might deserve some attention in
physical applications. It may be used, for example, to in-
vestigate models related to the modified Coulomb prob-
lems, which, according to Ref. [3], can be useful for the
study of heavy-ion reactions. Such generalized realiza-
tions we shall present in future works.
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