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Extended Simons-Parr-Finlan approach to the analytical calculation
of the rotational-vibrational energy of diatomic molecules
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An extension of the Simons-Parr-Finlan approach to the analytical calculation of the rotational-
vibrational energy of diatomic molecules is proposed. The obtained eigenvalues are applied in the calcu-
lation of molecular constants as well as in assignment of rovibrational spectra of the 'X state of ' C' S
and of the 'X~ state of" Ar2 molecules, giving quite satisfactory reproduction of the experimental data
over a wide range of rotational states.

PACS number(s): 33.10.Cs, 33.10.Jz

In order to determine the possible energy states of
rotating-vibrating diatomic molecules, we have to solve
the Schrodinger equation
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where qo is an equilibrium distance and Do is a constant
related to the dissociation energy of the molecule. Em-
ploying a quantum-mechanical equation of motion in the
Heisenberg representation, as we11 as the explicit form of
Hamilton's operator occurring in (1), one gets
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p =(t'A') '[P,B]=—

qj=qo[1+BDo 'J(J+1)],
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where B=A (2mqo) '. The right-hand side of (3)
represents the quantum-mechanical force endowed with
an effective potential

U(q), tr=DJ 1—
q

whereas the quantities DJ and qJ are the modi6ed dissoci-
ation constant and the changed equilibrium distance in
the J rotational state, respectively. This is a simple
consequence of the deformational action of the centrifu-
gal force which acts upon systems with rotational degrees
of freedom.

Introducing potential (5), the Schrodinger equation (1}
may be rewritten into the equivalent formula

8 fi J(J+1)
)
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in which q denotes the internuclear separation, m the re-
duced mass, and U(q) is the internuclear potential-
energy function. The above equation can be solved
analytically [1] for the harmonic [2] and Morse potential
[3] using the parabolic expansion of the rotational term in
(1), as well as the Kratzer potential [4,5] given in the
slightly modified form [6—8] as

2

+ BJ(J+1) E, —„=0, (6)
I+BDO 'J(J+1)

which can be analytically solved, leading to the energy ei-
genvalues and the corresponding wave functions

CJ
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E J=DJ 1—
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Cs=4DOB '[1+BDo 'J(J+1)],
P„J=N„J(2P„Jp) ' exp( 13„JpL„(2f3,Jp—),

I (1+yJ+u)
L, (2P„ip)=, ,F, ( —u;1+y J', 2P,Jp), (10)
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where L, (2P„Jp) is the generalized Laguerre polynomi-
al, &F&(

—u;1+yJ;2P,Jp) denotes the confiuent hyper-
geometric (or Kummer) function, whereas

q

qJ

1 +fJ
2

(12)

CJyJ=+1+CJ ', p,J=
4 u+aJ (13)

BJ(J+1)
1+BDO 'J(J+1)

2
qo=Do 1—
q

+BJJ(J+1), (14)

The obtained results indicate that rovibrational energy of
diatomic systems consists of an effective vibration energy
described by the first term in (7), and an eft'ective rotation
energy given by the second one. It is easy to verify that
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E J=D(J) 1—
[1+2u+(1+C(J))'~ ]

BJ(J+1)
1+BD(J) 'J(J+ 1)

(16)

D (J)=Do I 1+xJ (J + 1)/[1+y J (J+ 1)/(1+ ) ]],
(17)

C(J)=4D(J)B '[1+BD(J) 'J(J+1)],
to calculate the energy of rovibrational transitions and
the molecular constants of diatomic systems. For our
purpose the rigid molecule ' C S and van der Waals
molecule Ar2 wi11 be taken as examples.

The best values for the molecular parameters are deter-
mined by the linear least-square routine in which the sta-
tistical weights proportional to the inverse of experimen-
tal uncertainties are taken as equal to one (i.e., we use in
the fit 1/a, „„,= 1 throughout). The calculated frequen-
cies and the derived parameters are given with their stan-
dard errors at the bottom part of the tables and in
parentheses, respectively. Tables I and II present the ob-

BJ=fi (2mq J) =B [1+BDo 'J(J+ 1)]

i.e., the effective rotation energy is a result of a change of
the equilibrium configuration qo~qJ caused by centrifu-
gal force.

A look into (7) reveals that the rotational term takes
the continued-fraction form which suggests the possibili-
ty of introduction of some modification into the formula
obtained. Namely, instead of Eq. (7) we propose to con-
sider its simple extension given by the continued-fraction
formula

TABLE II. Rotation-vibration energy AE =E b E
(cm ') of Ar2 molecule for u = l. E,b, is taken from Ref. [12].

0
2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42

—0.307
—0.298
—0.274
—0.243
—0.195
—0.150
—0.084
—0.017
—0.053

0.130
0.205
0.272
0.354
0.405
0.438
0.448
0.418
0.324
0.171

—0.067
—0.444
—1.005

AE

—0.002
—0.002

0.002
0.002
0.007
0.001
0.005
0.004
0.000

—0.001
—0.005
—0.013

0.000
—0.004
—0.006
—0.002
—0.002
—0.003
—0.003
—0.017
—0.013
—0.018

—0.568
—0.551
—0.508
—0.449
—0.365
—0.274
—0.158
—0.035

0.093
0.227
0.357
0.473
0.595
0.673
0.716
0.716
0.651
0.493
0.240

—0.138
—0.698
—1.493

hE

0.049
0.046
0.042
0.030
0.022
0.000

—0.012
—0.029
—0.046
—0.057
—0.064
—0.070
—0.047
—0.034
—0.013

0.019
0.052
0.070
0.086
0.083
0.018

—0.146

0.369 0.008 0.593 0.061

'E„],from (7).
E„~, from (16).
'E„„from Dunham formula E,J =co( U + 1/2) +BJ(J + 1).
E„~, from Dunham formula E„J=co( U + 1/2)
+[B DJ(J+ 1)]J(J+—1).

AE' hE hE'

TABLE I. Energy of rovibrational transitions EE=Ea,b,—E,»„(cm ') for R(J) band v =0~1, of ' C S molecule.
E,b, is taken from Ref. [10].

served minus calculated frequencies obtained from (i) the
modified continued-fraction formula (16) containing only
one semiempirical parameter x, (ii) the starting equation
(7) based on the Simons-Parr-Finlan potential, and (iii)
the Dunham expansion [9]

0
1

2
5
6
9

10
12
13
14
16
17
19

—0.1378
—0.0859
—0.0401
—0.0613

0.0829
0.1148
0.1110
0.0874
0.0633
0.0384

—0.0324
—0.0767
—0.1861

0.1039

0.0000
0.0000

—0.0001
—0.0004

0.0022
0.0010
0.0005

—0.0029
—0.0010
—0.0001

0.0009
0.0010

—0.0002

0.0013

0.0013
0.0002

—0.0006
—0.0016
—0.0017

0.0019
0.0010
0.0012

—0.0020
—0.0001

0.0008
0.0011

—0.0013

0.0015

—0.0474
—0.0121

0.0136
0.0439
0.0419
0.0189
0.0059

—0.0163
—0.0275
—0.0300
—0.0251
—0.0090

0.0406

0.0329

E„J= g Yq((u + 1/2)"J (J+ 1)' .
k, l

(19)

The continued-fraction parameters [qo, Do, x], and the
Dunham parameters

Y&o co Yi& =O', Yo& =B, Yo2 =D, (2&)

evaluated by the fitting procedure and used for the calcu-
lation of the energy of rovibrational transitions, are col-
lected in Table III. Moreover, the above table reports the
molecular constant Ice, B,D] calculated from Iqo, DO]
and the well-known formulas

co='1/ 2Do(mqz) ', B =Pi (2mqo2) ', D =4B ro

(21)
'E„&, from (7).
Ec»c from (16).

'E„], from Dunham
+ [8 —a(u + 1/2)]J(J + 1 ).
"E„~, from Dunham
+[B DJ(J+ 1)]J(J+1). —

formula

formula

E,J =co(U + 1/2)

E,J =~(U +1/2)

The performed calculations indicate that the modified
fraction continued formula (16), including two molecular
and one semiempirical parameters I q&, Do, x ], repro-
duces the observed rovibrational transitions and molecu-
lar constants very well over a wide range of rotational
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TABLE III. Ground-state molecular constants (cm ') for molecules considered.

Source o. (cm ') qp (A) Do
X

(units of 10 )

D
(units of 10 ) (units of 10 )

Eq. {7)
Eq. (16)
Dunham

formula
Dunham

formula'
[11]

0.1039 1.5675(26) 518546(1740)
0.0013 1.53517(12) 497351(79)

0.0015

0.0329
1.534941

1277.0683
—4.320(16) 1277.0726

0.786285
0.819799

1272.1653(12) 0.8207(15)

1272.261(23) 0.7880(18)
1285.08 0.8200462

Arz

1.1922
1.3512

4.69(23)
1.43

6.074(13)

5.9224

Eq. (7)
Eq. (16)
Dunham

formula
Dunham

formula'
[11]

0.369
0.008

0.593

0.061

3.9981(64) 3291(39)
3.85028(47) 2988.0(12)

3.758

—192.3{11)
26.36
26.08

5.278 X 10-'
5.691 X 10-'

26.31(19) 5.051(22) X 10

25.691(24) 5.3853(80)X 10
25.74 5.975 X 10

0.846
1.084

2.074(48)
1.13

'Parameter x is dimensionless.
bE J = ru(u + 1/2) + [B —a( u+ 1/2) ]J (J+ 1).
'E J =co( u + 1/2) + [B DJ (J+ 1—) ]J(J + 1 ).

states. Application of the third parameter x improves the
standard deviation o. about two orders of magnitude rela-
tive to the equation based on the Simons-Parr-Finlan po-
tential, and leads to the results better than these obtained
from the two- and three-parameter Dunham expansions,
respectively. The accuracy of calculations 0.0013 cm
for '~C S and 0.008 crn ' for ~ Ar2 molecules are of the
order of experimental errors 0.001 and 0.01 quoted in
Refs. [10] and [12]. It is worth mentioning here that the
application of the second and following semiempirical pa-
rarneters lowers the accuracy of calculations for the mol-
ecules considered, so only the modified formula contain-
ing one additional parameter x seems to be a physically
well supported equation.

A look into (16) reveals that the proposed formula can
be easily obtained by a formal substitution

Do —+D (J)=Do[1+xJ(J+1)], (22)

into the original equation (7), suggesting a rotational
dependence of the dissociation energy. Because the
semiempirical parameter x is negative for both the rnole-
cules considered, it is clear that the dissociation energy of
rotating systems diminishes according to Eq. (22). This
effect, for highly excited rotational states, leads to the
possibility of rotation-induced dissociation of a molecule.
Thus, the semiempirical parameter x may be viewed as an
indicator of molecular susceptibility to rotational dissoci-

ation, which, according to our intuitive expectations, di-
minishes with rigidity of a molecule (see Table III).

The method presented in this work seems to have quite
a lot in common with the method of summation of the
divergent series arising from the perturbation approach
to calculation of rovibrational energy of molecular sys-
tems. However, the main difference between our method
and the other ones based for example on the Fade or
Sorel approximation [13—16] is that we start with the ex-
act analytic solutions of the Schrodinger equation, which
are next modified by continued-fraction expansion (17) of
dissociation constant. So, our eigenvalues and eigenfunc-
tions are not derived by summation of series obtained in
the perturbation scheme. One of the most important ad-
vantages of the present approach is that it permits the
wave function to be easily obtained by the substitution
(22) into (9), so matrix elements of quantum-mechanical
operators, the Franck-Condon factors and intensities of
the rovibrational transitions, can be directly calculated
[17]. The results of investigations of the aforementioned
problems, as well as application of the method developed
to molecules with octic and decadic molecular constants
(for example, the HF molecule) will be presented in a
separate paper.

This research was supported by KBN Csrant No. 2
0663 91.01.
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