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Spurious velocity dependence of free-space spontaneous emission
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It is shown that the standard calculation of the free-space spontaneous-emission rate leads to a
spurious velocity dependence if the atomic motion is included nonrelativistically. The unphysical
terms are of first order in v/c, akin to the nonrelativistic Doppler shift.
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Nonrelativistic quantum electrodynamics (QED) is the
well-established framework which underlies quantum op-
tics [1], cavity QED [2], atom optics [3], and laser cooling
[4]. Traditionally, QED describes the dynamics of the
electronic degrees of freedom of an atom and the elec-
tromagnetic field, but in more recent applications, the
translational degrees of freedom of the atomic center-of-
mass motion have been included to account for momen-
tum conservation in light-matter interaction.

One of the most prominent textbook examples of QED
is spontaneous emission, which results from the inevitable
interaction of the atom with the quantized electromag-
netic field vacuum. It has recently attracted renewed
attention in the context of laser cooling and atom op-
tics, where an atomic master equation has been derived
from first-principle calculations, starting from a non-
relativistic Hamiltonian model which also incorporates
the atomic translational degrees of freedom [5,86]. The
atomic master equation is obtained by adiabatically elim-
inating the fluorescence modes in a Born-Markoff ap-
proximation. In the final equations, the impact of these
modes is manifest through directionally dependent tran-
sition rates which account for electronic transitions as
well as transitions between different momentum states of
the atom.

In this article we demonstrate that these rates acquire
velocity dependencies which violate the Galilean invari-
ance principle. This should come as no surprise, since
nonrelativistic QED couples two radically different sym-
metry groups: the Galilei group which governs the center-
of-mass motion of the atom, and the Lorentz group which
governs the evolution of the electromagnetic field. What
is somewhat disturbing, however, is that the unphysical
terms are formally of the same order as the trustworthy
linear Doppler shift.

It appears that this particular flaw of nonrelativistic
QED has been left unnoticed so far, possibly due to the
relative smallness of the spurious terms and their inti-
mate connection to the Doppler effect. In fact, in most of
the published derivations, the atomic-rate equations are
simplified at a final stage and as a byproduct, the un-
physical velocity dependencies disappears [5]. However,
in at least one such derivation [6], the unphysical modi-
fications are taken seriously to some extent, although no
experimental significance seems to have been attached to

47

them so far. It is quite clear, however, that the simulta-
neous appearance of artificial v/c terms and of important
v/c corrections invites for confusion, in particular in more
complicated situations, where our a prior: knowledge of
what is physical, and what is not, may be limited.

We proceed by first evoking a standard Wigner-
Weisskopf approximation to rederive the rate of sponta-
neous emission of an excited two-level atom which travels
freely in the electromagnetic vacuum. We then show that
the unphysical corrections to the partial rates associated
with emission in a given direction are of first order in the
atomic velocity, but the explicit form of the corrections
depends on whether the calculations are carried out in
the dE scheme or in the pA scheme.

In nonrelativistic QED, the interaction of a two-level
atom and the electromagnetic field, taking into account
the atomic motion, is described by the standard Hamil-
tonian [7]

H=Hj+ Hp+ Hy-p, 1)
which is a sum of the atomic Hamiltonian
p2
Hy = o + hwpoyo_, (2)
the free-field Hamiltonian
Hp = Zhwja}aj, 3)
j

and the atom-field interaction in the dipole and rotating-
wave approximation

Hyp=—gp Ef(X)or +Hec. (4)

Here p and X are the atomic center-of-mass momen-
tum and position operators, whose components obey
canonical commutation relations, oy denote the atomic
level raising and lowering operators where {o4,0_} =1
with ai = 0, a; and a; denote the photon annihila-
tion and creation operators of the jth mode which obey
[as, a}] = §;;, E*T(x) is the positive-frequency part of the
electrodynamic field operator, w,4 is the Bohr transition
frequency, and g is the dipole transition matrix element.

We consider a Am = 0 transition in free space. In this
case it is convenient to expand the electric field in terms
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of linearly polarized plane waves with periodic boundary
conditions

. hw; s -
Et(x)=i) i / 260;,%.3*: X@ix, (5)
A

where k; = 27j/L, j = (jx,Jy,Jz) is a vector of inte-
gers, A = 1,2 enumerates the polarization directions,
and L3 = V is the quantization volume. The transver-
sality of the mode functions is guaranteed for mutually
orthogonal propagation and polarization vectors. This
determines the polarizations up to an arbitrary rotation
around the direction of propagation n; = ck;/w;. We
may use this freedom to choose ej; orthogonal to the
atomic dipole transition vector g. The scalar product
(4) of the remaining polarization vector e;; and the tran-
sition dipole element may then be expressed in terms
of the angle §; between the wave vector k; and g, i.e.,
ge1; = psinf;. With these conventions, the atom-field
interaction assumes the form

Hpp=—i Zgj [eikj'*a+aj — a;a_e_ikf "] , (6)
J

with a coupling constant

J

fw;
95 =P\ ooy S0 6;. (7)

Here, the momentum-shift operator e~ % accounts for
momentum conservation in the atom-field interaction.

To derive the rate of spontaneous emssion we consider
an initially excited atom which travels with momentum
p through the electromagnetic vacuum. Due to the inter-
action (6), this atom will eventually end up in its ground
state, traveling with some momentum p — %k;, where k;
is the wave vector of the emitted photon. Summing the
corresponding rates over all possible final states where
the photon is emitted in a given direction n, one obtains
to lowest order in the atom-field interaction for the rate
of spontaneous emission in this direction (Fermi’s golden
rule)

27 — hk;)?
dyv(n) = _h_z |gj|26{ hwj + %
J

- [th + 22;7] }5(11 —ny),
(8)

where the argument of the first §-distribution accounts
for energy conservation.

Expanding this argument, we observe that the only
contributions to the sum (8) stem from frequencies which
obey

T 2Me?’ ©)

Wj =wy +wj

Here, the second term on the right-hand side accounts
for the nonrelativistic Doppler shift and the third term
accounts for the nonrelativistic recoil shift.

To proceed, we evaluate the sum (8) in the contin-
wum limit 35; — 5y [w?dwd?n’, where d’n’ is the
infinitesimal solid angle in direction n’ of spontaneous
emission. We also express the sin®@; factor of lgj|? in
terms of the dipole radiation pattern

B(n) = o [1 - “’p’;‘] , (10)

which is normalized to [d?n®(n) = 1. Finally, we as-
sume that the atom is infinitely heavy, M — oo, which
allows us to drop the recoil term in Eq. (9). With these
conventions we obtain for the differential rate of sponta-
neous emission in the n direction

1 4p?
4meg 3hc3

X {/Ooo dw w38 [w —wy — w-!}-c—v] } ®(n)d’n.
(11)

The remaining integration is easily performed and the
result is

dyv(n) =

dyv(n) = 70 [1 - I‘T"] ~ ®(n)d?n, (12)

where
1 4p2w3
Yo =
4mweg 3hc3

is the rate of spontaneous emission for an atom at rest.

At this stage it is worthwhile to recall that in a Galilean
theory, the differential rate of spontaneous emission in di-
rection n can only depend on the direction of the dipole
transition vector g or other spatial directions related to
the internal structure of the atom, but not on the center-
of-mass velocity v. The simple reason behind this is
that time increments (i.e., rates) and directions (i.e., the
dipole pattern) are invariant under Galilean boosts. [In
a relativistic theory, in contrast, rates like v transform
like the inverse proper time, v, = y9+/1 — v2/c?].

The calculated differential rate (12) violates Galilean
invariance (as well as relativistic transformation prop-
erties). Even worse, the “correction” to that rate is of
relative order v/c, which may be interpreted as a nonrel-
ativistic effect akin to the non-relativistic Doppler effect.
This interpretation is clearly unacceptable, and the v/c
dependence of dy must be rejected.

Sometimes this is overlooked. The reason may be that
the Doppler shift in Eq. (11) rests certainly on solid
ground: the frequency picked by the § function is nothing
but the atomic transition frequency of the moving atom
as measured in the laboratory frame. But the product
of the transition element (~ w) and the mode density
(~ w?), and the trustworthy Doppler effect somehow con-
spire to produce the physically unacceptable result of Eq.
(12). The formal reason is that the integrand in Eq. (11)
reflects neither Galilei invariance nor the proper trans-
formation properties of a fully relativistic theory, as the
Hamiltonian (1) couples the Galelei group of the atomic
motion with the Lorentz group of the field evolution.

(13)
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It is also interesting to note that the degree of the
misleading velocity dependence in Eq. (12) depends on
whether the calculations are carried out in the dF or in
the px A scheme. Using the pA scheme, the transition
matrix element varies ~ w™! and the power in Eq. (12)
becomes —2 instead of —4. This is yet another indication
that the velocity dependence of dy is unphysical and must
be rejected.

In conclusion, we have demonstrated that the standard
calculation of spontaneous-emission rates in the frame-
work of nonrelativistic QED leads to a spurious v/c de-
pendence. In contrast to the v/c dependence of the linear
Doppler shift, which results from the proper invariance
of spatio-temporal phases under Galilean boosts, the v/c
dependence of the spontaneous-emission rate has to be
rejected a posteriori because it violates Galilean invari-
ance properties. This indicates that first-principle calcu-
lations in nonrelativistic QED are at risk of producing
unphysical results already to order v/c if atomic motion
is included. In particular, in more complicated situa-
tions, such as in the presence of external laser fields or
inside cavities, the nature of velocity dependence of the
atomic response may be opaque and not easily traced
back to either a physical or an artificial source. It is
then preferable—and indeed common practice—to use a
master equation, where spontaneous emission is already
included in a Galilean invariant form, rather than to rely
on first-principles calculations. This eliminates at least
one source of artificial velocity dependencies in the cal-
culation of the atomic response.

Of course, the ultimate cure of this deficiency may be
expected from a relativistically covariant description of
the atomic motion, both internal and external, and the
interaction with the electromagnetic field. Despite its
innocent appearance, this program is, however, highly
nontrivial [8]. If taken literally, it requires us to set up
a covariant QED formulation of a (at least) two-body
bound-state problem (light electron plus the rest of the
atom). Alternatively, one could try to set up a covari-
ant description of an effective two-level atom, thereby
avoiding the notorious bound-state problem [9]. This
program is perhaps more promising, but it is still in a
very early stage. It also faces difficulties (the appear-
ance of “antiatoms,” for example) which are somewhat
annoying considering the simplicity of its nonrelativistic
counterpart. And finally, it might be a little bit out of
proportion to set up such a program for just the pur-
pose of deciding the existence or nonexistence of certain
v/c corrections in nonrelativistic quantum optics. But
then again, the program is certainly worthwhile pursu-
ing, in particular if one plans to found the emerging field
of atom optics on a basis more solid than the current
standard model.
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