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Multiphoton transitions in a strong Beld: Inclusion of the photon momentum
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Taking into account the photon momentum (i.e. , without making the dipole approximation) we de-
rive some different expressions for the nonrelativistic amplitude for a one-electron system to undergo
a transition in a classical monochromatic Beld. As an application, we use the Keldysh approximation,
generalized beyond the dipole approximation, to examine the effect of the photon momentum on the
angular distribution for multiphoton detachment of a model H ion by a strong low-frequency Beld.
We find that when the field is very strong the neglect of the transverse Doppler shift (but inclusion
of the nonrelativistic Doppler shift) leads to a spuriously large rate for multiphoton detachment,
even though the relativistic correction to the rate is very small.

PACS number(s): 32.80.Wr, 32.90.+a

I. INTRODUCTION

In treating multiphoton ionization of an atomic system
by a laser field it is usually legitimate to neglect the pho-
ton momentum, i.e. , to make the dipole approximation.
However, in the presence of very strong fields the photo-
electron can absorb many photons, and even though the
momentum of a single photon may be negligible, the net
photon momentum may be significant. Inclusion of the
photon momentum leads not only to a (nonrelativistic)
Doppler shift in the frequency seen by the ejected photo-
electron, but also to a change in the angular distribution.

In this paper we derive expressions for the
nonrelativistic amplitude for a one-electron system to
undergo a rnultiphoton transition, without making the
dipole approximation. We treat the field as a classical,
purely homogeneous and monochromatic plane wav"
we ignore the entrance of the system into the field, and
its subsequent exit (processes which eventually must be
treated). We reformulate a general variational princi-
ple, originally derived by Rosenberg [1], which yields an
estimate of the amplitude with an error that is of sec-
ond order in the errors of the trial state vectors. As
input to this variational principle, we consider different
choices of trial state vectors. For example, we generalize,
beyond the dipole approximation, an expression for the
amplitude for multiphoton ionization by a nonperturba-
tive field which has proved to be very useful for calculat-
ing (within the dipole approximation) the photoelectron
energy spectrum of atomic hydrogen [2].

We also generalize the Keldysh approximation [3] to
the amplitude for multiphoton detachment by a strong
low-frequency field, and we apply this to the calculation
of the angular distribution for rnultiphoton detachment
of a model H ion. For sufEciently high intensities the
angular distribution may be signifi. cantly shifted by the
inclusion of the photon momentum; this can happen in
the microwave region of frequencies (as demonstrated in
Sec. IV) but not in the infrared frequency range since
in the latter frequency range the intensity at which the
photon momentum becomes significant is so high that

the ions would be completely depleted by photodetach-
ment at lower intensities on the rising edge of the pulse.
The relevant parameter 6, which is a measure of the shift
of the angular distribution, is defined by Eq. (86) in Sec.
IV; this parameter scales with the intensity I and fre-
quency io as Is~4/co~. Recently, three experiments on
rnultiphoton detachment of negative ions by strong laser
light have been carried out: Angular distributions for the
F ion have been measured by Blondel et al. [4], and to-
tal photodetachment rates for Cl and for Au, respec-
tively, have been measured by Davidson et al. [5] and by
Stapelfeldt et al. [6]. However, infrared light (1064-nm
wavelength) was used in all three experiments and, as
remarked above, in this regime the dipole approximation
may be used without hesitation. We note that within
the nonrelativistic framework the total (integrated) pho-
todetachment rate should be unaffected by the inclusion
of the photon momentum provided that the initial state
is symmetric with respect to an inversion through the
origin. (In a reference frame in which the atomic system
is at rest, the total rate, integrated over angles, should
be insensitive to a reversal in the direction of propaga-
tion of the light. Therefore the correction introduced
by the inclusion of the photon momentum cannot de-
pend on the sign of the speed of light c; this correction
is quadratic in 1/c, that is, relativistic. ) However, we
G.nd that when the field is very strong the neglect of the
transverse Doppler shift, but inclusion of the nonrela-
tivistic Doppler shift, leads to a spuriously large rate for
multiphoton detachment even though the photoelectron
may be moving with a final speed v such that (v/c) « 1,
i.e. , such that the difference between the relativistic and
nonrelativistic rates is a very small (relativistic) correc-
tion. The reason for this peculiar discrepancy lies in the
sensitivity of the rate to a small change in the frequency,
as explained further in Sec. IV.

We leave open, at present, the question of whether the
inclusion of the photon momentum can adversely effect
the stabilization of an atom in the high-frequency, high-
intensity, limit [7].

Corrections to the dipole approximation have already
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been developed within the context of potential scatter-
ing in a laser field. Furthermore, the low-frequency limit
of the scattering amplitude has been studied without
making the dipole approximation, both treating the laser
field quantum mechanically [8] and classically [9], the lat-
ter treatment being closest to the work presented in the
present paper.

In the next section we present the formal development,
in Sec. III we consider particular choices for the trial
state vectors, and in See. IV we present the results of our
application to H

II. FORMAL DEVELOPMENT

A. Motion of free electron

V(t) = ——A(v) . p+ + eC(t'),
e e2(A(v') /2

PC 2PC
(2)

with p the canonical momentum operator. The change
in the classical action of the electron due to the field is
Sk = —J dt' V(t'), where, since the component of the
canoniea momentum perpendicular to z commutes with
V(t) and is therefore a constant of the motion, we may
replace p by hk in V(t'). Performing the integral over t',
using z'/c = (v, /c)t' (the perturbation to the rectilinear
motion along the z axis is a correction of order 1/c), and
changing variables from t' to v' = t' —z'/c = (1—v, /c)t',
we obtain

Sk = —hk nk(v)— , e2]A(v')/z

2pc
dt' eC'(t').

We first examine the motion of a free electron, of
charge e and mass p, that is originally moving with ve-
locity v and is overtaken by a plane-wave pulse which
propagates along the z axis. The vector potential of the
field of the pulse is A(v) where v = t —(z/c), with t
the time. We work within the Coulomb gauge, so that

A(v) = 0 and hence A(v) z = 0, where z is a
unit vector along the z axis. (We use a caret to de-
note a unit vector. ) Neglecting relativistic corrections
throughout this paper, we may solve Newton's equation
pd r/dt2 = (e/c)BA—(v)/Bt to give the classical posi-
tion r of the electron: We have r = vt + nk(v), where
v—:hk/p and where [10]

erg(u) = (1+—* dv'
1

——A(v')+
~

z ~,
v, ",f' e, e2~A(v') ~2

e ( pe 2p c )
(1)

where v, = z v. If 4(t) is the scalar potential, which
we take to be spatially constant, the interaction of the
electron with the field is

where, ignoring the rise and fall of the pulse, Ap is con-
stant. The polarization plane is the xy plane, and we can
write

Ap = Ap[ i co—s((/2)x + sin((/2)y],

where Ap = ~Ap
~

and where ( is the ellipticity parameter
(~(~ ( x/2). An electron which is at rest before the pulse
arrives has, in the presence of the field, a cycle-average
energy of P = (e /4pc )Ap. This "ponderomotive en-
ergy" transfer to the electron arises from the stimulated
scattering of photons along the z axis during the rising
edge of the pulse. Thus photons are scattered between
occupied modes of slightly difFerent frequencies within
the very narrow bandwidth, resulting in a change in the
net energy of the photons by P when the electron is ini-
tially at rest. Since the energy-momentum ratio for a
photon is c, the energy transfer must be accompanied by
a momentum transfer of (P/c) z. We incorporate the mo-
mentum transfer (P/c)z into the total drift momentum
hk of the electron. Hence, the classical position of the
electron is r = vt + nk(v), where now v:—hk/p, is the
drift velocity of the electron inside the field and where

elk(v) = clg(v) —(P/pc)tz.

We may reexpress nk(v) as

nk(v) = (e/p~ )plm(Ape
'

)
+(P/2@~) eos(() sin(2~v) z,

with up the Doppler-shifted frequency in the frame that
drifts with the electron:

Ldp = (1 —vz/c)cd. (8)

Note that the energy transferred to a moving electron
on the rising edge of the pulse is (cup/u)P since, in the
rest frame of the electron, the photons that scatter from
the electron have frequency ceo. We are free to choose
the scalar potential, subject to 7',4(t) = 0, and it is
convenient to set

C(t) = P/e, —

so that eC cancels with P; this amounts simply to a shift
in the zero reference energy, against which the electron's
energy is just the drift energy E = ~hk~2/(2p).

In the absence of the field, the motion of an electron
moving with momentum hk is represented by e '+'~" ~k),
where (r~k) = (2vr) ~ e'"'. The inclusion of the mo-
mentum transfer (P/c)z into hk results in the addition
of the term (P/ch)(v, t —z) to the phase Et/h+ k r of-
the free-particle wave function. We therefore introduce
the effective change Si, (v) in the action due to the field

We now consider a pulse of extremely long duration,
with frequency ~ and an infinitesimal bandwidth. The
vector potential is

Sk(v) = (P/c)(v, t —z) + Sk
= —hk ng(v) —(P/2u) cos(() sin(2wv)
= hp sin(wv —g) —hP sin(2uv),

(10a)
(10b)
(10c)

A(v) =—Re(Ape ' "), (4)
where the dimensionless parameters p, g, and P are de-
fined by
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pe'~:—(e/peioo)k Ao,

P = (P/2hwp) cos((),
(10d)
(10e)

e ' '/" P„+(t)), where E, = lhk, l2/(2p); the "Floquet
state vector" i%i+ (t)) is periodic in t (the Floquet ansatz)
and it therefore has the harmonic expansion

with p and P real and positive. In the presence of the
field, an electron moving with total drift momentum hk is
represented by e('/")( + "(")jlk), which we can express
as e '@'/" lPqi, (t)), where

An equivalent state vector of a free electron moving inside
a monochroamtic plane-wave field has been derived by
Rosenberg [8] and Ehlotzky [11]. We can replace the
exponential factor on the right-hand side of Eq. (11) by
the operator

O(t) =,('/&)& ~.( )

l&oi (t)) = ).e ' 'l&oi, iv)
N

(13a)

where, expanding exp[iSg(v)/h] in the Fourier series
P~g~(p, )(, P)e ' ", we obtain

l&oi, nr) = Ziv(p, x, P) lk+ NK), (13b)
27' /~

iNuv+isg(v)/s (13c)+N(P~ X~ /3) =
2

The coefficient Jiv(p, )(,P) is often called the generalized
Bessel function, and some of its properties are summa-
rized, for example, in Refs. [8, 13].

B. Boundary conditions

Suppose that an electron, traveling in a uniform
monochromatic field, is incident with drift momentum
hk, on a potential W which is short range, i.e., which
falls off faster than 1/r with increasing distance r
The state vector of the electron may be expressed as

where z (in v = t —z/c) is now an operator. Note that
we may commute p with v in S~/s, (v) since it is only the
commutator of p, = z p with v that does not vanish, and
from Eq. (7) and (10b) we see that p, appears divided
by p,c, so that the commutator is a relativistic correction.
We have lXpg(t)) = O(t) lk), and the operator O(t) trans-
forms the state vector of a free electron in the absence of
the field into the state vector of the electron in the pres-
ence of the field; within the dipole approximation, O(t) is
just the operator which accomplishes the transformation
to the Kramers-Henneberger frame [12].

A free electron moving through the field can virtually
absorb N photons, each having momentum hK, with
K = (cu/e)z. Tllus P'pg(t)), which is periodic in t, has
the harmonic expansion

(14)

The Hamiltonian of the electron is H(t) = ~~ + V(t),
where H~ is the atomic Hamiltonian, consisting of the
kinetic-energy operator plus W, and where V(t) is
the electron-field interaction, defined by Eq. (2) above.
De6ning

2

V(t) ) I V iMurt— (18a)

where the prime on Q' signifies that the M = 0
(nonoscillatory) term is absent due to our addition of
the scalar potential P/e, and w—here V M = VMi with

Vi = (e/2pc)e' 'A p,
V2 = —(P/2) cos(()e '

(18b)
(18c)

Substitution of the harmonic expansion Eq. (14) into
Eq. (17), and use of Eq. (18a), gives the coupled equa-
tions

2

(E+ Nh~ —~.) &k,m) = ) . 'VMI&i+, ,g I)
We must supplement these equations with appropriate
boundary conditions, which we now discuss.

Upon scattering from W the electron may absorb N
real photons, and emerge with drift energy Ef = E, +
Nhu and drift momentum ky = k~(E, )r", where r points
along the direction of observation, and where

kiv(E) = (2p/h )(E+Nh~)

Since the electron is free from W at asymptotically large
distances, and since O(t)) transforms the motion of a
free electron moving in the field into the motion in the
absence of the 6eld, we have, for r oo,

X(t) = a(t) —&h dt' (15)

the time-dependent Schrodinger equations for the state
vectors Pqi, (t)) and Pz (t)) are

&(t)I&o (t)) = (W+ E)l&ok(t)),

&(t)l&+(t)) =El& (t)).
The harmonic components P&+ iv) satisfy a set of coupled
equations, which we can write down after first making a
harmonic expansion of V(t),

(rlO(t)'l&k, (t)) - (2~) '/') e ' 'Riv«'""+ f~(kf ki)e'" ' ""/r]
N

where f~(k/, k, ) is the amplitude for the electron to absorb N real photons and emerge with drift momentum hkf.
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From Eqs. (10b), (12), and (21) we can immediately write down the asymptotic form of (r~Ek, (t)); we have, for r oo,

(g)) (2~)
—3/2 ) &

—iNurt[p &iSi,, (v)/haik, r + fN(kf k )&»&y(v)/&&ik~(Z, )r]&]
t

N

It follows from Eqs. (14) and (22) that

(22)

(r~++ ) ~ (2&)
—3/2 ~ ( p )&iNK r&ik, r + ) f (k k )&i(N M)—K r&ikM(E, )r]& (23)

where, using subscripts i and f to indicate the values of
the parameters p, X, and p when k is either k, or kf in
Eqs. (10d) and (10e) (recall P depends on k through the
Doppler shift),

fMN(kf ~ ki) = +N M(Pf ~ X—f ~ Pf)fM(kf ~ k') (24)

We may interpret fMN(kf, k, ) as the amplitude for the
electron to absorb N photons, of which only M are real
photons. The amplitude fM(kf, k, ), which is the ampli-
tude for absorption of M real photons, is a coherent sum
of the fMN(kf, k;). Using the sum rule [8]

~Xk, (t)) signifies boundary conditions such that the elec-
tron enters the collision with a well-de6ned drift momen-
tum hk, and emerges in a state represented by a super-
position of outgoing scattered waves. We could specify
boundary conditions for which the electron emerges with
a well-defined drift momentum hkf, while it enters the
collision in a state represented by a superposition of ingo-
ing waves; as usual, we indicate such boundary conditions
by a superscript —,the appropriate Floquet state vector
being ~Pk (t)).

).&M(fi »&)&M+N(C' X' P') C. Scattering amplitude

we have, from Eq. (24),

(P P X X P P) (25) The scattering amplitude may be written as

fN (kf, k, ) = —(2~) (P/h )TN (kf, k, ), (28)

fN(kf~ki) =) &M(Pf)Xf)Pf)fNN+M(kf~ki).

The difFerential cross section for the electron to absorb
N photons and emerge into a solid angle dAkf along kf
1s

„~fN(kf, k;)~,
dOk~ k;

with Ef = E; + Nhu The supersc. ript + attached to

where the N-photon T-matrix is [8]

TN(kf, k, ) = dt e' 'P'Ok, (t) ~W~&k+ (t))

=).(&o kMI~~&k, ,M+N).
M

(29)

(30)

Using Eq. (16) we can replace W~Ppk~(t)) by ['M(t)—
Ef ] ~PQQ~ (t)), and therefore we can rewrite Eq. (29) as

TN(kf, k, ) =
2'/~

(31)

where here and below it is to be understood that (P~'R(t)t~tP) = [(@~'R(t)~P)]*, with the time derivative not acting
beyond the ket. Integrating the term in the time derivative by parts on the right-hand side of Eq. (31), noting that
the surface term vanishes due to the periodicity of the integrand, and using Eq. (17), we arrive at

TN(kf, k, ) = (32)

Note that H(t) is not Hermitian when acting between
the ket and bra in the matrix element on the right-hand
side of Eq. (32); if it were, this matrix element would
vanish. The non-Hermitian part of H(t) is the kinetic-
energy operator. The potential W is Hermitian, and so
is V(t) even though V(t) contains the momentum opera-
tor. [In contrast to the kinetic energy operator, which is

isotropic, V(t) includes only one component of the mo-
mentum operator, the component along the polarization
axis, and as a result V(t) is Hermitian. This can be seen
explicitly by evaluating the surface term —it vanishes on
the surface at infinity. ]

Since we cannot, in general, calculate the Floquet state
vectors ]Pk+(t)) and p& (t)) exactly, we must approxi-
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mate them by trial Floquet state vectors, I%i+ „(t)&
and

i, (t)&, respectively; we assume that these trial ap-
proximations are periodic and satisfy the correct asymp-
totic boundary conditions in space and time. We now

derive a vacational estimate of Tiv(kf, k, ), that is, an
estimate whose error is of second order in the errors of
the trial vectors. We denote the error in IP&i, (t)& by

l»zi, (t)&
—= l&k (t)& —l&k„(t)&. We rewrite Eq. (32) as

T~(kf, k;) =
2m/~

(t) I
H(t)' —H(t) l&k, ,i, (t)& + Ti'v '(kf

T~ (kf, k, ) = dt e'""'(E»,(t)l H(t)t —H(t) l»~+ „(t)&. (34)

The superscript 1 on the remainder T& (kf, k,) serves to indicate that this remainder is of first order in the error in
the initial trial Floquet state vector. We use the following identities:

[(&;,,„(t)I

—{&»,(t) I) [H(t)' —H(t)ll»;. ,„(t)& = o,

[{&g,,i, (t) I

—{&»,(&) I) [H(&)' —H(&)] [l&g„„(&)& —I&», (&)&]
= 0. (36)

Equations (35) and (36) may be proved by using Green's theorem to convert the volume integrals to surface integrals,
noting that the surface integrals vanish since the surface integrands oscillate (infinitely rapidly for r oo). We first
use Eq. (35) to replace the bra (X»~(t)l in Eq. (34) by (P& „(t)l. It follows that

Tiv' (kf, k, ) =— dt e' "'(Xk, „(t)I H(t)t —H(t) ~6'Pk „(t)&

2m/~ «" "'((&;,,„(t)I [&(t) —&f)' I»;„„(t)& —(&;,,„(t)I [&(t) —&.)] I»;, „(t)&)

(37)

(38)

The equivalence of Eqs. (37) and (38) follows after integrating by parts the time derivative in 'R(t) t in the first term
on the right-hand side of Eq. (38). This term is

TN, err(kf & ki) =
27K

2m/~
« """'P, ,(t) I [&(t) &f]' I»'„—, (&)&

2'/ur «"""{»;,
,„(t)I [&(t) —&f)' I»,„„(t)&,

where in the second step we used ['R(t) —Ef] IE& (t)& = 0. We see that T~ „,(kf, k, ) is of second order in the errors
in the trial Floquet state vectors. Combining Eqs. (33), (38), and (39) yields

Ter (kf ~ ki ) = TiV var (kf, ki ) + TN, err (kf & ki),
2m. /(u

TN, var(kf, ki) =
27'

«"""((&»,(t)I H(t)' —H(t) I&;.,„(t)&+P,, „(t)I [&(t) —&.) I&,+„„(t)&)

(40)

(41)

Since T~„,(kf, k, ) is of second-order smallness, T~„a,(kf, k;) is a variational estimate (stationary with respect to
variations of the trial state vectors about the exact ones). We can obtain an alternative expression for the variational
estimate by first integrating by parts the time derivative in 'R(t) in the second term in square brackets on the right-hand
side of Eq. (41); in doing so we encounter

«e'""[Pk,
,t, (t) I

—{&»,(t) lll H(t)' —H(t) l&~+,„(&)&

«e'""[{&~,,(t)l —{&»,(t)l]l H(t)' —H(t) l&. ,f(t)&

«""-'P;,
,„(t)I H(t)' —H(t) I&». (t)&, (42)

where in the second step we used Eq. (36) and where in the third step we used
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27r/u)

«e'""(&»,(t) I .~(t)' —&(t). I&»; (t))

2m/~
d«' 'P'»f (t) I([&(t) —~ —&f] —[&(t) —~ —&'])I&».(t)) = 0 (43)

recalling Eq. (16). We thereby arrive at

2m/~

T~,-.(kf, k') = «"""((&;„,(t)l &(t) -&(t)' I&».(t))+(&;,,„(t)l[&(t)-&f]'i&;„„(t)))

It can be shown that the variational principle embod-
ied by Eqs. (40), (41), and (44) is equivalent to the vari-
ational principle derived and used by Rosenberg and co-
workers [14].

III. APPROXIMATIONS

A. Simplified approximation to the inelastic T
matrix

We now derive a useful approximation to the T matrix
for inelastic scattering or for ionization (i.e. , N P 0). We
insert into Eq. (44) the following trial vector:

l&~, ,&,(t)) = ).e ' '&M(Pf, xf, A)l@'i„+MK)
M

(45)

where ]C'&) represents an electron which emerges with
I

momentum hk after scattering from the potential W in
the absence of the field (W.hile we continue to assume
for the moment that W is short range, we can, in fact,
allow W to become long range in the final expressions
developed below. ) The trial vector given in Eq. (45)
is a generalization of a form that has often been used
within the dipole approximation —see, e.g. , Ref. [15]—
and a form not too dissimilar from this (the difference
is in the replacement of l@k +MK) by lCk )) has also
been used in going beyond the dipole approximation [1].
The trial vector of Eq. (45) satisfies the correct bound-
ary condition, since (rlEk „(t)) approaches (rPqg~(t))
for large r. Provided that N g 0, so that lk;l g lkf l, the
scalar product

(4„,+M„l ~(t)' —~(t) I&ok, (t))

vanishes, since it may be converted into a surface integral
whose integrand oscillates. Hence, putting ]Xk „(t)) =
lPz+ (t)) in Eq. (44) gives, for N g 0,

Tiv(kf k*) =).&M(Pf Xf Pf) 2' dt e' ' Pk+(t) i V(t) —ih +M——k K e ™'C

= ) +M(Pft Xft Pf)2
M

27r

=) MfM(Pft Xf t Pf) 2
M

27r

2m/~ d
dt et + ~ ' oe +Mte l

Nfiei+tf(t)t —tx—+M —kf . K
l x+(t))dt p

2m /ur

dt e'tN+Mt ' O„MM l
+ENftNM, +M —kf K

l P+(t))k,.

c r'= ) ZM(Pf, Xf, Ef) e„eM„ l
E;+ NXM —E + M —kf K

l &j+, - MeN)7 ) (46)

where in arriving at the second step we integrated by parts the term in the time derivative and where in the third
step we used the Hermiticity of V(t) and Eq. (17). It follows that

Tiv (kf t ki) =) Z~ (Pf t Xf t Pf )TPr N+M (kf t ki) t

M

(
TNNeM(kf, k, ) = 4„+Met l

E, +Nf11e —E, +M kf K
l

X„+, M+N)—d+ p ) '11

kf +MK f ' k;,M+N ~ kf k) M+M —L
L=—2

(47)

(48)

(49)

where in arriving at the last step we used Eq. (19). Since the T matrix difFers from the scattering amplitude only by
a constant factor, comparison of Eq. (47) with Eqs. (24) and (26) leads to the identification
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T~M(kf ~ ki) —QM iv(pf ) gf ) pf)T~(kf, ki)

Now from Eq. (49) we have

2

T~~(kf k') = ). (C'~, l&~l&k, ,~-i) (51)

and therefore using Eq. (50) we arrive at

2

T~(kf k') = ).'(@k, l&~l&k, ,~-i) Jp(Pf, Xf, pf), N g 0.

The expression given by Eqs. (47) and (49), and also the
expression given by Eq. (52), hold even iohen W has a
Coulomb tail, since the effect of the Coulomb tail is in-
cluded in IC'k ). Both of these expressions would be exactkf
if IP& ~, (t)) were chosen to be the e~act I&&+). In prac-
tice, of course, the infinite set of coupled equations (19)
must be truncated, and hence the harmonic components
IP&+ M) appearing in Eqs. (49) and (52) are inc~act. Nev-
ertheless, since we started from a variational expression,
the error in the expression given by Eqs. (47) and (49)
is of second order. However, in arriving at the expres-
sion given by Eq. (52), we supplemented the variational
principle by Eq. (50), and the latter identity has a first-
order error when the harmonic components l&k M) are
inexact, so that presumably the error in Eq. (52) is of
first order. A difFerent derivation of these results, within
the dipole approximation, was given earlier by Potvliege
and Shakeshaft I16] and these expressions were applied
to the calculation of the photoelectron energy and an-
gular distributions of atomic hydrogen in a strong field

I2]. In the dipole approximation we put K = 0, and
in this approximation the harmonic components V~2 of
I/'(t) are constants and therefore have no physical efFect
and may be transformed away; therefore the sum over I,
in Eqs. (49) and (52) collapses from four to two terms.

We note that several different calculations of the ampli-
tude for the scattering of an electron from a Coulomb po-
tential in the presence of a monochromatic field have been
carried out within the dipole approximation [17]. These
calculations were performed in the Kramers-Henneberger
frame, based on an expression for the T matrix which
involves the matrix elements of the (space-translated)
atomic potential R' rather than matrix elements of the
interaction of the electron with the radiation field.

B. Generalized Keldysh approximation

In this section we generalize, beyond the dipole ap-
proximation, the Keldysh approximation to the ampli-
tude for ionization by low-frequency light. To formu-
late the Keldysh approximation we must first consider a
transformation to another gauge.

In the Coulomb gauge we have 7', A = 0, but the vec-
tor and scalar potentials, A and C, are not uniquely fixed
by this requirement. We have been working in a partic-
ular subgauge, the "velocity" gauge, in which C is spa-
tially constant; we set C = P/e. Another wide—ly used

A' = —(F r)K,
C'= —F.r.

(54)
(55)

Hence, in the length gauge the interaction of an elec-
tron with a monochromatic plane-wave field is, defining
the electric-field amplitude Fp by F = ReFpe '~ and
recalling that the square of eA'/c is a relativistic correc-
tion,

Q/(t) U'e —'icdl/ + Qt tldl/ (56)

&= —(e/2)(Fp r)
I
1+

. p'I

pc )
(57)

In the velocity gauge the Geld is coupled predominantly
to the electric current of the electron, while in the length
gauge the field is coupled predominantly to the electric
dipole of the electron. For a low-frequency Geld, the char-
ac';eristic value of (Fp r), for a tightly bound electron,
is considerably smaller than the characteristic value of
(Ap p)/(pc). Provided that IeFpl is small compared
to the electric-field force exerted by the atomic nucleus,
(Fp r) may be regarded as a weak perturbation, and
hence, provided that we use the length gauge, the initial

—iX!')~ hbound state can be represented well by e '+' 'f" I4,),
where IC, ) and E, are the initial unperturbed bound-
state vector and eigenvalue. However, we are using the
velocity gauge; the equivalent state vector in this gauge

—~('t his obtained by multiplying e '+' 'f" IO, ) by the unitary
operator e '&'f"'~A&'& I'18]. Therefore, in the spirit of the
Keldysh approximation I3], we insert into'Eq. (44) the
initial-state trial vector

I&+„,(t)) = '"""'Ic'*) (»)
where hk/i(v)—:—(e/c)A(v) and where we have ex-
tracted (cP/e)t from—A(t) since this term contributes

I

subgauge of the Coulomb gauge is the "length" gauge in
which the vector potential A' is a small quantity (the
square of eA'/c is a relativistic correction) but in which
the scalar potential C' is spatially dependent. We have
A' = A + 7',A and 4' = 4 —(1/c)BA/Bt, where

A(t) = —A(v) . r —(cP/e)t

Thus, in the length gauge the vector and scalar po-
tentials are, introducing the electric-field vector F

(1/c)BA—/Bt = BA/Bz and recalling that C = P/e, —
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an energy shift P—to the initial bound-state energy to
give a perturbed bound-state energy of E; = E, —P.(o)

Note that to obtain a nonzero amplitude for ionization
we require that at least N~m photons be absorbed, where

I

N~;„ is the smallest value of N for which E; +Nhu & 0.
Inserting ~P& t, (t)) = ~Ppk~(t)) into Eq. (44), and writ-

ing M, ,N(kf) in place of TN(kf, k, ), with it understood
that N & Nm;„, we obtain

2~/~
Mi N(kf) =

Gal Q

2~/~

2Ã Q

dt eiN~t(y. (t)~~ ik—~(v) r~c, )

iNwt (k
~

—
islay (v)/a —ik~ (v) r~

~

C, )

The differential rate for the electron to absorb N photons
and emerge with drift momentum hkf into a solid angle
dAk~ 1s

Noting that

dSk, (v) 52= Ef + P — ~kf + k~(v) ~,d t '2p (63)

zf /Mt, N(kf)/, (6).)

dSk (t)
Nh~g — ~ ——0, t = t, .

t (62)

with Ef = E;+Nhu.
Assuming that h~ is small compared to ~E( —P~, the

minimum number N;„of photons that the atom must
absorb to ionize is large compared to unity. Therefore
N » 1 and exp[iNut —iSk~(v)/5) oscillates rapidly over
the range of t integration. Hence the main contribution
to the integral over t comes &om the point of station-
ary phase. This point, which is given by the equation
Nhu —BSk~(v)/Bt = 0, depends weakly on z. How-
ever, to gain further insight we temporarily neglect the
z dependence and thereby we obtain a constant point of
stationary phase t„where

and using Ef = E, —P+NM, we can rewrite Eq. (62)
as

2p
~kf + k~(v)~ —E( ) = 0, t = t, .

The two terms on the left-hand side of Eq. (64) are pos-
itive for real t. Hence the point t, is not in fact a point
of stationary phase but rather a saddle point in the com-
plex t plane. (Keldysh, within the dipole approximation,
evaluated the integral over t using the method of steep-
est descent. ) We now proceed to turn the expression of
Eq. (60) for M, N(kf) into a form more suitable for com-
putation.

Since the component of r along k~(v) is independent
of v we may write

2m/~
i Nuv'+i Sg(v')/h+ikA (v') riSg(v)/tt+ik~(v) r ) e iNcuv—

2Ã
(65)

and hence we obtain

iS~(v)/tt+ik~(v) r~k ) ) e iN~t ~~I—
'l

N
(66)

l&Ok, N) =
2

2~/~
dv e' "+' "( )/" ~k+ NK+ k~(v)) (67)

=) .Ziv M(P, X,P)—2m/u)

dt e™~~k+NK+ k~(v)). (68)

Using Eqs. (66) and (68) in Eq. (60), and integrating over t, yields

Mi, N (kf ) = ) + N M(Pf ~ Xf ~ / f )2——
2'/~

dv e 'M "(kf —NK+ k~(~)~W~C, ). (69)
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k/ —NK —k~(v),

with v = (1 —v, /c)t, .

(70)

IV. MULTIPHOTON DETACHMENT OF H

In this section we examine the angular distribution for
the multiphoton detachment of a model H ion. We treat
H as a one-electron system, with the electron moving
in a spherical potential W(r). We consider two forms for
W(r).

A. Zero-range potential

A very simple model, first analyzed by Berson [19] and
Manakov and Rapoport [20], is obtained by choosing

W(r) = 6 (r)—r.
27l' s c)

K Bp (71)

This potential supports one bound state, whose energy
2

is 2 and whose wave function is

Equation (69) is a convenient expression for computation
of M, iv(k/) since the number of terms which contribute
to the sum over M is limited by the fact that the integral
over v decreases rapidly with increasing M due to the
integrand being oscillatory. Note that since the matrix
element (klWl42;) decreases rapidly with increasing lkl,
the photoelectron energy distribution will peak at the
values of Ef for which

pf = l(eAp/u~p) l&f »n(8), (75)

where l(e/c)Apl = +2pP. Since (for circular polariza-
tion) lA(v)l = Ap, we see from Eq. (70) that the pho-
toelectron energy distribution peaks [22, 23] at Ef —P,
which corresponds to Nhur —2P since E, P. For-
this value of Ef we have pf —N if kf lies in the polar-
ization plane, i.e., if 8 = vr/2. The precise value of pf
depends on the angle n/2 —8 which k/ makes with the
polarization plane; from Eq. (75) we have

pf ——pp(l —u )' (1 —vu/c) (76)

is 0.027565, very close to the electron affinity of H
and the bound-state probability distribution is close to
the exact two-electron distribution integrated over one of
the electron coordinates. We determined the bound-state
wave function by solving the Schrodinger equation on a
basis set (composed of radial Sturmian functions).

We have calculated rates for the multiphoton detach-
ment of an electron bound to this potential when the
light is circularly polarized (i.e. , ( = vr/2). We evaluated
M~ tt(kt) using Eq. (69); noting that t = e/2 we have
)9f = 0 and therefore Q~(pf, )(f, )9f) = e' »J~(pf),
where Jiv(p) is the standard Bessel function and where
gf —)r/2 + (tt with tIt) the azimuthal angle of kf relative
to the x axis. The photodetachment angular distribution
is azirnuthally syrnmetrie, and therefore without loss in
generality we may take yf = 0. If 8 is the angle which
k/ makes with the z axis (the direction of propagation
of the laser field) we have

(rlc") = e ""
27r r (72) where u = cos(8), where v = hkf/p (the final speed of

the photoelectron), and where
We may adjust ~ so that the binding energy is equal to
the electron affinity of H, and the model has been suc-
cessfully applied to a study of multiphoton detachment of
H by Becker, McIver, and Confer [21]. Since the form of
W given by Eq. (71) is nonlocal, we use Eq. (59), which
becomes

M, iv(kf) = /2~r, J*Jv(p—f )(f'pf).
Hence, in this zero-range-potential model, the matrix ele-
ment for multiphoton detachment divers from the dipole-
approximation result only by the Doppler shift, which is
present in pf and P/. We see that the sum over M on
the right-hand side of Eq. (69) collapses to a single term,
but this is not an enormous simplification since, as al-
ready observed, the number of terms in the sum which
contribute significantly is relatively small.

B. Yukawa potential

Rather than continue our analysis with the zero-range
potential, we pursue a one-electron model which may be
somewhat more realistic; we choose the finite-range po-
tential

, ( 2E!"
pp

—— [N2 —(AN) z] 1 +.

(79)

where we have neglected terms of order /h. N/jN. It follows
that for lul « 1 we have

lE(P)
l

pf = (1+vu/c) (
N— (80)

Nu )
2 )

To obtain some idea as to the shape of the angular distri-
bution, we observe from Eq. (69) that the angular distri-
bution will be determined largely by the form of Jiv(pf).
Using the Debye approximation

Jiv(N+ N / z) —(2/N) / Ai( —2 / z), (81)

pp =—y 2pP kf/(pcs),

i.e. , pp is the value of p/ when u = 0 (noting up ——cu

when u = 0). If we define Np by P—:Nphu, and if we
write N = 2Np + AN with AN « N, we have

W(r) = ae ""/r, — and the asymptotic form of the Airy function, we have
(74)

J~(N + N'/'z)
where 6 = 1 a.u. and a = —1.1 a.u. This potential
also supports only one bound state, its binding energy (2/N) / e—( / )(— ' z) /[22/2( 2i/sz)i/4]
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(84)

Therefore we expect the angular distribution to be a
Gaussian in u = cos(8), peaked at u = 0 (when the
Doppler shift is neglected) with a full width at half max-
imum (FWHM) of

Au = 2(hu/2N[E, [) / gin(2). (85)
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I'IG. 1. Angular distribution for N-photon electron de-
tachment of H (within our Yukawa potential model) by a
circularly polarized laser field of frequency u = 0.00044 a.u.
The angle 8 is measured with respect to the direction of prop-
agation of the laser beam. The solid line (which is sym-
metric with respect to refiections in the polarization plane)
corresponds to the dipole approximation. The two dashed
lines correspond to inclusion of the photon momentum. The
long dashed line results from using the nonrelativistic Doppler
shift, the short one from using the relativistic Doppler shift.
(a) I = 0.82 x 10 W/cm (P = 3.0 a.u. ) and N = 13760.
(b) I = 2.0x 10 W/cm ( P = 7.3589 a.u. ) and N = 33576.
In both cases (a) and (b) the number N of absorbed photons

N = 2(P+ [EI I[)/bur.

and if we neglect the Doppler shift we have, from
Eq. (80), that pf —N + Ni/ z with

z = —[E, [/(N'/ h~) —N / u /2

Hence, if u (( 2[E, [/(Nhu) we have

( n2~[ E!"[&
'

2+in(2) l, /i c )

(86)

(87)

This last estimate of 6 agrees with the results of Fig. j.
to within 5'Fo.

Since t9~ && 1 in the present case, it is reasonable to as-
sume that relativistic corrections are negligible. Indeed,
the shift 8~ in the peak is the same whether the nonrela-
tivistic or relativistic Doppler shift is used. Surprisingly,
however, the size of the peak is considerably larger when
the nonrelativistic Doppler shift is used. This significant
increase in the size of the peak must be spurious since

We now describe our results.
In Fig. 1 we show the angular distribution dl iv/dAI, f

for N = 2(P + [E( [)/(h~) (so Ey = P + [E( l~), for a
fixed frequency of w = 0.00044 a.u. (which is one-tenth
of the COq laser frequency) and for two difFerent inten-

sities corresponding to N [that is, 2(P + [E,( l[)/(h, u)]
equal to 13760 and 33576. We show the angular dis-
tribution obtained (i) within the dipole approximation
(solid line), (ii) by taking into account the photon mo-
mentum, but within the nonrelativistic framework, so the
Doppler-shifted frequency is wII (long dashed line), and
(iii) by taking into account the photon momentum, but
using the relativistic Doppler shift (short dashed line).
The relativistic Doppler-shifted frequency is p~o, where
p = (1 —v2/c2) i/s, and in computing the short dashed
line we modified py by dividing the right-hand side of
Eq. (75) by p. Within the dipole approximation the
shape of the angular distribution is a symmetric peak
centered at 8 = ~/2; the photoelectron is preferentially
ejected in the plane in which the electric-field force lies,
i.e., the polarization plane. Indeed, as expected from the
analysis of the preceding paragraph, the peak is approx-
imately a Gaussian and its FWHM is given accurately
(to within an error of a few percent) by Eq. (85). When
the photon momentum is included the photoelectron is
no longer preferentially ejected in the polarization plane;
due to the absorption of momentum NhK from the radi-
ation field, the electron receives a kick perpendicular to
this plane and the peak of the angular distribution shifts
by a small angle 8~, where sin(8~) —8~ —(NK)/kf.
This effect is purely kinematical and, since 81'- is of order
v/c, is nonrelativistic in origin. It is well known that a
similar eKect occurs when an atom is photoionized by a
single very-high-frequency photon; in fact, if the photon
energy is comparable to the rest energy of the electron
(the relativistic regime) the shift in the angular distri-
bution is very pronounced [24]. The shift in the angular
distribution in the case of multiphoton detachment by a
low-frequency field has also been noted by Reiss [25], who
carried out a calculation within the relativistic frame-
work. Although the shift in the angular distribution is
very small in the present case, its e8'ect is amplified due
to the FWHM of the the angular distribution being so
small. The relevant parameter is the ratio of the shift to
the FWHM; this parameter is
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corrections to the N-photon rate integrated over 8 are
relativistic, i.e., of order (v/c)z, and are therefore very
small. In fact, when the relativistic Doppler shift is used,
that is, when the transverse Doppler shift is included, the
size of the peak, and therefore the integrated N-photon
rate, are the same as when the photon momentum is ne-
glected altogether; in other words, the only consequence
of including the photon momentum when the relativis-
tic Doppler shift is used is a small shift in the angular
distribution.

The reason for the discrepancy which arises when the
nonrelativistic Doppler shift is used may be seen as fol-
lows. From Eq. (69) we know that the variation of the
photodetachment matri~ element Mi N (kf) with respect
to I and io will be determined largely by JN (pf ). [Indeed,
in the zero-range potential model we have ~M;,N(kf) ~

=
~+2vrr JN(pf)]. ] Assuming that N )) 1, the Bessel func-
tion JN(x) is extremely small when (with x positive)
x « N, and it reaches a first maximum for x close to
(slightly larger than) N. As x approaches N from be-
low, JN(x) rises very rapidly, and, after reaching the
first maximum, subsequently oscillates. In Fig. 2 we show

JN(x) vs x for N = 33 576. Now, as noted above, pf = N
when (as in the present case) Ef —P. Using Eq. (76) to
differentiate pf with respect to u shows that the maxi-
mum value of py is ppo. Hence, as u increases from zero,

py first rises from po to ppo, and although this change
is very small the increase in JN(py) is considerable, as
shown in Fig. 1 for N = 33576. [As u increases further,

pf decreases, and JN(pf) rapidly drops to zero. ] It is
this significant increase in JN(pf), as py changes from po
to ppo, which is responsible for the significant change in
the size of the peak in the angular distribution when the
nonrelativistic Doppler shift is used.

However, the difference between po and ppo is a rela-
tivistic correction, and should be dropped since we are

r= dn„, )
N)N

(88)

We use the tunneling formula [26] to estimate I'

I =Ca.— ~F, (89)

w"ere +o = (2/3)(~p/«)~2&,
~

~ and where we ob-
tained the value of C by Gtting to our calculated results
(although this value could be derived analytically [26]).
Putting C = 2.89 a.u. gives an accurate estimate of
I' over a wide range of frequencies and intensities. If
cu = 0.00044 a.u. we Gnd, using the tunneling formula,
that I' = bio/(2vr) when I = 2.71 x 10ii W/cmz, and at
this intensity b = 0.813. However, if io = 0.0044 a.u. we
find that I' = bio/(2vr) when I = 7.65 x 10ii W/cmz and,
at this intensity, b is only 0.019. Thus we conclude that
at frequencies above the COz laser frequency but still mell
belom the unperturbed atomic orbital frequency, b is small
and consequently corrections to the dipole approximation
may be ignored. It remains to investigate the adequacy
of the dipole approximation at frequencies above the un-
perturbed atomic orbital frequency when atoms are ion-
ized by strong light. In the latter process, the applied
field strength can considerably exceed the atomic field
strength before the atom is ionized, and consequently
the initial bound state may be significantly perturbed,
as a result of which the analysis is rather more compli-
cated than in the case of multiphoton detachment by a
low-frequency Geld.

working within the nonrelativistic framework. Alterna-
tively, we can use the relativistic Doppler shift, which
amounts to dividing the nonrelativistic pf by p, so the
maximum in the relativistic pf is po, the same as when
the Doppler shift is neglected altogether. Thus, when we
use the relativistic Doppler shift we obtain the same an-
gular distribution as when the Doppler shift is neglected,
except for a small but physically significant shift.

If we increase the intensity, we increase the value of
No [= P/(5 io)] and therefore we increase the value of
N (- 2No) for which the photodetachment rate is maxi-
mum. Accordingly, we increase 6', and the dipole approxi-
mation becomes less and less reliable. However, the pho-
todetachment rate also increases as the intensity does,
and eventually we reach the point where photodetach-
ment occurs within a few cycles or less, and our analysis
no longer applies —we must take into account the deple-
tion of ions and also the temporal variation of the inten-
sity on the rising edge of the pulse. We end this paper
by estimating the intensity for which photodetachment
occurs within about a cycle. The total rate for photode-
tachment, integrated over the angle and summed over N,
is I'/h, where

FIG. 2. Standard regular Bessel function JN(x) for N =
33576. The arrows indicate the maximum value of pf when
the relativistic (left arrow) or the nonrelativistic (right arrow)
Doppler shift is considered.

ACKNOWLEDGMENT

This work was supported by the NSF under Grant No.
PHY-9017079.



MULTIPHOTON TRANSITIONS IN A STRONG FIELD: 685

[1] L. Rosenberg, Phys. Rev. A 26, 132 (1982).
[2] R. M. Potvliege and R. Shakeshaft, Phys. Rev. A 41,

1609 (1990); M. Dorr, D. Feldmann, R. M. Potvliege,
H. Rottke, R. Shakeshaft, K. H. Welge, and B. WolfF-

Rottke, J. Phys. B 25, L275 (1992).
[3] L. V. Keldysh, Zh. Eksp. Teor. Fiz. 47, 1945 (1964) [Sov.

Phys. JETP 20, 1307 (1965)].
[4] C. Blondel, M. Crance, C. Delsart, and A. Giraud, J.

Phys. B 24, 3575 (1991).
[5] M. D. Davidson, H. G. Muller, and H. B.van Linden van

den Heuvell, Phys. Rev. Lett. 67, 1712 (1991).
[6] H. Stapelfeldt, P. Balling, C. Brink, and H. K. Haugen,

Phys. Rev. Lett. 67, 1731 (1991).
[7] See, e.g. , M. Pont and M. Gavrila, Phys. Rev. Lett. 65,

2362 (1990); R. Shakeshaft, Comments At. Mol. Phys.
(to be published).

[8] L. Rosenberg, Adv. At. Mol. Phys. 18, 1 (1982).
[9] C. Leone, P. Cavaliere, and G. Ferante, J. Phys. B 17,

1027 (1984).
[10] See, e.g. , L. D. Landau and E. M. Lifshitz, The Classical

Theory of Fields (Pergamon, Oxford, 1975).
[11] F. Ehlotzky, Can. J. Phys. 63, 907 (1985).
[12] See, e.g. , W. C. Henneberger, Phys. Rev. Lett. 21, 838

(1968).
[13) H. R. Reiss, Phys. Rev. A 22, 1786 (1980).
[14] See Ref. [1] above and also F. Zhou and L. Rosenberg,

Phys. Rev. A 44, 3270 (1991) and references therein.

[15) M. Jain and N. Tzoar, Phys. Rev. A 18, 538 (1978);
S. Basile, F. Trombetta, G. Ferrante, R. Burlon, and
C. Leone, Phys. Rev. A 37, 1050 (1988).

[16] See Appendix A of R. M. Potvliege and R. Shakeshaft,
Phys. Rev. A 38, 6190 (1988).

[17] See, e.g. , M. Gavrila and J. Z. Kaminski, Phys. Rev. Lett.
52, 613 (1984); L. Dimou and F. H. M. Faisal, ibid 59.,
872 (1987); A. Giusti-Suzor and P. Zoller, Phys. Rev. A
36, 5178 (1987); R. Bhatt, B. Piraux, and K. Burnett,
ibid 37, .98 (1988); L. A. Collins and G. Csanak, ibid.
44, R5343 (1991).

[18] C. Cohen-Tannoudji, B.Diu, and F. Laloe, Quantum Me-
chanics (Hermann-Wiley, Paris, 1977), Vol. 1 .

[19] I. J. Berson, J. Phys. B 8, 3078 (1975).
[20] N. L. Manakov and P. L. Rapoport, Zh. Eksp. Teor. Fiz.

69, 842 (1975) [Sov. Phys. JETP 42, 430 (1975)].
[21] W. Becker, J. K. McIver, and M. Confer, Phys. Rev. A

40, 6904 (1989).
[22] T. Gallagher, Phys. Rev. Lett. 61, 2304 (1988).
[23] P. B. Corkum, N. H. Burnett, and F. Brunel, Phys. Rev.

Lett. 62, 1259 (1989).
[24] F. Sauter, Ann. Phys. (Paris) 9, 217 (1931); ll, 454

(1931).
[25] H. R. Reiss, J. Opt. Soc. Am. B 7, 574 (1990).
[26] A. M. Perelomov and V. S. Popov, Zh. Eksp. Teor. Fiz.

53, 331 (1967) [Sov. Phys. JETP 25, 336 (1967)].


