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Berry's phase in quantum optics
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It is pointed out that quantum optics provides examples where the origin of geometrical phase factors
can be investigated in two different ways. The first possibility relies on a line bundle in which the fibers

over each base point in parameter space consist of Stark states, whereas fibers of Floquet states yield a

second possibility. Both constructions are compared in some detail, and the Floquet bundle is found to
offer distinct advantages.
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Immediately after Berry [l] had pointed out the ap-
pearance of a "geometrical phase factor" in the wave
function of a quantum system with adiabatically varying
parameters, Simon [2] explained this phenomenon as the
holonomy in a certain Hermitian line bundle. Since then,
Berry's phase has become an intensely studied object
which has led to considerable physical insight into a
number of different topics [3).

An interesting class of related problems arises in quan-
tum optics: When an atom or a molecule interacts with a
laser field that can be described classically, one deals with
a periodically-time-dependent quantum system. If, in ad-
dition, some parameters such as the laser field strength or
the polarization vary on a time scale that is long com-
pared to the period T of the individual laser oscillations,
one has a quantum system with a "fast," periodic and an
additional "slow, " nonperiodic time dependence. Such a
situation emerges quite naturally, e.g., if an atom is ex-
posed to a laser pulse with an amplitude that has a
smooth shape.

It has been shown in Refs. 4—6 that a consistent use of
Floquet states yields a general and particularly simple
method to investigate the origin of geometrical phases in
such cases, as well as computationally efficient formulas.
Recently, the approach developed there has also been em-
ployed by Moore and Stedman [7] to calculate Berry
phases for "two-level atoms. "

As is well known, Berry's phase arises as the integrated
curvature of the adiabatic connection in a line bundle
which is constructed from the eigenvector space of the
family of instantaneous Hamiltonians [2]. Whereas, in
general, this bundle is unique, this is no longer the case in
quantum optics: As we will discuss in this Brief Report,
the twofold time dependence mentioned above leads to
two different possibilities. Hence, labeling quantum
phases as "dynamical" or "nonadiabatic geometrical" be-

with T =2m /to, where Ho describes the unperturbed
atom or molecule, co is the frequency of an external laser
field, A, denotes the amplitude of the electrical field, and e
is a polarization vector. We arrange all these parameters,
as well as possible additional parameters contained in Ho,
but with the exception of the frequency m, in a formal
vector R and indicate the dependence of the Hamiltonian
on the latter by a superscript. As long as none of these
parameters is varied, the Hamiltonian (l) is merely
periodically time dependent.

Now there are two rather different types [8] of "instan-
taneous eigenstates": On the one hand, one can simply
consider the eigenstates g„(x) of the time-independent
Hamiltonian

H =Ho+We. x, (2)

which we shall refer to as "Stark states" in analogy to the
case where Ho describes the hydrogen atom; on the other
hand, there are Floquet states, i.e., the time-periodic
eigenstates u„(x, t) of the operator

(3)

Correspondingly, for a given curve C connecting points
R& and R2 in the space of physical parameters, we have
to distinguish two different cases (for simplicity, we do no

comes ambiguous without a proper specification of the
underlying bundle and a use of the "wrong" frame of
reference might lead to unnecessary complications. We
will also demonstrate that the previously constructed
Floquet bundle [4] has the merit of great conceptual sim-
plicity and clarify some of the details in the work of
Moore and Stedman [7].

To be definite, let us consider the Hamiltonian

H ( t) =Ho+ Ae x sincot,
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f(t)=+(r, t)l,=, . (5)

When r is kept fixed, the Floquet states uo "(x,t) are
eigenvectors of the operator on the left-hand side of Eq.
(4). Therefore, we can now apply the adiabatic theorem
to the slow evolution of R(r): The initial value

4(r=O, t)=u()' '(t)

evolves in time as

40(r, t) =exp i f d—r'so(R(r') ) u o "(t),
0

(6)

(7)

where Eo(R) are the instantaneous quasienergies; there-
fore, the Schrodinger wave function is given by

(I((t) =exp i f dt'—Eo(R(t') } u o'"(t) . (8)

We remark in passing that the present application of the
adiabatic principle is not trivial. Even in simple situa-
tions, the quasienergy spectrum is a dense point spectrum
[11,12], and the usual gap condition in the standard adia-
batic theorem has to be replaced by a condition on the
ineffectiveness of resonances [13,14]. The point now is
that Eqs. (7) and (8) already require a connection to fix
the phases of the instantaneous Floquet states uo (t).
This observation leads to the geometrical phase: If we
denote the scalar product in the space of square-
integrable, T-periodic wave functions [15]by

f «& —
I ), (9)

the obvious identity

longer indicate the spatial variable x explicitly).
(i) If we fix the phase of an initial Stark state yo ', the

adiabatic theorem [9] yields a way of transporting this
state along a curve C [2]. More precisely, for every R on
a C, let Hs be the eigenvector space corresponding to the
energy Eo(R) of the instantaneous Stark state q&0. We
thus obtain a line bundle over the parameter space, which
we shall call the "Stark bundle" in the following, and the
adiabatic theorem yields a connection in this bundle in
the usual way.

(ii) In a similar manner, we can also set up a "Floquet
R)bundle" to transport a Floquet state u 0
'. The line bundle

is now fixed by associating with every parameter R on a
curve C the eigenvector space HF corresponding to the
quasienergy so(R) of the instantaneous Floquet state uo.
To bestow this bundle with a connection, we proceed as
follows. First, we exploit the physically given separation
of time scales by introducing two different time variables:
t for the "fast," periodic time dependence and ~ for the
"slow" time dependence of the parameters R. We thus
obtain the evolution equation [10]

(~R"(t)—a, )e(, t) =ia,e(,t),
and from the solutions of this equation, the Schrodinger
wave functions g can be recovered by setting t equal to r:

(( u R(r)
l
g u R(~) )) —0

This is the crucial phase-fixing condition [16] for the adi-
abatic transport of Floquet states along a path C" If we
start with an arbitrary single-valued choice R~ v 0 of
Floquet states with quasienergy so(R), the ansatz

, ' (t)= ' ' ' (t)Vp

finally yields

)( ) = —I f «'UR")la UR")»R(
0

(12)

(13)

the geometrical phase for the Floquet bundle.
The difference between both mathematical construc-

tions, i.e., the Stark bundle and the Floquet bundle, be-
comes most obvious if we consider simply the time evolu-
tion generated by the periodic Hamiltonian (1) without
varying any parameter. Any solution g(t) of the
Schrodinger equation can then be expanded as

g(t) = g a„u„(t)exp( —is„(R)t}, (14)
n

with time-independent coefficients a„.
In the context of the Floquet bundle, a description of

this situation is fairly simple. The periodic time depen-
dence has already been accounted for in the construction
of the bundle, and, therefore, we need no path in parame-
ter space, but only a single point R. Hence, there is no
geometry involved, and, of course, no geometrical phase:
The phase factors exp( i E„t) whic—h the individual Flo-
quet states acquire are of purely dynamical origin.

The very same physical situation appears much more
involved when working with the Stark bundle. Since the
periodic time dependence is not contained in the fibers,
we now need a periodic path, i.e., we set

A, =A. sin&et (15)

[for the definition of X,, see Eq. (2)] and keep all other pa-
rameters fixed. To make contact with the Floquet bun-
dle, let us first assume that the frequency co is so low that
the evolution in the Stark bundle is essentially adiabatic,
i.e., an initial Stark state

P(t =0)=

evolves in time as

g( t) = exp i f dt 'Eo—(X( t ') )
0

(17)

g(t) = y()'"exp i f dt'E —(X(ot'))

+i— dt'Ep A. t'T

T 0

where Eo(X) are the Stark energies. [Note that here we

have absorbed the geometrical phase in the definition of
the instantaneous Stark states. This is possible because
the path (15) does not enclose a finite area. ] Rewriting
(17) as

« e,R"lH""—) a —(.a,le""» =0

leads to the transport lav

(10)
Xexp —i f dt'E (—Xo(t'))

T

T 0
(18)
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we see that the first factor in (18) is a periodic function of
time, that is, a low-frequency Floquet state. Hence, the
second factor gives the quasienergy: In the low-
frequency regime, the quasienergy is equal to the one-
cycle average over the Stark energies,

Eo(A, ) =—f dt Eo(X(t) ) .
1

(19)

H (t) =(coo/2)o, +o.„A, singlet, (20)

where o and o., are the usual Pauli matrices and coo

denotes the level separation of the undriven system. If
the linearly polarized field is decomposed into a superpo-
sition of two oppositely circularly polarized fields,

This observation clearly shows that a quasienergy, al-
though it carries no geometrical information about the
Floquet bundle, is associated with the path (15) in the
context of the Stark bundle and does carry information
about the latter.

If we now drop the restriction to low frequencies, the
situation remains the same in the Floquet bundle, but the
adiabatic approximation (17) in the Stark bundle is no
longer valid. In fact, for high frequencies the quasienergy
is no longer equal to the mean energy [17]. Now both ap-
proaches yield drastically different pictures: What is sim-
ply a stationary system from the Floquet point of view
appears as a nonadiabatic problem in the Stark context.
Correspondingly, the interpretation of the emerging
phase factors exp( —i E„t) differs: Whereas e„r is a
dynamical phase for the evolution in the Floquet bundle,
one is forced to introduce a "nonadiabatic Berry phase"
[7] when working with the Stark bundle.

The same sort of difference remains if we finally allow
the parameters [R] to vary adiabatically: Purely adia-
batic evolution in the Floquet bundle [4—6] becomes
nonadiabatically periodic motion with superimposed adi-
abatic variation [7] in the Stark bundle, and labeling
phases as "dynamical" or "nonadiabatic geometrical" re-
quires a specification of the reference bundle. In addi-
tion, an interpretation of phase factors in terms of
geometric concepts also requires a differential geometric
connection in this bundle, and the choice of such a con-
nection must be based on physical principles.

It is known that the time evolution of the Schrodinger
wave function can be considered as an adiabatic motion
on quasienergy surfaces when the parameters of a period-
ically driven quantum system are changing slowly
[18—20]. Therefore, from a physical view-point it is nat-
ural to choose the Floquet bundle and the connection de-
rived from this adiabatic evolution.

These remarks apply, in particular, to the recent work
of Moore and Stedman [7]: Although these authors em-
ploy the formalisin developed in Refs. [4—6], they do not
use the corresponding Floquet bundle. Hence, their con-
clusions concerning the "easily discriminated adiabatic
and nonadiabatic components" of the Berry phase have
to be taken with some caution; they are incorrect from
the Floquet point of view.

A simple but important example of a quantum system
of the type (1) is a periodically forced two-level system:

~oH(t)= cr, +—[[cr„sincot+cr cosset]

+ [cr sincot crz cosset] ], (21)

and if one of those fields is neglected, then a transforma-
tion to a rotating frame [21] reduces the other field to a
static one. Within this rotating-wave approximation
(RWA), the quasienergies c,+ are found to be

co Q
c+=—+—mod co,

2 2
(22)

with

n=[(coo —co) +I, ]' (23)

and the use of the Floquet bundle allows a very transpar-
ent computation of geometrical phases for two-level sys-
tems with slowly changing parameters (see, in particular,
the appendix of Ref. [4]).

Although the RWA leads to a time-independent field
in the rotating frame, this approach has nothing to do
with the simple Stark bundle: The periodic time depen-
dence is hidden in the transformation to that frame.

It should be emphasized, however, that a discussion of
geometrical phases within the framework of the Floquet
bundle neither requires a two-level approximation nor the
use of the R%'A. In fact, the formalism outlined in this
Brief Report can be employed to study effects which are
far beyond the scope of the RWA. The neglected "coun-
terrotating field" introduces avoided crossings into the
quasienergy spectrum. These are related to diabolical
points, which, in turn, act as sources of nontrivial Berry
phases [1]. If, instead of invoking the RWA, one works
with the exact Floquet states, such phenomena can be
studied in systematic detail.

In conclusion, we have discussed two possible
mathematical approaches to describe the quantum
mechanics of a system given by a Hamiltonian such as (1)
with both a "fast," periodic and a "slow, " parametric
time dependence. The first approach is based on a bundle
in which the fibers over each point in the space of physi-
cal parameters consist of Stark states; the second uses a
bundle of Floquet states. Both constructions differ cru-
cially: Whereas the Floquet bundle explicitly incorpo-
rates the periodic time dependence into the fibers, the
Stark bundle does not. Therefore, in the context of the
Floquet bundle, a path in the parameter space describes
only the slowly changing parameters, whereas the Stark
bundle requires that the path contain both the fast and
the slow time dependence.

Of course, the actual computation of Stark states is
more simple than a determination of Floquet states. But
this apparent simplicity is bought at a high price. The
time evolution generated by (1) now poses a nonadiabatic
problem, and nonadiabatic Berry phases have to be intro-
duced even if not a single parameter is varied.

It is comforting to know that this somewhat paradoxi-
cal situation can be avoided by using the proper bundle.
In the Floquet bundle, Floquet states play the role of sta-
tionary states. If none of the parameters R is varied, the
evolution of a Floquet state is described by
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P„(x,t) =u„(x, t)e (24)

with a purely dynamical phase c.„t, in complete analogy
to the evolution of stationary quantum systems. We
point out that the interpretation of Floquet states as sta-
tionary states can be strengthened further by observing
that they can be calculated by generalized Bohr-
Sommerfeid rules [22].

Whereas the Stark bundle is not specifically adapted to
a periodic time dependence —it could, in fact, be used to
describe any variation of the parameters —it is precisely
the periodic time dependence which brings the Floquet

bundle into being. Equipped with a connection that,
physically speaking, stems from the separation of time
scales, this bundle becomes an object of its own
mathematical interest. But it should be obvious by now
that the Floquet point of view is distinguished by its
greater conceptual simplicity.
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