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Generalized multimode squeezed states
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The notion of squeezing is generalized to the case of multimodes. The multimode generalized
squeezing operator has similar algebraic properties to those of the single-mode case and reduces to
the usual two-mode squeezing operator in the case of two modes. It is also shown that the generalized
multimode squeezed state is a multimode minimum-uncertainty state if the squeezing parameters
are real.
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In recent years squeezed states of the electromagnetic
field have been widely studied, both theoretically and
experimentally, because of their prospective applications
in technology [1,2]. These are pure quantum-mechanical
states of light that have reduced fiuctuations in one field
quadrature, when compared with coherent states. So far,
most studies have been concentrated on single-mode and
two-mode squeezing. Multimode squeezing, however, has
not been studied as much. In this Brief Report we shall
be interested mostly in the generalization of single-mode
and two-mode squeezing to the multimode case. The gen-
eralized multimode squeezed states have been proved to
be important in problems on electronic systems coupled
to boson fields [3—6].

Single-mode squeezed states
I P, n) can be generated

by means of a unitary squeezing operator defined by [7]

S(P) = exp( 2i(Patz —P'a )j,
from the vacuum state

I 0) as follows:

I P, cri, az) = Di(ai)D2(cr2)Si2(P) I 0), (6)

where D, (n;) is the displacement operator for the ith
mode (i = 1, 2),

Siz(P) = exp(Paiaz —P'aiaz) (7)

S12(P) ai S»(P) = cosh(IPI) ai +»nh(IPI) a'

Si2(P) az Sip(P) = cosh(IPI) a2 + siilh(IPI) ai.

(8)

(9)

is the unitary two-mode squeezing operator, and
I 0) is

the two-mode vacuum state. This two-mode squeezed
state is a highly correlated state of the two field modes
that exhibits reduced quadrature noise in linear combi-
nations of variables of both modes; however, squeezing is
not observed in the fiuctuations of individual modes. The
two-mode squeezing operator transforms the annihilation
operators according to

P ~) = D(~)S(P)lo) (2)

b = St(P) a S(P) = cosh(IPI) a+ sinh(IPI) a~,
IPI

that is,

bl»~) = ~IP ~) (5)

In the two-mode case a two-mode squeezed state is de-
fined by [8,9]

where

D(a) = exp(na~ —cr'a)

is the unitary Weyl displacement operator, and a and
al are the usual single-mode boson annihilation and cre-
ation operators, respectively. In configuration space the
squeezed states correspond to Gaussian wave packets
with widths distorted from that of the vacuum state.
Also, the squeezed states are the eigenstates of the so-
called squeezed annihilation operator

Thus, a typical process leading to two-mode squeezing
is a process during which a mode is mixed with the
conjugated field of another mode according to a Bogoli-
ubov transformation. It should be noted that a two-
mode squeezed state is not simply a direct product of
two single-mode squeezed states

I Pi, ni) I P2, nz), where

IP' cr') = D'(o')S'(P') I o) (10)

in other words, the two-mode squeezing operator

Siq(P):—exp(Paiaz —P aia2) is not a simple product
of the two single-mode squeezing operators: Si(pi):—
exp(Piai' —Pia ) and Sz(P2)—:exp(Pza —Pza ).
Nevertheless, by a simple transformation the two-mode
squeezing operator Si2(P) can be expressed as a product
of the following two new single-mode squeezing opera-
tors:

S12(P) = exp[-,'(Pb+' —P'g. )]
x exp[—z(Pb —P"b )],
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where by = (ai + a2)/v 2.
To generalize the notion of squeezing to the multimode

case, a possible definition of the generalized multimode
squeezed state could be

1 1"-
IiPij + 3, ) Pi,kPi)„iPlj

k, L=1

N

+5, ) Pii Pi', iPimP* Pn~ +'
k, t,-,-=1

(2o)

D, (n, )
j(k=1

s,,(P,,) I o), (12)

1V

S((P', )) =e p ).(P', nt. t P;,", ,)-
i&j=1

= exp 2 ij+i +j ij'+
i,j=1

(13)

(14)

where P,z ——P~;. It is clear that for N = 2 the gener-
alized multimode squeeze operator reduces to the usual
two-mode squeeze operator given in Eq. (7). Then the
generalized multimode squeezed state may be naturally
defined as

I(P' ) ( ')) = D(( 'k)S(P'))Io)
where

N N

D((~')) = D'(~') = exp():(~'~,' —~l~') ). (16)

It is not diKcult to show that the generalized multimode
squeezing operator transforms the annihilation and cre-
ation operators as follows:

N
S"a;S=) (p,,a~+ v,,a, ),

j=1
N

St
an't

S = ) (p,,', at + v,', a, ),

(17)

(18)

where i = 1, 2, ..., N, and

1
N N

&i~ = ~i~+ 2i ).P'»ig+ —, ) . Pa Pi', iPimP*, +
k=1 k, l,m=1 (»)

where D;(n;) is the ith-mode displacement operator,
S~i, (p~y) is the two-mode squeezing operator for the jth
and kth modes, and

I 0) is the multimode vacuum state.
This definition of the generalized multimode squeezed
state is, however, not very convenient because the op-
erator product in Eq. (12) is often difficult to manipu-
late when N is large. The properties of these operator
products are often difficult to use as well. For instance,
general simple formulae for the unitary transformation
of the annihilation and creation operators by these oper-
ator products are hard to find because of the complica-
tions caused by repeated applications of these two-mode
operators. As a result, an alternative definition for the
generalized multimode squeezed state is needed.

To begin with, let us introduce the generalized multi-
mode squeezing operator in the following form:

Here we have set P;, = 0 (i = 1, 2, ..., N) so that the
restriction on the double sum in Eq. (14) can be lifted.
We now define matrices IPI and IPI

i in the following
way:

(Ipl')*g =) .(Ipl)'A(lpl)~, = ).P,i PZ, , (21)

4=) (IPI ')'i(IPI)i~ (22)

Then p,,~ and v,~ can be rewritten as

~'~ = lcosh(IPI) j'~

~*~ = ).f»nh(IPI)j'~(IPI ')~i(P)i,
k, l=1

= t»nh(IPI) IPI 'P];, .

(23)

(24)

a+ at
2

a —af
(27)

Using the transformations in Eqs. (25) and (26), it is
straightforward to show that in a generalized multimode
squeezed state the variances are given by

(Aa+. )~ = (Ha+Ma~+)
= s'(cosh(2IPI) +»»(2IPI) IPI 'P

+«»(2IPI )+»»(2IPI )(IPI ) 'P*)
(28)

(Aa ) =(Aa Aa )
= slcosh(2IPI) —»»(2IPI) IPI 'P

+«»(2IPI ) —»»(2IPI )(IPI ) 'P')
(29)

As a consequence, in the matrix notation one can express
the unitary transformations in a form which closely re-
sembles those of the single-mode case:

St a S = cosh(!pl) a+ sinh(!pl) !pl
' p at, (25)

St t S = cosh(IPI ) at + sinh(IPI ) (IPI )
' P' a,

(26)

where lpl is the transpose of Ipl, i.e. (Ipl ),, = Ipl, ;,
and a is the column vector consisting of annihilation op-
erators a, (i = 1,2, ... , N), and at is the vector of creation
operators.

Next, to see the multimode squeezing property explic-
itly, we shall compute the variances for the quadrature
amplitudes
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(»+)'(»-)' = i's&+ (»+-)'. (31)

For P being real, we have

»+ ——
z exp(P),

as well as

Lh, a = 2i exp( —P), (32)

Aa+ ——0,
Aa+ Aa = 4I.

(»)
(34)

(& +-)' = —.'[(& +& -) + ((& +& -)) ]

1= —.(—cosh(2]PI) +»nh(~l&l) I&l
' P

+cosh(2IPI ) —»nh(2IPI )(IPI ) 'P')
(30)

where»~ = a~ —(a~) and

Hence, provided P is real, the generalized multimode
squeezed state is a multimode minimum-uncertainty
state, which exhibits squeezing in the fluctuation of one
Geld quadrature at the expense of an increase in the fluc-
tuation of the other quadrature.

In summary, we have defined the generalized multi-
mode squeezed state generated by the multimode squeez-
ing operator. The generalized multimode squeezing op-
erator has very similar algebraic properties to those of
the single-mode case, and it reduces to the usual two-
mode squeezing operator in the case of two modes. It
has also been shown that the generalized multimode
squeezed state is a multimode minimum-uncertainty
state if the squeezing parameters are real. Our general-
ized multimode-squeezing-operator formulation has been
proved to be very useful to problems in electronic systems
coupled to boson fields (in particular, phonons) [3—6].
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