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Recently, the quantum mechanics on a curved low-dimensional space was studied. There is an embed-
ded effect when the space embedded in three-dimensional Cartesian space has some curvature. In this

paper, we will consider second quantization of the spinless Schrodinger field there at finite temperature
and show that there is also an embedded effect even though the low-dimensional space has no curvature
as a manifold. This effect appears as an effective chemical potential.

PACS number(s): 03.65.—w, 05.30.—d, 64.60.—i

I. INTRODUCTION

Recently the quantum mechanics on a curved low-
dimensional space embedded in three-dimensional (3D)
space was studied [1—7]. It is known that if the low-
dimensional space has curvature, the curvature some-
times makes an attractive potential appear in the
Schrodinger equation even though there is no interaction.
This effective potential comes from a geometrical correc-
tion at the quantum level. It is proportional to the sum
of the squares of the curvatures and also to the square of
the Planck constant A'. This effect was studied by da Cos-
ta and others in terms of the operator formalism [1—4]
and by us in terms of the path-integral method [5].

Due to this effect, the particles in the curved low-
dimensional space cannot move around freely even if
there are no impurities nor other interactions. Some of
them are recoiled by the effective potential. Taking ac-
count of this effect, we proposed a typical shape for a
reAectionelss quantum wire so that its effective potential
becomes the Landau potential [6].

In Ref. [7], we found that the Dirac equation along a
thin elastic rod can be regarded as the Lax operator of
the modified Korteweg —de Vries equation. Since the dy-
namics of the elastic rod is governed by the modified
Korteweg —de Vries equation, it implies that the fictitious
quantum mechanics, which appears when we solve the
soliton equation, is a real quantum-mechanical effect on
the soliton as a base space.

In this paper, we will quantize the spinless Schrodinger
field on the low-dimensional curved space (submanifold)
in 3D space at finite temperature. We will start from the
field in 3D space and confine it in the submanifold
through the harmonic oscillator along the submanifold.
Here we will show that there appears an effective chemi-

cal potential as an embedded effect. We will embody this
problem on two-dimensional (2D) space in Sec. II and on
one-dimensional (1D) space in Sec. III. In the conclusion
and discussion (Sec. IV), we will also comment on the
phase transition in such a system.

II. QUANTUM FIELD THEORY
ON A 2D CURVED SURFACE

In this section, we will quantize the spinless
Schrodinger field on 2D subrnanifold in 3D space at a
finite temperature using a path-integral method. Here we

formally include the four-point vertex interaction but it
does not play an important role in this section.

First of all, let us define the 3D ordinary system by the
Cartesian coordinates, x', i =1—3. We will use the Latin
indices for the Oat 3D components and the Einstein con-
vention. The original partition function at finite tempera-
ture in 3D space is given by [8]

Z [g",P) = fDQ*Dgexp fd4xX[q", tt—], (1)

where d x =dt d'x and —t (=x ) is an imaginary time;
t & [O,P],P—= 1 lkz T, T is the absolute temperature of the
system and kz is the Boltzmann constant. t is imposed to
the periodic boundary condition and its conjugate space
is Matsubara frequency space [8]. The Lagrangian is
given by

'f d'y —u (-x' —y')g*(x)f*(y)g(y)g(x)
I o

(2)
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where 8; =8/Bx', m is mass of a particle, p is a chemical
potential, u (x —y) is an interaction function for a four-
point vertex and V(x) is a confinement potential, which
constrains the particle to a submanifold as we see later.
5,. is the Kronecker symbol. We note that we used the
notation of Popov [8], in which the symmetry of time
t~ —t is applied. Therefore, the sign in front of the La-
grangian appears the opposite of the ordinary definition
[9]. Hereafter we assume that 1( vanishes on the bound-
ary of the region we consider; we will use the symbol
"—="and will neglect a total-derivative term.

Let us define the general coordinates, in terms of which
a curved system will be expressed after some of its de-
grees of freedom are suppressed. Let the middle parts of
the Greek indices (q",q', . . . ) indicate the curved system;
p=1,2, 3. The relation between the Cartesian and gen-
eral coordinates is given through the dreibein [10],

(3)

where 8„—:8/Bq". The metric is written as

defined by

I p —= (e3,B bp) . (6)

The Weingarten maP, defined by —I rp3 =—(b&, B&bp), is
associated with the second fundamental form through the
relation

3I p= —I

where g p—=5,"b' b J& is the surface metric. We can there-
fore express e'„(=Ox'/Bq") in the vicinity of S in terms
of b',

e' =b' +q I ~3 b'&.
The 3d metric around S (4) becomes

g p=g p+[I r3 g p+q rl r3p]q

+[rr,.q„r',p](q')',

g3a ga3

=R & J
gP~ —51'~ e ~e ~ e (4) and g =det(g„,)

We will embody the problem that we constrain the
field on a 2D curved surface S. Let the first and second
coordinates indicate the position attached on S. The nor-
mal unit vector of S is denoted by e3. The confinement
potential V is given along S and constraints the particle
to be on S. Let us assume that V has the form,
V,~„r(q )—= —,'mco (q ) for a large co, where q is the nor-
mal coordinate of the surface. After confinement, we can
realize the 2D submanifold in the 3D space and then ex-
press this system using the 2D parameters.

Since we wish that the 3D metric g„,(4) around S is
expressed by the variables of S, we will define the
geometry in the vicinity of S. Let the position on S be
written by r(q', q ). We can express a point
x=(x'x, x ) in the vicinity of S in terms of the curved
system,

x(q")=r(q )+q e3 .

The beginning parts of Greek indices (q, q p, . . . ) span
from one to two. We define the zweibein along S as
b' =Br'/Bq . We divide the ordinary derivative along S
into the horizontal and vertical parts; the horizontal part
is written by D defined as D X=8 X—&0 X,e3&e3
for a vector X. Here (, ) denotes the canonical inner
product. The 2D Christoffel symbol is thus defined as
D bp=I rp b~. The second fundamental form [11] is

(10)
g'~ =—[1+tr2(I 3p)q +detz(I 3p)(q ) ] .

Here tr2 and det2 are the 2D trace and determinant over
a and P, respectively. These values are invariant for the
coordinate transformation if we fix the submanifold, and
they are known as the mean and Gaussian curvatures on
S [11].

As we finished the geometrical preliminary, we will
consider the field around S. It is known that the coordi-
nate transformation in the field theory needs some
subtle treatment [12]. Since the scalar product, which is
the intensity of the field, is expressed by
(y, ~ y, ) —=fd x P;(x)$2(x) in the Cartesian coordinate, it
becomes (g& ~$2) = fd q g '~ P*, (q)$2(q) in the curved
coordinate system. In general, the Jacobian impedes the
Hermiticity of the natural differential operator. In order
to avoid the problem after confinement we expect
to get the intensity distribution along S as
(PT.PT)(q', q )=fd(q')(P* P)(q', q, q ). Here we
eliminate the normal part of the Jacobian in the measure.
In order to get the distribution, we define a new field,

g'~ f. Then th—e action changes its form,

S = f d q g'~ X[/*,P], (1 1)

with a new Lagrangian including g expressed as

g22[4',y]=-4'aa, y+
2

y*g'"g '"a„g&g '"aA '"y+y*[p V(q)]I-
,' fd'q'n'"~(q' —q—")P*(q)P'(q')P(q—')P(q) I;

=W*&d 0+ 4*v'"g '"~ g Pg'"dg '"4+ 4*d'8+g2

2m 2m 2m 8/2 4g

+0*[V V(q)]W ,' fd—'q'n'" ~(q—' —q")W*(q)4*(q')—4(q')k(q) I,'=,. (12)
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Since the Feynman measure in 3D space is defined by

Df= g—dg(x), (13)

relations, we obtain the action

[p+ Ip ] f dt d2q +2D (21)

it can be rewritten in the following form:

Dg=P DP= Qg—' (q)dg(q) . (14)

with

+ 7J
i/2/+ g 7)9~7)i/2g y

A

The partition function in this case is

Z[P*,P]=fP DQ*DPexp —fd q rt'/~X[/*, P]

+42D(P+Peff )02D

,'—f—d q'u2D(q' —q")$2D(q)$2D(q')

X02D(q)42D(q)~ 0= O (22)

Let us now consider the confinement effect from the
given potential V„„f.Suppose co is sufficiently large. We
express the Lagrangian as

$22 =ay'a, y+ y*a',y y* V2D—,y+ (16)

Though there are terms which depend on q in the omit-
ted terms, we can neglect them, since Vgp f is a rapidly in-
creasing potential and dominant. We decompose
P(q', q, q ) into PT(q', q )P~(q ),

We expand P~ by the eigenfunctions which satisfy the
equation

—A'8, — B3+—,'mes (q ) P„=A„P„, (18)

with eigenvalues A„as

0~=&a.4. ~ (19)

If we express P(t, q )=g„a„exp(Et)P„(q ),
which E is an imaginary energy, this equation becomes

Q2
83+ —,'ma3 (q ) P„=(A„+E)P„ (20)

Due to the harmonic potential, the eigenvalue of (20) is
written as A„+E =

—,
'

cist[2(n +m)+1] for integer m, n

When we take one-body-limit corresponding to A„=O,
we obtain E =

—,'A'co(2m+1), m ~0. Hence A„=%con
Since AA„:A A ~+E E ] is proportional to
co, only zero mode, $00 with A„=Oand EO=A'co/2,

is permitted. We make (t z shrink to a point
and it becomes the delta function. P —a of &.(m to/
3rirt)' exp[ —mco(q ) /2]. Accordingly we can safely in-
tegrate over q in (11) or make it vanish. Then we have
the relation g p-3) p in (9) and g= 1.

We have a new Lagrangian, which is functional of only
aopT. We rewrite the remainder field as $2D

——aopT and
the coupling function as u2D —= u

~ 3 3 . Due to above
q =q' =0

where p, ff is an effective chemical potential,

g2
P ff [[ 2 3p)] det2(~ 3p2m

(23)

vl $2DD—~Dp$2D (24)

where D Xp =—B~p+ I p3'~ for a vector X and
D (t—:8 p for a scalar field p. In other words, the kinetic
term has the properties as a 2D manifold while p, ff
expresses the properties of the submanifold. We should,
thus, interpret p,z as an embedded effect. For example,
though the book-cover-type 2D surface is flat as a mani-
fold, p, ff does not vanish [1]. However, for a 2D sphere,
which is a symmetrical case, it vanishes. We also note
that (23) agrees with the surface potential of da Costa

Let us consider the measure of the path integral. We
note that the action on the exponent is independent of
P(q', q, q %0). Since the Feynman measure on the parti-
tion function is written as

f f ~ f ~pl/2dy*dy s /4

q', q' q'
(25)

we can integrate over + 3~odp. The partition functional

with (22) and (23) can be expressed by

[02D 42D] fD42DD42D e"p

x ' f dtd qg' X—[$2D, $2D]

(26)

where we use = as the equivalent class in the meaning of
the path integral.

III. QUANTUM FIELD THEORY ON A 1D CURVE

In this section, we shall consider a 1D problem. Simi-
lar to the previous section, we shall define a system in
terms of the 1D geometry. Let r be the position along a
curve C. For the sake of simplicity, we assume that C ex-
its on a flat surface F. We introduce the orthonormal

Equation (23) is invariant, as we described below (10).
We notice that the kinetic term in (22) has a geometrical
form; the kinetic term has the relations

'9 ~ 0 ~P —= '9 4' ~ 5 '9 +2D
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coordinate system along C; the tangent unit vector n3, the
normal unit vector n1 of C attached to F, and th other
normal unit vector n2 of both C and F. We indicate the
position around C,

there is also an embedded effect and a bent effect. If we
take a classical limit in the meaning of the second quanti-
zation, (32) also agrees with da Costa's result [1,2].

X=r+n, q'+n2q (27) IV. CONCLUSION AND DISCUSSION
We assume that the confinement potential is given by
V,'o„t=—,'mco [(q') +(q ) ]. We express the 1D
Christoff'el symbol along C as [11]

'83n3 I 33Il 1 'B2Il, =I,3I13
1, 3 (28)

We can rewrite I '33 by the ordinary curvature k (q ) as—r', 3 I 33—k The dreibein is written as

e'&= [1—k(q )q'5„&]n'„notsummed over p . (29)

xp Jdt q & [(b&D 0&D]

g2r' =y*, xa, y, + y*, a, 'y, +y*, (i+i,', )y,2m

2 f dq uiD(q' —q')PID(q )( 1D(q')

X (()iD(q)&ID(q)l o — o .

The effective potential p,'& has the simple form

1D k2
g2

8m

(30)

(31)

Note that the square of k is an invariant value in the sys-
tem. Our argument of the 1D space is also performed un-
der the sense similar to that discussed in the last section.
We notice that the ID space is flat as a manifold but

As we can argue the confinement similar to the previous
section, co~ oo, the field becomes P(q ',q, q )

=P,D(q )Pz(q', q )—+PtD. Appropriately redefining the
variables, the partition functional on C, corresponding to
the 2D case (26), becomes

Z' [p fD, p, D] =IDQ*,DDptD

We find that there appears an effective chemical poten-
tial in quantum-field theory when the confined low-
dimensional space is embedded in 3D space and has some
curvature. This result is in agreement with that of quan-
tum mechanics [1,2].

Finally, we will comment on the phase transition on a
submanifold. Let us assume that our system has some
phase transition and the field we discuss expresses some
Bose condensation [8,9]. In other words, the chemical
potential p is a monotonically decreasing function in the
temperature and p( T =0))0 after some corrections.
The four-point function behaves like u (q) =- uo5(q),
uo)0. The Landau-Ginzburg theory can be applied.
According to the theory, at the point that the chemical
potential vanishes, the phase transition occurs. On the
other hand, in our results, the magnitude of the effective
chemical potential p,& depends on the geometry of the
submanifold and thus makes the total chemical potential
increase compared to one in the flat low-dimensional
space. If the 2D system is a cylinder with the radius —1

nm, p, s -100 K for an electron. (For the same radius, it
is -50 K for a particle with a two-electron mass. ) Due
to the effective chemical potential p,z, a phase transition
should shift to the high-temperature side there. We may
consider the field we discussed to be a phenomenological
Cooper pair. If the Cooper pair on a C60 superconductor
occurs along the equator of C60, this chemical potential
seems to have an effect on the critical temperature.
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