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Dynamic Lie-algebra structure of a quantum system and the Aharonov-Anandan phase
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The dynamic Lie-algebra structure decomposition of the time-dependent Schrodinger equation for a
quantum system is analyzed and the results are used to study the Aharonov-Anandan phase. The ex-

pression for Aharonov-Anandan phase is given, which is shown to be useful by the illustration of some
examples and to be applicable to rather general systems.
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I. INTRODUCTION

In recent years there has been increased interest in the
study of quantum systems that undergo a cyclic evolu-
tion. This is due to the original observation made by Ber-
ry [1] that, in the adiabatic case, the state of the system
contains an additional nonintegrable phase which is ob-
servable [2—6]. Since then, many papers have been devot-
ed to interpretation [7—12] and generalization [13—18] of
this result. In particular, it turns out that a geometrical
phase can be defined [13,19] for any path [0,T]~& in
the Hilbert space & of states such that
I'P(T) &

= exp[i@] I%'(0) & for some real @ (cyclic evolu-
tion), I%'(t)& being the state at time t according to the
time-dependent Schrodinger equation. Moreover, such a
geometrical phase is the same for all paths in & which
project to a given closed curve in the projective Hilbert
space. In the adiabatic limit, the phase so defined is a
gauge-invariant generalization of Berry's phase. In the
nonadiabatic case, however, such an important definition
is too general and formal to provide a tractable calcula-
tion of the nonadiabatic Berry s phase, since it is related
to the dynamical effect on the adiabatic Berry's phase as
a whole physical problem [20]. The concrete study of the
nonadiabatic Berry's phase depends on the specific struc-
ture of the Hamiltonian of the systems and some methods
dealing with the special problems [21—24] are proposed
for this reason. In this paper, we will study the
Aharonov-Anandan (AA) phase [13] for a class of rather
general cases that the Hamiltonian of the system
8 [R (t)] possesses a nonsymmetry dynamic Lie-algebra
structure, i.e.,

where R is a set of parameters on the parameter manifold
A, = R =(R, (t),R2(T), . . . , R~(t) }] with R (0)=R (T),
and; (i = 1,2, . . . , N) are the generators of a semisim-
ple Lie algebra L. The AA phase for the system is ob-
tained and calculated for several practical examples.

II. LIE-ALGEBRA STRUCTURE DECOMPOSITION
OF THE SCHRODINGER EQUATION

Ie(t) & =II I% (t) &,at

can be decomposed as

i I%;(t)&—=H, I@,(t)&, i =1,2, . . . , s,

Therefore, the problem with X as a semisimple Lie alge-
bra can be reduced to the several cases with simple Lie
algebras. Without losing the generality, in the following
discussions we assume that X is a simple Lie algebra. We
rewrite the Hamiltonian (1) on the Cartan-Weyl basis

[O, , S I of% as

H(t)=—H[R(t)]= g y, [R(t)]O, + g y [R(t)]S

(4)

where y; [R (t) ] and y [R (t)] are the linear combinations
of R;(t), O; are the generators of the Cartan subalgebra C

or X, and S (S ) are the raising (lowering) operators.

O; and S obey standard commutation relations [25]

[o, , oj]=0, i j =1,2, . . . , I,
[O, , S ]=a;S, a=1,2, . . . , d,
[S,S ]=a'@;,
[S,Sp] =N 13S +tj, for a+@&0,

(5)

with a, (a') the covariant (contravariant) component of a

According to the structure theory of Lie algebra [25],
the Lie algebra X can be decomposed into a direct sum of
some simple Lie algebras X; (i = 1,2, . . . , s), i.e. ,

X=X,X2e . eX, . Correspondingly, the Hamiltoni-
an H[R] is decomposed as H=K, SH2e eH, with

H; HX;. Thus the time-dependent Schrodinger equation
(fi is taken to be 1 in this paper)
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root a. In order to find the solution of the time-
dependent Schrodinger equation we introduce a nonuni-
tary operator

with the boundary condition

P (0)=P (T), a=1,2, . . . , d . (12)

Let

a=1a=1

d d
s(t)= + s (t)= Q exp[ —ip (t)s ] .

Then Eq. (10) becomes
(6)

ap. ,(t)
/i(t)= g r; p (t),

i=1
(13)

I+(t) & =s(t) lq(t) &,

then the equation of motion for
l 1/t(t) & is

i-
l g(t) & =&(t) ll/(t) &,

. a
Bt

where the operator f(t) is

(8)

The solutions of Eqs. (11) and (12) determine a submani-
fold JV= [P—:(/3„P2, . . . , Pz)]. The closed curve Ci, :
[R (t) lR (0)=R (T}]on Af, corresponds to a closed curve
Cti. [p(t)lp(0)=p(T)] on JV. Obviously, in the adiabatic
limit, the submanifold JU'= [p:—(p„pz, . . . , pz )] is deter-
mined by the equation

f(t)=s %s is —'
Bt

(9)
I ([/3 (t),0])=0, a=1,2, . . . , d . (14)

Obviously, /i is not Hermitian due to the nonunitarity of
S. By using Eq. (5), Eq. (9) can be written as

Bp (t)f(t)= y r, p.,(t},

III. AHARONOV-ANANDAN GEOMETRIC PHASE

Suppose lLM & are eigenvectors of O, ,

O;lLM&=M, lLM&, i =1,2, . . . , l,

ap. ,(t)+ g r. p. (t), (10)

where L, is the greatest weight and M, is a component of
a weight M. The solutions of (2) and (8) are

where I; and I are functions related to the structure of
X. Now we assume that the d unknown parameters p (t)
is determined by the equations

r

i)p
li/((t) &

= g exp —i f dt r; ' p,

(16)

ap. ,(t)r. p..(t), at
=0, a=1,2, . . . , d, I+(t) & =U(t)ly(0) &,

(11)
(17)

1 a.0(t}= g exp[ ip 8—] Q exp i f d—t I; p, (18)

We now consider a cyclic solution which is related to Berry's topological phase. If the initial state is chosen as

l@, (o)&=lLM&,

then i, (jp d

IqdL, M(t)&= + exp —i J «r; 'p, t M; + exp[ p@ ]ILM—& .

(19)

(20)

After one period, a nonadiabatic topological phase shift will be induced. Using (12) in (20) we have

I +L~(T}& =e p[ @L~]I +t M(0) &

where the total phase shift is

dt I;, M;.r ' dP

(21)

Following the definition given by Aharonov and Anandan [13], the dynamical phase is readily obtained by using Eq.
(20):

l a.f dt(((t)lii(tt)(t(t (t)) =j dt X ('; i), M, +i j dt LM S '
LM)),0 Bt

and the AA phase

(23)
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ELM =i I d i(LM S '
LM)

d d d='fi, dB (Libel x ii exp[ ip,—4, ] @, ii exp[ ip, —s, ] LM) .
a —1 a'=a+ 1 a'=a+ I

(24)

Here ELM is expressed as an element of holonomy group
on the submanifold JV. This means that the AA phase is
only related to the connection and holonomy group on
the d-dimensional submanifold JV but not on the X-
dimensional manifold A, . In other words, the AA phase
for all the parameter manifolds W with the same subman-
ifold JV is completely determined by the geometrical
properties of JV and the embedding ways of JV in JK.

IV. THE APPLICATION
OF THE SU(1,1) AND SU(2) CASES

We now turn to the discussion of the AA phase for two
practical examples to illustrate the general formalism
above. Let us first consider the SU(1,1) system [22]:

H(t) = A (t)KO+ f (t)K+ +f*(t)K (25)

and A is real, and K+ and Ko satisfy the su(1, 1) algebra

[K+,K ]=—2KO, [KO,K+]=+K+ .

Let us introduce

(26)

S(t)=exp[ i p+—K+ ]exp[ i p K—] .

By using (26) in (9)—(12), we obtain

/i ( t ) = ( A 2if*P+ )K—[],

(27)

d =f*+iAP +2P+P f* .
dt

The AA phase is given by

y k=i(m +k)pc (p dp+ —p+dp )

=2i (m +k)f c/3;dP ,+

(29)

(30)

whose eigenvector ~mk ) obeys Ko~mk ) =(m +k)~mk )
with k the Bargmann index, and

dP+ =f i AP+ —P+f*, —
dt

where L, and L+ are the generators of the su(2) Lie alge-
bra. Following the procedure described above, we obtain
the expression on the two-dimensional submanifold
JV= I p+, /3 ] of the AA phase on the manifold
JR=I co,„,co, co, ]:

yi =im f c (P+dP —P dP+) (34)

corresponding to the eigenvector
~
im ) of the operator L,

with the eigenvalue m. The closed curve C„:
[co(t) ~co(0)=co(T)] on JR corresponds to a closed curve
Cti. Ip(t)~p+(0)=p+(T)] on JV:

=—co ( 1+p+ ) ——
co~ ( I —p+ ) —i co,p+,

(35)

dt 2
=—co, (1 2/3+/3 )+——co (1 2P+P )+i—co,P

Equations (34) and (35) show that the AA phase is com-
pletely determined by the geometrical properties of JV
(not JN)and the , embedding ways of JV in JR. In general,
the AA phase should be calculated numerically, although
it is straightforward to obtain it from Eqs. (34) and (35),
since the solutions of Eq. (35) should be obtained by nu-
merical calculation. In order to illustrate analytically the
above results, we consider a simple case:
co, i co = co —exp( —icoot), co, and co, are time-
independent real parameters. From Eqs. (34) and (35) we
can easily obtain the AA phase [24],

CO COO

Im
— 202 'Tl

(co, +co, +co,—2co, co, )
(36)

where C is a closed curve in the parameter space.
Now consider the SU(2) dynamical group which is of

practical and theoretical interest. The Hamiltonian is as-
sumed to be [24]

8= co L= —,'(co„ico—y)L++ —,'(co„+ico )L +co,L, ,

(33)

Thus, the AA phase on Ai =
[ A, f,f*] depends only on

the geometry of the two-dimensional submanifold
JV= I p+, p ]. In the adiabatic limit, Eq. (29) reduces to

V. CONCLUDING REMARKS

In conclusion, we have investigated the dynamic Lie-
algebra structure of the Schrodinger equation and the
AA phase for a quantum system with a dynamical Lie
group. An expression for the AA phase is given, which is
useful indicated by the illustration of the SU(1,1) and
SU(2) examples.

Finally, we want to extend the approach adopted in
this paper to rather general systems as follows.

(1) The above discussion can be extended to any case
with the Hamiltonian H taking the form of Eq. (9):

f i A P+ P—+f"=0, —

f*+iAP +2P+P f*=0, (31)

and Berry's phase can be obtained from (30) and (31),

(32)

( +k) A f f*
d f f*

( A —4f *f)'i A f f*——
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B=NS '+ =S '
'at (37)

d —i cop+ i toa,
dt

(42)

where S is representation of a Lie group and f can be
solved explicitly. For example, the Hamiltonian that
produces the coherent state is

d = t top + t toa*
dt

The AA phase is given by

8=co(t)[& —a*(t)][8—a(t)], (38) y. =
2 fc,(P*dP Pd—P*)=t fcg*dP . (43)

[&,a ]=1, [Q,a]=[8,8 ]=0 . (39)

Let us introduce

S =exp(P& —P*& )

—=exp(p& )exp( —p*a )exp( —,'p'p) .

Using (40) in (9)—12), we have

(40)

where 8 and it are creation and annihilation operators,
respectively, that satisfy

When (da/dt~ ((ro, we have p=a and recover the re-
sults obtained in the adiabatic limit [26] under a more
general condition. This example further indicates that
the approach adopted in this paper is useful.

(2) The expression (24) of the AA phase is also applic-
able to a rather general case with the Hamiltonian as a
nonlinear function of the Lie group generators:
8[R]=H(g+ &R;T;). For example, we have
+[J]= [P,J&+—,

' (B„—iB& )J+ +T'(B„+iB )J ]2 for the
nuclear quadrupole resonance [11,17,27].

(3) It may be of interest to point out that a noncyclic
and nonunitary generalization [14] is being studied.

f(t) =to(t)& a+ (a*a+p*p a*p a—p*), —to( t)
2

whose eigenvector
~
n ) obeys a

~
&

~
n ) =n

~
n ), and
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