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Rydberg states of helium: Some further small corrections
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The optical-potential method based on the Feshbach projection-operator formalism has been success-
fully applied to the computation of fine-structure splittings between highly excited levels of helium [R. J.
Drachman, Phys. Rev. A 26, 1228 (1982)]. In this paper, I report additional terms in the nonrelativistic
effective potential decreasing as x and x ', where x is the distance of the outer electron from the
He+ core. They involve higher-multipole distortions of the wave function of the core electron, higher
nonadiabatic corrections, and perturbation theory up to fourth order in the electrostatic potential. En-
ergy shifts due to these terms are compared with the extremely accurate variational results of Drake
[Phys. Rev. Lett. 65, 2769 (1990)].
PACS number(s): 31.20.—d, 31.50.+w

In a series of papers [1—4] the calculation of energy
levels of the helium atom in nonpenetrating (high-L)
states has been put on a fairly systematic basis, based on
a long history [5]. The method makes use of several ex-
pansions: perturbation theory, multipole series, and a
very important expansion in "nonadiabatic" order. The
convergence improves very rapidly with increasing angu-
lar momentum L and is quite consistent with the best
variational calculations [6] for sufficiently high L. Al-
though the expansions appear only to be asymptotic and
hence have an unavoidable, irreducible error, the fact
that the result is in the form of an analytic expansion
makes it quite useful, and it is the aim of the present pa-
per to summarize previous results and to present some
further and shorter-range corrections.

We use an optical-potential method, as described in
Ref. [1],hereafter referred to as I, to calculate deviations
of the Rydberg energy levels from their unperturbed hy-
drogenic values. That is, the unperturbed Hamiltonian of
the two-electron system is taken to be

where K=2/(1+M), m =1 K/2, —m'=1/(1+K/2),
and p=m'/m =1/(1 K /4). —Here r„r2, and rM are
the coordinates of the core electron, the Rydberg elec-
tron, and the nucleus, respectively, measured in the labo-
ratory frame. The parameter K measures the nuclear
recoil and equals 2.7415X10 for the case of He, the
electron mass is taken as unity, and the nuclear mass is
M. The reduced Rydberg unit of energy is
A=m Ry=3. 289 390 995X10 MHz.

In these coordinates the perturbing potential has the
form
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We will be interested in cases where x &&r, so V can be
expanded as

2rq
V(x, r)= g C,p (x.r),

q=1 X

H= —V' ———p 7+—4 q 2

C~ =p[m'~ —2( —Kp/2)e] . (4)

where energies are in reduced Rydberg units R. The
coordinate r is the position of the inner (core) electron
relative to the nucleus, and x is the position of the outer
(Rydberg) electron relative to the center of mass of the
one-electron core, each measured in an appropriately
scaled distance unit. (These convenient Jacobi coordi-
nates were introduced in Ref. [4]; their use eliminates the
usual mass-polarization term involving the operator
V, V2 and localizes the effect of nuclear recoil in the per-
turbing potential. ) The appropriate definitions are as fol-
lows [4]:

b
&
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(These equations are patterned after those in I, the main
difference being the use here of Jacobi coordinates. In I
the coefficient C = 1, and the mass-polarization tenn ap-
pears instead. )

As before [1],the optical potential Uo gives most of the
contribution to the shift in the Rydberg levels; the Arst-
order shift is

r=m(r, —rl), x=m' r2 —mrM ——r, (2) where %o(x) is the unperturbed Rydberg state. As in I
the lowest order optical potential has the following form:
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Then we can label a particular type of term in the optical
potential as Uo[J] to indicate the nonadiabatic order
(J=0—3 ). All the adiabatic terms (J=0) in Eq. (6) can
be evaluated in a straightforward way using the method
of Dalgarno and Lewis [7] to evaluate the sums over in-
termediate states, as discussed in I. In addition, Au [8]
has given a general (although complicated) expression for
such terms; this part of the problem can be considered to
be completely solved. It is also easy to evaluate sums
whose denominators contain d„ to powers j;%1 either us-

ing repeated application of the method of Ref. [7] or with
the formulas of Ref. [8]. The remaining difficulty in-
volves the effect of the operator h whenever JAO, and
that involves some intricate algebra.

Up to x ' the J=0 part of the potential is

15(1 2')—
64x

9(1+%) 525 8505
32x 1024x 4096x '

+ 213 1773 4329 137 751
512x 1024x 32 768x 65 536x '

Uo[o) =—

where h =)Li[ —V„—(2/x)+(I/N )] and d„=E„8-„=4( 1/n —1).
This has the form of an ordinary perturbation series,

except for the nonadiabatic factors involving h/d„, each
additional power of which produces an additional factor
of x . (As in I, lower case indices refer to states of the
core, and upper case to states of the outer electron. ) All
repeated indices (n, m, p) are summed over a complete set
of states excluding 1s, and the nonadiabatic indices
(j„j2,j3) begin with 1 and are summed until the desired
maximum negative power of x (here x '

) is reached.
To specify a particular type of term in Uo we will use

the following definitions. Let k be the perturbation order
of the term, the number of factors of V appearing in it.
Then define the nonadiabatic order of the term by the pa-
rameter J, where

k —1J= g (j;)—@+1 . (7)
i=1

Here the first four terms are of second order in V, the
next two are of third order, and the seventh and eighth
are of fourth order. We have retained the finite-mass
corrections of order E only in the two leading terms;
beyond that point they are certainly negligible.

The total J= 1 (nonadiabatic) part of the potential up
tox ' is

129(1+K) 1605 22 855

256x 2048x 8192x '

28 491 791 313
8192x ~ 524 288x '0 (9)

Here the first three terms are of second order, the fourth
of third order, and the last of fourth order in V.

Next we calculate the "second nonadiabatic" terms,
those with J=2. Up to x ' these are no higher than
second order in V and include dipole and quadrupole
terms in the multipole expansion. Here the operator h

appears twice; it is convenient to commute one to the
right and the other to the left. The resulting expression is
complicated and energy dependent, but as before we
prefer to eliminate the energy dependence in favor of
some terms of higher order in 1/x. The result up to x
1s

319
3840x

957
1

L (L+ 1)
512.

'+
10

7197
114688x

35985 L(L+1)
8192x '0 21

(10)

The first two terms (reported previously) are from the di-
pole term in the potential, and the last two are from the
quadrupole.

Next we display the J= 3 term, which is of second or-
der in V and includes only dipole parts. The result is

493 323 48 365
+ 3L

(L+1)
516096x 4096x ' 14

TABLE I. Second-order energy shifts, D2, in MHz for helium with E =0. (Numbers in brackets are multiplicative powers of 10.)
The first entry in each case is due to the adiabatic dipole alone, D2(4, 4), and the second is due to the cross term between 1/x and
1/x terms, D2(4, 6).

10

—26.265 20
5.583 69

—17.143 33
3.976 68

—11.510 55
2.803 33

—8.01065
2.01198

—5.764 78
1.478 69

—4.271 95
1.112 52

—0.956 18
0.023 14

—0.721 23
0.022 20

—0.517 15
0.017 73

—0.373 14
0.013 62

—0.274 52
0.01043

—0.206 40
8.06[ —3]'

—0.052 880
4.024[ —4]

—0.042 838
4.208[ —4]

—0.032 816
3.639[—4]

—0.024 992
2.976[—4]

—0.019208
2.398[—4]

—4.8680[ —3 ]
1.56[—5]

—4.1369[—3]
1.73[—5]

—3.3257[—3]
1.54[ —5]'

—2.6404[ —3]
1.36[—5]

—6.382[ —4]
1.02[ —6]

—5.609[—4]
1.17[—6]

—4.676[ —4]
1.12[—6]

—1.086[ —4]
9.7[ —8]

—9.781[—5]
1.1 [ —7]

—2.259[ —5]
1.3[—8]

'Value supplied by G. W. F. Drake. Value may be low by about 2%%uo.
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TABLE II. Total nonrelativistic energy shifts in MHz for helium with K =0. The various terms h~ are the expectation values of
the terms of Eq. (15), and the asymptotic series is terminated by including one-half of the smallest term as described in the text. The
numbers in brackets are multiplicative powers of 10.

5 4
6
7
8

9
10

—4699.1300
—3021.5599
—2017.5222
—1401.4684
—1008.31704
—747.588 86

24.0178
20.1088
15.1205
11.2248
8.419 50
6.420 40

57+68

—2.0219
—2.3824
—2.0742
—1.6707
—1.31905
—1.041 34

ilk 9 +5 ]Q

4.4870
4.9756
4.2755
3.4303
2.704 95
2.134 82

D2

—0.9330
—0.6992
—0.4994
—0.3595
—0.26409
—0.198 34

Total nonrel.

—4677.0562+ 1.011
—3003.3415+1.191
—2003.9382+1.037
—1391.4385+0.835
—1000.8212+0.660
—741.8875+0.521

6 5
7
8
9

10

—961.405 432
—667.212 052
—473.841 725
—345.728 576
—258.780 760

1.828 069
1.657 043
1.338 969
1.053 466
0.827 973

0.004 327
—0.014 705
—0.020 995
—0.021 297
—0.019 384

0.012 388
0.016 305
0.015 826
0.013 899
0.011748

—0.052 478
—0.042 417
—0.032 452
—0.024 694
—0.018 968

—959.6277+0.0022
—665.6048+0.0074
—472. 5483+0.0079
—344.7142+0.0069
—257.9853+0.0059

7 6
8

9
10

—256.620 0199
—188.032 4304
—139.821 8183
—105.976 8829

0.223 0635
0.212 7334
0.1810644
0.148 9302

0.003 2219
0.002 0645
0.001 1829
0.000 6384

0.000 1926
0.000 2873
0.000 3061
0.000 2889

—0.004 8524
—0.004 1196
—0.003 3103
—0.002 6268

—256.398 49+0.000 10
—187.821 61+0.000 14
—139.642 73+0.000 15
—105.829 80+0.000 14

8 7
9

10

—82.734 2694
—63.128 5075
—48.639 1850

0.037 5412
0.037 0359
0.032 7654

0.000 5604
0.000 4685
0.000 3593

6.85[ —6]
1.127[—5]
1.292[ —5]

—0.000 6372
—0.000 5597
—0.000 4665

—82.696 8016+3x 10-'
—63.091 5572+6 X 10
—48.606 5203+6 x 10-'

9 8
10

—30.720 289 75
—24.186 698 53

0.007 988 14
0.008 065 92

0.000 105 78
0.000 097 30

4.11[—7]
7.33[—7]

—0.000 108 50
—0.000 097 70

—30.712 304 12+2X 10
—24. 178 632 64+4 X 10

TABLE III. Comparison of the asymptotic nonrelativistic energy shifts in MHz with the accurate
variational results of Ref. [6] for helium with K=0. Note that the estimated error is in substantial
agreement with the actual deviation in most cases; the very close agreement for L =4 is accidential.

5 4
6
7
8
9

10

Asymptotic

—4677.0562+ 1.011
—3003.3415+1.191
—2003.9382+1.037
—1391.4385+0.835
—1000.8212+0.660
—741.8875+0.521

Variational

—4676.934 845 01
—3003.301 1205
—2003.928 8573
—1391.440 1873
—1000.826 507
—741.893 5917

0.1213
0.0404
0.0093

—0.0017
—0.0053
—0.0061

6 5
7
8
9

10

—959.6277+0.0022
—665.6048+0.0074
—472. 5483+0.0079
—344.7142+0.0069
—257.9853+0.0059

—959.616681 62
—665.600 665 08
—472.545 1674
—344.711466
—257.983 0286

0.0110
0.0041
0.0031
0.0027
0.0023

7 6
8
9

10

8 7
9

10

—256.398 49+0.000 10
—187.821 61+0.000 14
—139.642 73+0.000 15
—105.829 80+0.000 14

—82.696 8016+3x 10-'
—63.091 5572+6 X 10
—48.606 5203+6 X 10

—256.398 412 6065
—187.821 493 674
—139.642 606 91
—105.829 683 489

—82.696 798 4749
—63.091 551 9990
—48.606 514 337

0.000 08
0.00012
0.000 12
0.000 12

3.1 X 10
5.2X 10
6.0x10-'

9 8

10

—30.712 304 12+2X 10
—24. 178 632 64+4 X 10

'Value not available.
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There are two more types of terms to be considered.
The first of these is the following addition to the e6'ective
potential:

387 2253
16 384x 8 65 536 10

24 427
131072x ' (12)

The first two terms here are usually considered to be
fourth-order contributions due to the normalization of
the wave function, but in our present method they
emerge from the second-order shift, h2, as described in
Eqs. (43)—(45) of I. The third is a nonadiabatic term of
order x ' also coming from 52.

The other is a true second-order perturbation term
having the following form:

&NL I
~IN'L &&N'L

I ~INL &2—
EN —EN'

N, N'

N'WN

9 + 69
32x 256x

(13)

A table giving the values of Dz(4, 4) for a variety of in-
teresting Rydberg states of helium appears in Ref. [3].
Table I gives values of both second-order terms, D2(4, 4)
and D2(4, 6), obtained by solving the Dalgarno-Lewis
equation based on Eq. (13).

For convenience, we will now display the total nonrela-

This expression represents the second-order shift in ener-

gy of the outer electron due to the first two terms in the
effective potential. The effect of the leading (x ) term
in W has been considered previously in Refs. [1,3], and
recently an elegant closed expression has been derived
[9]. This correction can be considered (in some sense) to
be equivalent to a term of order x since it involves two
factors of order x . It is then necessary to include the
cross term between the terms in 8' of orders x and
x to represent an equivalent x ' correction.
Specifically, the cross term has the form

621 &NLIx 4IN'I. &&N'L, Ix 'INL&
4096 iv iv Ex —EN

N'WN

(14)

+ L(L+1)
52 768 5120 x

908 185
344 064x

3871 381 33 275
524 288 14 336

1
io+x

(15)

In Table II we show results for Rydberg states of helium
with 4~L ~ 8 and 5 ~X ~ 10, displaying the energy shifts
corresponding to the expectation values of each term in
the effective potential (x ") as hk. Since we are dealing
with an asymptotic series, we continue to use the cri-
terion for terminating the expansion introduced in I: We
include one-half of the smallest term in the sum and esti-
mate the error of the total also to equal one-half of the
smallest term. We combine 57+68 and 69+6,0, since
these combinations can be related to each other and
should not be treated as independent, as discussed in I.
The total second-order energy shift, D2, is also listed.

Finally, in Table III we compare these results with the
excellent variational results of Drake [6]. The agreement
is very good, usually well within the estimated errors of
the asymptotic expansion, and it improves very rapidly
with increasing L. The results presented here continue to
support the usefulness of the expansion method. Al-
though it does not match the variational method in accu-
racy, especially for small values of L, the fact that it is
analytic and can be easily applied to any desired state is a
significant advantage.

Although this Brief Report has concentrated on heli-
um itself, it is not difficult to scale all the potentials to ap-
ply to any two-electron positive ion. A very complete
discussion of the whole subject of two-electron Rydberg
systems, including relativistic corrections and compar-
ison with the best experiments, is contained in a recent
review volume [10].

tivistic optical potential, up to x ', summing the terms
shown separately above (we have taken K =0 here, as-
suming the nucleus to be infinitely massive, in order to
make comparisons with other work):

9 69 3833
32x 256x 7680x
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