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Bistability and chaos in an injection-locked semiconductor laser
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We present a theoretical investigation of complex dynamical behaviors of an injection-locked
semiconductor laser. A period-doubling bifurcation route to chaos and bistability has been identified.
The boundaries for period-doubling bifurcations and chaos are mapped out in the injection-level—
frequency-detuning plane. It was shown that there exist two locally stable attractors of limit cycles.
The centers of the attractors shift nonlinearly with injection level. The shift of the center of the
electric-field phase is estimated by the harmonic balance method.
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I. INTRODUCTION

The nonlinear dynamical properties of optical systems
are currently of great theoretical and practical interest.
Especially, the nonlinear phenomena observed in semi-
conductor lasers deserve special attention due to their ef-
fects in the applications such as optical communications,
optical fiber sensors, and high-resolution spectroscopy.
They are also interesting theoretical subjects due to
their possibilities of showing bifurcations and determin-
istic chaos [1—10]. The complex dynamical phenomena in
semiconductor lasers have often been induced by the co-
herent optical feedback [1—4], direct current modulation
[5], or by the injection of coherent light [6—10].

Studies on the nonlinear dynamical behavior of
injection-locked semiconductor lasers have been initi-
ated by a pioneering work of Lang [6]. Otsuka and
Kawaguchi [7] predicted a period-doubling route to chaos
in a detuned-laser system with injected signals. A semi-
conductor laser may be considered as a detuned laser
and their results are also true for the injection-locked
semiconductor lasers. Recently, Sacher et al [8] con-.
firmed the route to chaos by numerical simulations. They
demonstrated the importance of the linewidth enhance-
ment factor and nonlinear gain for the nonlinear dyan-
mical behaviors. Similar behaviors have been studied
in delayed-feedback geometries [2,9,10]. Tromborg and
M@rk [2] have employed an injection-locking model to
explain the onset of the coherence collapse in external-
cavity semiconductor lasers and demonstrated that a
period-doubling route to chaos exists for a mode with
minimum carrier density. They also observed quasiperi-
odic behavior and frequency locking for a mode with
minimum linewidth [3,4]. The strong coupling between
the variables has defied analytical approaches and most
of theoretical studies have heavily relied upon numerical
simulations.

In this paper we have analyzed in detail the nonlin-
ear dynamical behaviors in injection-locked semiconduc-
tor lasers and identified the boundaries for a period-
doubling bifurcation route to chaos in the frequency-

detuning —injection-level plane. We also observed a bista-
bility which is associated with two locally stable attrac-
tors at low injection levels. These attractors are gen-
erated by the nonzero-amplitude oscillations which tend
to shift the center of attractors. The shift of the center
of attractors is obtained approximately by the harmonic
balance method. Close agreements between analytic re-
sults and numerical simulations have been achieved. We
observe a quasiperiodic region at the positive frequency
detuning. The regions of bistability and quasiperiodicity
and the boundaries for linear stability have been mapped
out in the frequency-detuning —injection-level plane.

and that of the master laser by

EMr, (t) = Eie'~ '+&'I, (2)

where Eo(t), Eq, $0(t), and Pq are real valued and A is
the angular oscillation frequency of the slave laser with-
out the injected signal. Eo(t) is normalized such that
~EO(t)~ is the photon density and Eq is regarded as a
constant. Pq can be set to zero without loss of generality.
If stable injection locking occurs, the angular frequency
(A+ $0) of the slave laser approaches that of the master
laser as time goes on and the phase Po(t) may be ex-
pressed as (cu —A)t+ Pl. , where Pl. is the constant locked
phase. However, if injection locking occurs incompletely
due to dynamic instability, the angular frequency of the
slave laser may vary around the oscillation frequency of
the master laser and the phase $0(t) may be expressed
as (w —A)t + Pl. +P(t), where P(t) accounts for the com-
plex variation of the phase. The characteristic frequency
of dynamic instability may be related with either beat-
ing between u and 0 or the relaxation oscillations. The

II. THEORY'

The conventional rate equations have often been suc-
cessful to explain the nonlinear dynamical behavior of
injection-locked semicondcutor lasers. We assume that
the complex field of the slave laser is represented by
[11,12]

Es~(t) —Eo(t)e~Pt+&o(&)I
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1 Ei
sin[Pg + P(t)).

Tln Q
(4)

The coupling between the real and imaginary part of the
refractive index is represented by the linewidth enhance-
ment factor a. The gain G per unit time is assumed to
be given by G(N) = GN(N —No), where N is the car-
rier density in the active region, G~ = BG/BN is the
difFerential gain, and No is the carrier density required
for transparency. The threshold carrier density Nti, for
the slave laser is related to the photon lifetime r~ by
the threshold condition that the gain equals the loss [i.e. ,

G(Nqi, ) = 1/r„]. ~;„ is the diode cavity round-trip time.
The temporal evolution of the carrier density is gov-

erned by the usual rate equation

—G(N) IEo(t) I' (5)

where J is the carrier injection rate per unit volume and
r, is the spontaneous carrier lifetime.

The stationary solutions of these rate equations can be
found to be [10]

(6)
S

1 Eg
N, t = N~h —2 cosgL„

&in N Oat

1 Ey6u = cu —0 = — [sin Pr, + ~ cos Pl ] (8)
7in Eo,s~

The stable frequency-locking range can be found from
the following considerations: (a) the range of allowed fre-
quency detuning and (b) dynamical stability. The condi-
tion (a) leads to the following frequency-detuning range:

(1+a )
1 Ey 2

&in EO, st;

The condition (b) for dynamical stability of the injection-
locked semiconductor lasers further limits the frequency-
locking range. For a given Au, the stable locked-phase
Pr, ls

Pr, = —sin ~,~

—tan a.. -i( (10)

However, the linear stability analysis can provide only
the condition for the Hopf bifurcation which is due to

beating between the two frequency components when the
frequency of the master laser is outside the frequency-
locking range is of little concern in this paper. Instead
we are concerned with the nonlinear dynamics related
with the undamped relaxation oscillations, which may
persist even though the frequency of the master laser is
within the locking range. To investigate the dynamical
behavior of an injection-locked semiconductor laser, we
have used the following difFerential rate equations [11,12]
for the electric-field amplitude Eo(t) and phase P(t) of
the slave laser:

dEO = &G~(N —Nth)EO(t') + Ei cos[gl, + P(t)],
1

Ch 7in
(3)

dt
= —(u —0) + -aG~(N —Ngi, )2

the undamping of the relaxation oscillations.
When the amplitudes of oscillations are small, peri-

odic nonlinear behaviors can be studied by the harmonic
balance method. Once the oscillations occur, the steady-
state values Eo,,t, Pl„and Ns& no longer serve to be the
centers of oscillations. Consequently, the shift of the cen-
ter of oscillations should be considered. Oscillations of
electric-field amplitude and carrier density can be ap-
proximated to be

EQ (t) = Eo + e sin(ARt + @z), (11)

N(t) = N+ n sin(A~t+@iv), (12)

where Eo and N are the time average value of electric-
field amplitude and carrier density, respectively. en and
n are the oscillation amplitudes of Eo(t) and N(t). @@
accounts for the phase delay of E(t) with respect to P(t),
while @~ accounts for the phase delay of N(t). Az is the
angular oscillation frequency. The numerical simulations
show that the shift P, is large compared to the shift of
centers of E(t) and N(t). Thus P(t) is approximated to
be

P(t) = P, + Pn sin(Q~t),

where P, accounts for the shift of the center of P(t) from
the steady-state locked phase PL, and Pn is the amplitude
of oscillations of P(t). By taking the time average of the
rate equation (3)—(5), P, can be calculated as a function
of the injection level. The study of nonlinear dynamics
in the region where the harmonic balance method fails
may be conducted via numerical simulation of the rate
equations.

III. RESULTS AND DISCUSSION

The numerical integration of the rate equations was
performed using an Adams method with a time step of
10 ps. The laser parameters used in the calculations had
the following values: GN = 0.6 x 10 i2 mss i, No =

m ~~ = 2.2 ns ~~ = 1,5 ps ~in = 8 p
3. The injection current I&h was 1.03 times the threshold
current of the slave laser. The variables are set initially
to their steady-state values which are determined by the
locked phase, and integration is allowed to proceed for
approximately 200 ns before any data are accumulated.
This allows any initial transients to die out. The electric-
field amplitude, the phase, and the carrier density are
computed over 100 ns.

Previously, period-doubling routes to chaos have been
identified by varying the frequency detuning [7] or in-
jection level [8]. We have confirmed the period-doubling
route to chaos with increasing the injection levels or fre-
quency detuning. Figure 1 shows one of the bifurca-
tion diagrams obtained by sampling only the extrema
of the electric-field phase p(t) with increasing the injec-
tion level. The initial locked phase was chosen to be Pg
at the frequency detuning b,f = —20 MHz. Orbits of
period up to 32T (T = 2z'/cuR) have been identified from
the numerical study of the rate equations. The univer-
sal constant 6 of period-doubling bifurcation has been
calculated to be 4.50 from the first three bifurcation in-
jection levels. The chaotic bands of period 4T and 2T
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can also be seen in Fig. 1. The chaotic band of period
2T becomes a stable orbit of period 4T at the injection
level Ei/Ep, t 0.007. The stable orbit is thought to
be related with a periodic window embedded within the
chaotic regime. The period-doubling route to chaos has
also been observed at diferent frequency-detuning val-
ues. The mechanism of period-doubling bifurcation is
thought to be due to the coupling introduced by the
linewidth enhancement factor in Eq. (4). The strong
modulation induced by the light injection also seems to
play an important role in the period-doubling route to
chaos. A period-doubling route to chaos has been previ-
ously observed in direct modulated semiconductor lasers
[5]. The period-doubling bifurcations up to infinite peri-
ods and inverse period-doubling bifurcations of chaotic
bands are well-known behavior in the logistic map or
forced limit cycle oscillators (for example, the Brusse-
lator) [13]. Figure 2 shows the stable frequency-locking
range and critical injection levels for Hopf bifurcation and
period-doubling bifurcations at various frequency detun-
ings. The regions of period 2"T orbits and chaotic bands
are indicated as 2"P and 2"I, respectively. The regions
of chaotic bands are also shown in this figure with their
periods. The upper limit of frequency detuning Af for
the period-doubling bifurcations was ranged from 40 to
90 MHz, depending on the injection level. We have also
observed very complex behaviors such as periodic motion
with a period of 2 x ST, 2 x 5T, 3 x 5T, etc. , at the pos-
itive frequency-detuning region and injection level from
0.005 to 0.007, but the boundaries for these orbits were
difficult to map out.

Figure 3 shows the change of the oscillation amplitude
of the electric field with an increase of positive frequency
detuning. Quasiperiodie behavior, which is due to the
interaction between the detuning frequency and relax-
ation oscillation frequency, has been observed at large
frequency detuning. The frequency detunings at which
period-one oscillations change to quasiperiodic oscilla-
tions are shown by the dashed line in Fig. 2. The sudden
change of the electric-field oscillation amplitude Ep(t)
has oecured at a certain frequency detuning as shown
in Fig. 3. This critical frequency detuning is marked

200

0

—200

E, /Eo. I

0.006 0.009

FIG. 2. Boundaries for period-doubling bifurcations and
chaos in the frequency-detuning 4f and injection-level
Ei/Ep, t, plane. The frequency detuning for the transition of
an attractor and the detuning for quasiperiodicity are shown
by a dotted line and dashed line, respectively.

by a dotted line in Fig. 2. To explain the discontinuous
change of the amplitude of oscillations, we have projected
the attractors onto the P(t) vs Ep(t) plane as shown in
Fig. 4. The attractor to which the system eventually ap-
proaches is determined by the initial conditions. Figure
4 shows such an initial-value dependent behavior: The
upper cycle has been reached when the initial values of
the phase and electric-field amplitude are chosen to be
those indicated as open circles in Fig. 4, while the lower
cycle has been obtained when the initial values are chosen
to be those indicated as closed circles. The initial car-
rier density was set to equal the steady-state value. The
projected center of one attractor lies above the value of
the steady-state locked phase Pr„while it lies below the
steady-state locked phase for the other attractor.

lt may be noticed that the center of periodic oscilla-
tion moves from the steady-state solutions of the rate
equations. The nonlinear shift of the center of periodic
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FIG. 1. Period-doubling bifurcation diagram at frequency
detuning b,f = —20 MHz. The extrema of the electric-field
phase P are sampled. The dashed line indicates $1,.

—50
I I

0 50
Af (MHz)

I

100 150

FIG. 3. The magnitude of the relative electric-field am-
plitude Ep(t)/Ep, g with frequency detuning at the injection
level Ei/Eo, ,t = 0.0025. The limit cycle formed by an attrac-
tor transits to the other one governed by another attractor at
the frequency detuning Df = 87 MHz.
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FIG. 4. Projection of attractors onto the Eo(t) vs P(t)
plane. Injection level Ri/Eo, ,t = 0.0025, frequency detuning
Df = 87 MHz. The dashed line indicates Pi, obtained from
Eq. (10). The upper orbit can be reached from the initial
points marked with open circles, whereas the lower one can
be reached from the initial points marked with closed circles.

FIG. 5. Shifts of the center of an attractor as a function
of the injection level along the line Au = 2.06—z

' . The
1

symbol o denotes the results obtained from numerical sim-
ulations, while x denotes those from the harmonic balance
method.

IV. CONCLUSIONS

orbit is believed to generate a bistability. The bista-
bility, which is generated between the stable orbits, is
difFerent from the common bistabilities associated with
two stable fixed points. We have examined the shifts of
the center using the harmonic balance method. The os-
cillation amplitudes as a function of injection levels are
obtained from numerical simulations. g~ and giv are
approximately determined from a linear stability analy-
sis. Then the shifts of the centers are calculated. The
centers of the electric-field amplitude and carrier density
do not shift significantly from their steady-state values.
But the center of the electric-Geld phase is shown to shift
significantly. Figure 5 shows shifts of the center of P(t)
as a function of the injection level. The frequency de-
tuning Au was varied with the injection level such that
Eu = 2.06—@

' . Close agreements between the re-
sults of numerical simulations and the harmonic balance
method have been observed for the frequency detuning
above the critical frequency detuning, while poor agree-
ments have been achieved for the frequency detuning
lower than the critical frequency detuning.

The nonlinear dynamical behaviors of injection-locked
semiconductor lasers have been investigated from numer-
ical solutions of the rate equations. The period-doubling
route to chaos is conGrmed with the variation of the in-
jection level and frequency detuning. Orbits of period up
to 32T, periodic windows, chaotic bands, and bistability
have been identified. The boundaries for period-doubling
bifurcation and the chaotic regimes are mapped out in
the injection-level versus frequency-detuning plane. The
shifts of the centers of attractors have been predicted by
the harmonic balance method and compared with those
obtained by numerical simulations. The existence of two
attractors (limit cycles) at a low injection level and pos-
itive frequency-detuning regime has been demonstrated.
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