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Exact solutions of the Schrodinger equation for some quantum-mechanical many-body systems
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We have solved exactly the Schrodinger equation in hyperspherical coordinates for some quantum-
mechanical many-body systems. These systems, which interact with Coulomb, inverse-square,
harmonic-oscillator, dipole, or Yukawa potentials, etc. , can be solved in a similar way. Wave functions
are expanded into orthonormal complete basis sets of the hyperspherical harmonics of hyperangles and
generalized Laguerre polynomials of the hyperradius. The eigenvalues can be obtained explicitly by
solving a simple secular equation. The results of practical calculations of Coulomb potential systems,
such as H, He, and H, etc. , agree well with the reported exact ones.

PACS number(s): 03.65.Ge, 21.45.+v, 31.15.+q

I. INTRODUCTION

Since quantum mechanics was introduced, the
Schrodinger equation has proved to be very useful for un-
derstanding microsystems. But the only exact solutions
found for systems in nature are for free-particle motion,
the particle in a box, the hydrogen atom, hydrogenlike
ions, the hydrogen molecular ion, the rigid rotator, the
harmonic oscillator, Morse and modified [1] Morse oscil-
lators, etc. For more complicated systems, however, ap-
proximation methods have to be used, for instance, the
variation method, the perturbation method, etc. , which
sometimes give poor results compared with experimental
ones, and practical calculations with them are usually
very difficult, even with the use of powerful computers.

Concerning the Schrodinger equation for complicated
systems, scientists had looked for many possible solu-
tions, but little success was achieved until hyperspherical
coordinates [2] were used, with which a very beautiful
coupled second-order differential equation with the hy-
perradius as a variable was obtained by integrating out
the hyperangular parts [3,4]. Therefore, the concentra-
tion was on solving the hyperradial part of the wave func-
tion.

To solve this coupled differential equation of D-
dimensional systems, great efforts have been made. The
method of directly expanding the hyperradial wave func-
tion in terms of powers of the hyperradius r was not
efficient here. Fock [5] analyzed the properties of the hy-
perradial part of the wave function for the helium atom,
and expanded it in terms of positive powers of r and lnr.
Later, this representation was studied and extended to
polyelectron atoms [3,4,6—11]. And exact solutions had
been obtained [3,4, 10]; however, two of their methods
[3,4] were very difficult to use and one [10] met with
difficulties in numerical approaches.

We [12] considered this problem in a way entirely
different from the approaches mentioned above for the
Coulomb interaction system. Instead of following Fock's
expansion, we expanded the hyperradial part of the wave
function in terms of an orthonormal complete basis set of
generalized Laguerre polynomials (GLP's). This led the

equation to a simple recurrence relation of expansion
coefficients, therefore, the Schrodinger equation became
solvable for this system. In this paper, we treat the gen-
eral complicated systems with potentials described by the
distances between the particles, such as Coulomb, inverse
square, harmonic-oscillator, and dipole as well as the Yu-
kawa, Gauss, and negative exponential types.

This paper is organized in the following way: In Sec.
II, we give the general deduction of solving the coupled
differential equation for the potentials mentioned above.
In Sec. III we study hydrogenlike systems with the
scheme proposed in Sec. II and the discussion on the
wave function near r =0. The fourth section includes de-
tailed calculations of several heliumlike systems, numeri-
cal results, discussion on the convergent speed, and the
possibility of the usage of this scheme for complicated
systems. In the final section is our conclusions.

II. SOLVING THE COUPLED SECOND-ORDER
DIFFERENTIAL EQUATIONS

For a nonrelativistic many-body system, the
Schrodinger equation is (in atomic units)

where N is the number of particles in the system, I; is
the. mass of ith particle, E is the energy of the system, P is
the wave function corresponding to the energy,

V( r," ) is the potential of the system, and r,
represents the distance between the i and the j particles.

To give the deduction for general potentials, we first
start with the well-known Coulomb potential, of which
the potential is

Zl ZJg V(r,, )= g
i&j i&j ij

where z, is the number of charges (including sign) carried
by the ith particle.
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Using the coordinate transformation,

s1=r2 —r1

Pz=r3 —(m, r, +mzrz)/(m, +mz),
(3)

and Z&„&„arethe coupling constants of the generalized
angular momentum,

z,„,„,=, fdn Y,*„(n)z(n)Y,„,(n, ), (g)

the matrix of which is symmetric.
In matrix notation, Eq. (7) is written in a familiar form

PN —1=rN
N —1

m, r,
i =1

N —1

m, ,
1 d2

dr 2 r dr
A(A+D —2)

N

m, r;
i=1

N

pm, ,

E$(r—)'=0,z

1 0 D —1

2 fr 2 r 9r
A (n)

r2

z(n) E'4'(r, n) =—0,r

where r is the hyperradius, A (n) is the generalized an-
gular momentum operator, 0 stands for the collective hy-
perspherical angles, and D, being equal to 3(X—1),
represents the dimension.

Expanding the wave function into hyperspherical har-
monies (HH), which are the simultaneous eigenfunctions
of the generalized angular momentum operator, the
squared total orbital angular momentum operator, its
space-fixed component operator, the parity operator, and
the electron exchange operator [3,7, 13]

%(r, n) = g Pz„(r) Yz„(n),

and integrating out the hyperangular part, a set of cou-
pled second-order diA'erential equations can be obtained,

1 d D —1 d
2 dr2 r dr

E.

A, (A, +D —2)
r2 Egz„(r)—

1
X z,„,,y, ,„,(r)= , 0

A. )p

to nullify the motion of center of mass and make mass
scaling, we come to the following equation,

N —
1

+ g V(r; ) 4(Pi, Pz, . . . , Prv 1)
i=1 i (j

E+(P1~Pz~ ' ~PN —1) '

There are different representations [2—4, 13,14] of the
hyperspherical coordinates. Calculations with them give
the same results (we have tested it by using the method in
this paper). Therefore, any of them can be chosen in
practical calculations. The coordinates used in the calcu-
lations of Sec. IV are the same as those of Klar and Klar
[13]. Whichever representation we take, the Schrodinger
equation can be transformed into the same form as
[3,4, 13,14]

where A is an MXM diagonal matrix with elements
A, 5&&.5„„,Z is an M XM matrix with elements Zz„&„,M
being the number of orthonormal basis functions of HH
taken, and P(r) is a one column matrix P(r) =

I Pz„(r)J.
The general potential of a system is

g V(r,, )= g g Zgr, ". ,
I (g k= —2

(10)

where Zk is a constant factor and E is an integer. We
write the potential part in this complicated form only be-
cause we want to include not only the potentials of
Coulomb, inverse square, harmonic-oscillator, and dipole
types, but also the Yukawa potential ar, 'e ', the

pp 2

Gauss potential ae ", the negative exponential poten-—Pr,
tial ae ", and so on. The latter terms should be ex-
panded into gk oz/ir;", and we have to truncate this ex-
pansion at some value k =E.

With a treatment similar to the above-mentioned
Coulomb interaction system, we get the matrix form of a
general coupled second-order differential equation with
the hyperradius as a variable,

d2 D —1 d
2 dr2 r dr

A(A+D —2)

K
+ g Zkr" EP(r)=0, —

k= —2

where gf, zZl, r" corresponds to the general matrix po-
tentials, in which Zk is the general coupling matrix of the
generalized angular momentum.

For bound states, we present the following deduction.
First we examine the behavior of wave function as

r —+ ~. For potentials expressed in negative powers of
r;J, or the Yukawa, Gauss, and negative exponential types
of potentials, which are equal to zero as r ~~, we obtain

P'~ QO

P„(r) e

where A. is the quantum number of generalized angular
momentum operator, p stands for a set of quantum num-
bers belonging to A., p& (r) and Y& (n) are the hyperradi-
al wave function and HH belonging to A,p, respectively,

where g = 2E. Thus, we make the su—bstitution

P( r ) = e &"g( r ) (12)
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d f
+ —2g

dT T dr

oo C„L„'+„—0 dP P
—1 L„+—L„

dp p

where

K

2ZI, r "/=0,
k= —2

(13)
K—+ g Zk(g)p" C„L„=O.

p

(21)

Z 2+A(A+D —2)/2 for k = —2,
Zk otherwise .Z ='

Let p =2gr; we have

(14)
By considering Eq. (17), we have

OO K

X —+ X Zk(k)p" C.L:=0
n=o P k=, '

or

(22)

d g(p) D —1+ —1
dp p

dt's(p)

Gp
4(p)

2p

Zk(g)p"f(p) =0, (15)

K
Wk(n, E)p "C„L„"(p)=0,

n =ok= —2

where

(23)

k= —2

where Zk(g)=2Zk/(2g)"+ .
By expanding g(p) according to

g(p)= g C„L„'(p),
n=o

(16)

d2
L„'(p)+ —1 L„(p)+—L„(p)=0

dp
(17)

where C„is the column matrix of expansion coefticients,
and L„'(p) are generalized Laguerre polynomials I15],
which form a complete set of orthonormal basis functions
that satisfy the equation

Z =maxI(Zk)z„&„], (25)

where we assume that the largest power of r; in the po-
tential parts is K. So the behavior of the wave function at
r ~ ~ is described by

Z, (g)+ [(2n +D —1)/2]1 for k = —1,
Wk(n, E)= (24)

Zk otherwise .

and E = —
g /2.

Returning to Eq. (11), for the general potentials which
are not equal to zero at r ~ Oo (for instance, the harmonic
oscillator type), we choose

and have the properties

pL„= (v+ n )L„—, + ( v+ 2n + 1)L„—( n + 1 )L„'+, ,

(18)

1 d 0 IPq„(r)+Z r $2„(r) =0
dr

for which the acceptable solution as r ~ ao is

p —+ OO

y,„(r) e

(26)

(27)

p L„=nL„(v+n )L„—
dp

f p e ~ L'(p)L„( )ppd=5 n'nI (v+n +1)/n! .
0

(19)

(20)

Substituting Eq. (16) into Eq.(15) with v=D —2, we ar-
rive at the equation

P(r)=e "" g(r) .

Substituting Eq. (28) into Eq. (11),we get

(28)

where A =2(2Z )' /(K+2) and B =(K+2)/2.
Therefore, we make the substitution

d2 r)+ 1 y(r) [2(2ZD)1/2rK/2 1] y(r)
dr 2 T dT dr

K—(2Z )' (D —I+K/2)r'x '/ g(r ) — g 2Zk(E)r "f(r ) =0,
k= —2

where

(29)

Zk —Z 1 for k=K,
Zo E1 for k 0

Z 2+A(A+D —2)/2 for k = —2,
Z E='

Zk otherwise.
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Expanding P(r) according to Eq. (16), and substituting it into Eq. (29) (changing the variable from p to r), we come to

0 1/2 (K —2)/2
K

[2(2Z )' r ~ —1] L„(r)+(2Z )'~ (D —I+K/2)r L„(r)+ L„—(r)+ g 2Zk(E)r "L„(r)'C„=O,
n=0 r r k= —2

(31)

with the help of Eq. (17). Considering Eq. (19), Eq. (31) is transformed into

2(2Zo) n„xn 1] [„L (v+n)L i ]+(2Zo)&t (D 1+K/2)„»L—
(r)

1

n=0 r

K
+ L„(r—)+ g 2Zk(E)r "L„"(r) C„=O.

r k= —2

(32)

For even E, the above equation can be expressed as
oo

8'&(n, E)r"L„(r)C„=O.
n =Ok= —2

(33)

This is similar to Eq. (23).
By repeatedly using Eq. (18) in Eq. (33), the power of r

in the equation is reduced to zero. Then equating the
coefficients of L„(r)to zero, we get a recurrence equation
of the coefficient column matrix C„[thistreatment is per-
formed on Eq (23). similarly]. All of the equations
satisfied by C„form a set of homogeneous linear equa-
tions. If we require that C, which is a large column rna-
trix formed by all of C„,have a nontrivial solution, the
determinate of its coefFicient matrix must be equal to
zero. From this we get a secular equation of E, and the
energies finally.

The determinate has a band structure. A more ap-
propriate basis set to the hyperradial wave function can
be chosen in practical application, ' then a thinner band
structure is obtained, with which the convergence of cal-
culation will be faster.

In calculations, if we want every eigenvalue to be ex-
act, we should construct a determinant with an infinite
size. In fact, what we usually need to know is the first
several lower states of the system, thus we only need to
solve an equation with a finite size of determinate, the
size of which should be determined by the practical needs
and the types of potentials. We believe that, no matter
how complicated the potential of the system is, the con-
vergence of the calculations with GLP is much faster
than that with HH. The calculations of Coulomb sys-
terns in Sec. IV will make this conclusion evident, where
only several GLP*s are needed to get a convergent result
of the ground state, in comparison with the need of hun-
dreds of the HH.

It is easy to see that the determination of the eigenval-

ues in the present method is difFerent from that in the
conventional power-series-expansion method. In the con-
ventional one, the eigenvalues result from the truncating
power series to satisfy the requirement of the wave func-
tion being convergent at infinity. But here, we demand
that the column matrix of expansion coefficient C have a
solution. It forces the eigenvalues to come from a secular
equation. The eigenfunctions obtained from this treat-
ment satisfy the boundary conditions near r =0 and
r —+~ automatically, or we cannot get a nontrivial C.
Therefore, this method avoids the difficulties in the
description of the wave function near r =0 and in the
usual complicated treatment to the wave function at
r~ ~. This is an advantage of this method. It is obvi-
ous that the wave functions are absolutely convergent
and satisfy the boundary conditions.

III. CALCUI. ATIONS OF HYDROGENI. IKE SYSTEMS
AND THE WAVE FUNCTION NEAR r =0

P&(r ) =e «"g C„(l)L„(2gr), v= 1, (34)

where g=& 2E, we get a recu'rrenc—e relation of expan-
sion coefficients with the help of the theory mentioned in
the above section,

To show how easily this scheme can be handled, and
how the wave function satisfies the behavior near r =0,
we give the calculations of hydrogenlike systems.

Because the radial di8'erential equation is uncoupled in
these special cases, we can solve Eq. (7) with
Zi&i „=z5&&5„„,z being the number of nuclear charges,
and A, =l, l=0, 1,2, . . . , being the angular momentum
quantum number. Therefore, the problem becomes easier
to handle.

By the following expansion to the radial wave function
of this system

n (z ng)C„&+[[l(l+ 1)+2(n +—1) ]g' —2(n +1)z]C„+(n+2)[z —(n +2)g]C„+i=0 . (35)

The matrix equation satisfied by the column matrix C is formed by
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( A +2 )g
—2z —4/+ 2z
—g+z

0

4—f+ 2z

(A+ 8)g —4z
—4)+2z

0

—9g+ 3z

(A+ 18)g—6z
—9/+ 3z

—16/+ 4z

(A+ 32 }g—8z

Co

C2 =0,
C3

(36)

P&(r)=e ~"r'QC„(1)L„(2(r);v=2l +1 . (37)

Here, we have considered the behavior of the wave func-
tion near r =0. With this expansion, we get the relation

[z/g —(n +I +1)]C„=O. (38)

where A=l(l +1}.With this equation, we get eigenval-
ues of the hydrogen atom (z =1) listed in Table I. This
result can be obtained even with a pen and paper.

We are familiar with the conventional solution of this
atom, whereas here is another exact one. The calculated
eigenvalues are entirely the same as that of experiments.
But we must point out that it is not easy to determine the
main quantum number here except for the special case of
I =0. In this example, convergence is no problem.

The expansions in Eqs. (16) and (34) can include the be-
havior of wave functions near r =0, but it is not obvious.
The point of this paper is to avoid the description of the
wave function near r =0, which is difficult to express in
the power of the hyperradius r for the coupled system.
After demanding that the determinate of the coefficient
matrix of the expansion coefficient column matrix C must
be equal to zero, which means we can have a nontrivial
solution of C, the corresponding solution satisfies the be-
havior near r =0 and also at r~ao automatically like
that discussed in the above section. To show it more ob-
viously, we make the following expansion instead of Eq.
(34) for this system according to the scheme in Ref. [12]

If we want C not to be equal to zero, the coefficient of one
of the C„must be equal to zero, that is,

z/g —(n +( +1)=0 . (39)

Therefore we get the eigenvalues of g=z/(n + / +1), and
the eigenenergies

Z2
n =0, 1,2, .. . .

2(n +I +1)
(40)

This is just the same result as that given in general text-
books.

By comparing the two routines using the expansions of
Eqs. (35) and (37), it can be found that the cost of avoid-
ing the term r' of Eq. (37) in Eq. (34) is a set of GLP's to
describe the wave function. This payment can supply a
powerful tool for the complicated coupling systems.

IV. CALCULATIONS OF HELIUMLIKE SYSTEMS
OF THE CONVERGENT SPEED OF CALCULATIONS

In the following, after giving the recurrence relation of
expansion coefficients for Coulomb interaction systems
(the relation in [12] returns to this one for S states of heli-
umlike systems since A,o equals zero), we give more calcu-
lated results to show how fast the convergence is in the
hyperradial part and discuss the problems still present.

The recurrence relation of this system is

n Z — n + g C„+[[A+ ,'(D —1+2n) ]g—(D ——1+2n)Z]C„

+(D —1+n) Z — n + g C„+,=0 (41)
a+1

TABLE I. Calculated results of hydrogen atom (atomic units). NGLp is the number of generalized
Laguerre polynomials.

1 2 4 5 1 2 4 5 1 2 4 5

'=( —2E) &n

3 3
4

3
4
5
6

3
4
5
6
7
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where g =& 2—E, and A =A( A+ D —2). By solving the
secular equation formed by the coe%cients of column ma-
trix C, and remembering the relation of E = —g l2, we
can get the energies.

We have performed the practical calculations with this
scheme to 'S and S states of helium atom and to 'S
states of heliumlike ions, H, Li+, and Be +. The results
are listed in Tables II and III, respectively. In the follow-
ing we use NHH to represent the number of HH and

N~Lp the number of GLP for the convenience of discus-
sion. In calculations, the used NHH's are 6, 36, 100, 196,
and 256, and N~Lp s are 1, 2, 3, 4, 5, and 7. Here, we do
not include the calculations with the N~Lp s being larger
than 4 when NHH = 196, and the N&Lp's being larger than
3 when NHH=256 because of the cost in calculations.
And to S states of the helium atom, we only outlist the
calculations with NHH = 100.

The results listed in Table II are several selected lower
states of 'S and S of the helium atom, and those in Table
III are only the ground states of H, Li+, and Be +. In
fact, we can get eigenvalues with the number of

HH GLP'
By these calculations, we find that the convergence is

very slow, especially slower than that of the adiabatic
channel expansion [13,16,17] with Brillouin-Wigner per-
turbation treatment [18]. It retiects an intrinsic property
of the HH which makes the convergence slow [19,20].

Thus, a large NHH is always needed here. But to the
ground states, we can get a convergent eigenvalue by tak-
ing only a small number of GLP with a fixed NHH. If we
need convergent eigenvalues of excited states, we should
increase the N&Lp. Above all, the results converge much
faster with the GLP than with the HH, that is,
N~Lp ((NHH ~ To the systems with more complicated
potentials, we believe this relation still holds.

Making a simple comparison of the present work with
that of Mandelzweig [10],it will be found that our calcu-
lated eigenenergies using only several GLP's are very
similar to his with the same NHH. It indicates that the
exact results are the same no matter which expansion of
the hyperspherical wave function is used. What is impor-
tant here is that the present calculations are easy to do
and more analytical, and that it is possible for us to per-
form the calculations with a huge number of bases to ob-
tain more accurate results. We will report these results in
another paper.

We can also use the method of Haftel and Man-
delzweig [20] to make the convergence faster. With this
treatment, it will be possible for us to get exact results
with required precision for complicated systems. We are
making this improvement and plan to perform practical
calculations of electronic correlation and other interest-
ing topics.

TABLE II. Eigenvalues of S states of He (atomic units). NHH.. the number of hyperspherical harmonics; N&Lp.. the number of
generalized Laguerre polynomials.

'S,

6
36

100
196
256

—2.780 15
—2.855 36
—2.858 85
—2.859 50
—2.859 63

—2.785 12
—2.890 75
—2.897 20
—2.898 46
—2.898 71

—2.785 02
—2.893 44
—2.900 84
—2.902 34
—2.902 64

—2.785 01
—2.893 58
—2.901 15
—2.902 71

—2.785 00
—2.893 59
—2.901 18

—2.785 00
—2.893 59
—2.901 19

Ref. [21]

—2.903 72

'S

'S

6
36

100
196
256

6
36

100
196
256

—0.515 88
—0.548 91
—0.552 44
—0.553 17
—0.553 32

—0.345 52
—0.440 77
—0.445 25
—0.446 12
—0.446 29

—1.577 64
—1.741 56
—1.753 13
—1.755 47
—1.755 94

—0.654 98
—0.762 74
—0.774 55
—0.777 14
—0.777 67

—1.600 40
—1.920 60
—1.954 74
—1.962 21
—1.963 75

—1.063 54
—1.247 67
—1.261 27
—1.264 18
—1.264 78

—1.600 15
—1.977 55
—2.035 26
—2.049 12

—1.099 76
—1.500 05
—1 ~ 539 71
—1.548 53

—1.600 13
—1.991 98
—2.067 15

—1.099 37
—1.618 75
—1.696 13

—1.600 13
—1.994 56
—2.081 93

—1.099 36
—1.676 87
—1.827 42

—2.145 97

—2.061 27

'S4

3S2

S3
Sq
S5

6
36

100
196
256

100
100
100
100

—0.132 69
—0.140 85
—0.141 11
—0.141 13
—0.141 13

—1.41943
—0.254 02
—0.204 94
—0.076 97

—0.494 28
—0.589 18
—0.593 11
—0.593 87
—0.594 02

—1.891 23
—0.859 80
—0.445 00
—0.385 93

—0.663 10
—0.760 22
—0.771 85
—0.774 57
—0.775 14

—2.041 35
—1.363 17
—0.578 45
—0.536 80

—0.770 64
—0.93045
—0.943 04
—0.945 79

—2.096 33
—1.61704
—1.013 99
—0.570 83

—0.812 40
—1.189 86
—1.225 65

—2.11563
—1.753 14
—1.287 47
—0.779 19

—0.811 92
—1.413 09
—1.534 03

—2.122 92
—1.855 87
—1.571 82
—1.226 40

—2.033 59

—2.175 24
—2.068 69
—2.036 51
—2.02262
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TABLE III. Eigenvalues of 'S ground states of H, Li+, and Be + (atomic units). NHH is the num-
ber of hyperspherical harmonics; N~Lp is the number of generalized Laguerre polynomials.

H 6
36

100
196
256

—0.479 01
—0.500 91
—0.502 00
—0.502 21
—0.502 25

—0.481 32
—0.517 14
—0.519 75
—0.520 27
—0.520 38

—0.481 25
—0.520 28
—0.524 04
—0.524 86
—0.525 03

—0.481 25
—0.520 79
—0.525 17
—0.526 21

—0.481 25
—0.520 85
—0.525 45

Ref. [21]

—0.481 25 —0.527 75
—0.520 86
—0.525 52

Li+ 6
36

100
196
256

—7.030 89
—7.19200
—7.19930
—7.200 66
—7.200 92

—7.040 12
—7.257 40
—7.270 01
—7.272 46
—7.272 94

—7.039 99
—7.261 10
—7.275 01
—7.277 78
—7.278 32

—7.039 98
—7.261 24
—7.275 32
—7.278 14

—7.039 98
—7.261 25
—7.275 34

—7.039 99 —7.280 08
—7.261 25
—7.275 34

Be + 6 —13.234 76 —13.249 54 —13.249 40 —13.249 39 —13.249 39 —13.249 39 —13.656 00
36 —13.51441 —13.619 85 —13.625 01 —13.625 18 —13.625 18 —13.625 19

100 —13.526 94 —13.640 83 —13.647 81 —13.648 19 —13.648 19 —13.648 19
196 —13.529 27 —13.644 89 —13.652 30 —13.652 73
256 —13.529 72 —13.645 68 —13.653 19

V. CONCLUSIONS

We have given the exact solutions for some many-body
systems. The solutions are certain, and the forms are
simple and analytical. It is easy to perform the practical
calculations using the method we proposed.
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