
PHYSICAL REVIEW A VOLUME 47, NUMBER 1 JANUARY 1993

Separation and superposition of atomic wave packets by reSection
and transmission by an optical ripple mirror
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In this paper, we investigate the reflection and transmission of an atomic wave by an optical ripple
mirror which may be realized by a standing-wave laser field. We show that the ripple mirror can operate
as a separator of the incident atomic waves corresponding to different internal states by reflection and
transmission. For different laser parameters, the atomic ripple mirror can reflect one linear combination
of two ground states and transmit the orthogonal linear combination. The transmitted superposition
state corresponds to the well-known "dark" state. The atomic wave function is a coherent superposition
of reflected and transmitted waves entangled with different internal states.

PACS number(s): 42.50.Vk, 42.50.Dv, 42.50.Lc

I. INTRODUCTION

The motion of an atom in a laser field has been the sub-
ject of much research over the last few years. The
reAection and diffraction of an atomic beam by a laser
field have been theoretically predicted [1—8] and experi-
mentally observed. However, the investigations have
mainly concentrated on the two-level atom. The adop-
tion of a two-level model can greatly simplify the theoret-
ical treatment. For example, if the photon recoil frequen-
cy is smaller than the spontaneous emission decay rate of
the internal excited state, the light field is completely
equivalent to a mechanical potential for the center-of-
mass motion of a two-level atom in the adiabatic approxi-
mation. Some authors [5,8,9] have applied the effective-
potential model to study the interference, refiection and
channeling of atoms in both a travelling- and standing-
wave laser field. Recently, these studies have been ex-
tended to multilevel atoms [10—12].

In this paper, we consider a scheme for the reQection
and diffraction of a three-level atom with an excited state
and two ground states by a standing-wave laser. We as-
sume that the laser has a nonuniform transverse distribu-
tion with beam width Np ~ The atomic beam is assumed
to pass through the laser beam with a glancing angle of
incidence along the laser propagation direction. Hence
our scheme differs from the atomic beam splitter which
has a large angle of incidence of the atomic beam as stud-
ied in [6—8]. With the arrangement of glancing incidence
of the atomic beam, we find that the standing-wave laser
field can reAect the atomic beam in a perpendicular direc-
tion to the laser propagation by light-induced gradient
potentials. Due to the periodic structure of the
standing-wave laser in the propagation direction, the
reAection of the atomic beam by such a laser beam is very
similar to that of a light beam by a ripple mirror. Hence
in our scheme, the standing-wave laser with nonuniform
transverse distribution acts as an atomic ripple mirror
which is a position-dependent periodic potential for the

atomic center-of-mass motion. Theoretically, we show
that for different internal states of the three-level atom,
the light-induced potentials have different forms which
depend on the detunings of the laser from the atomic lev-
els. For some regions of the laser detuning, the atomic
ripple mirror can operate as a state "separator" which
can reAect the atomic waves corresponding to one of the
ground-state sublevels and transmit the other. For other
regions of laser detuning, we find that the light field not
only induces a gradient potential for every atomic sublev-
el but also induces a coupling between the atomic waves
for each sublevel. We show that due to this coupling, the
atomic ripple mirror can be used as a state-preparation
device which can refiect one linear combination of two
ground states and transmit the orthogonal linear com-
bination. The transmitted combination corresponds to
the well-known "dark" state.

This paper is organized as follows: In Sec. II, we
present a general theory of a three-level atom interacting
with a standing-wave laser. A vector Schrodinger equa-
tion describing the atomic center-of-mass motion corre-
sponding to three internal states is derived. With the as-
sumption of glancing incidence of the atomic beam, we
reduce the vector Schrodinger equation into coupled
equations for the two ground-state atomic waves. A gen-
eral discussion of the solutions for the coupled equations
is given. Section III discusses the conditions under which
the standing-wave laser may separate the atomic waves
corresponding to different internal states, or prepare
them in a coherent superposition state. Finally, the con-
clusions are given in Sec. IV.

II. EQUATIONS OF MOTION
FOR ATOMIC %AVES

In this section, we will derive the equations of motion
for the atomic waves in a standing-wave laser field. We
consider a three-level atom with an excited state and two
ground-state sublevels. The Hamiltonian has the follow-
ing form in the dipole and rotating-wave approximation:
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where p is the momentum operator describing the
center-of-mass motion of the atom. H~ and HF are, re-
spectively, the free Hamiltonians for the atomic internal
degrees of freedom and the vacuum electromagnetic field.
Hc is the interaction Hamiltonian of the atom with the
standing-wave laser field which is treated as a classical
field with Es(+'(r, t ) =2 EOF( xy ) cos(kLz)e
F(x,y ) is the transverse distribution of the laser
field. coL and kL are its frequency and wave
vector. Hz is the interaction Hamiltonian of the
atom with the vacuum electromagnetic field with
E(&+)(r t ) iy& fd3k())i~ /4ir2)1/2eik ra Pk& D( —)(r)
=()M3)13) & 1l+p3, 13)&21)e Ir&&rl denotes the negative-
frequency part of the dipole-operator density. Ir) is the
atomic center-of-mass position eigenstate and u3 is the3J
dipole matrix element corresponding to the transitions
between levels I3) and Ij) (j=1,2). The transition be-
tween levels I2) and I 1)is electric-dipole forbidden. In
terms of the Hamiltonian (1), one has the following
Schrodinger equation for the atom-field state I'p ):

=HI+& . (2)
at

In order to investigate the time evolution of the state
l)II), we follow the Weisskoff-Wigner radiation theory
and expand I)p) in the space of Fock states of the vacu-
um electromagnetic field as in Ref. [10,11]:

and we have transformed to the interactio~ picture
H =U H U (a=C,R) with the unitary operator
U= exp[ —iHFt/fi+itut t(I1) & 1I+ I2) &2I )]. We can
solve Eqs. (4) by second-order perturbation theory where
we limit the state vectors to the zero-photon space. As a
result, we may reduce (4) into a simple form for the state
vector

I pz ) —=
I p(0} ):

t))i
" = [H, —i))i(y/2) I3 & & 3I] I @„&, (5)

where y=y)+yz is the total decay rate of level I3& y)
and y2, respectively, give the radiative decay rates of lev-
el I3) into Il) and I2). Now, we use Eq. (5) to study the
scattering of atomic waves by a standing-wave laser field.
%'e can make the ansatz of a stationary oscillation with
the incident energy E

[(}))(r) I
1 &+y,(r) I2 &+43(r)13 & ] .

Inserting (6) into (5), one has the equations for the atomic
center-of-mass wave:
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where 5 =(ut —(s3 —ej ) (j= 1,2) denote the detuning of
the atomic transition frequencies c3—cj from the laser
frequency tg)L. QJ =2p3i'Eo/A is the Rabi frequency cor-
responding to the transition between levels I3) and

Ij ).
In this paper, we assume the angle of incidence of the
atomic beam to the z axis 8 is very small so that
v, &&v„,v and E=E,= —,'mv, . The incident energy E is
assumed to be larger than )rib, j, )riy and fi kL /2m. After
these considerations, the atomic wave packet may be as-
sumed to be slowly varying in the z direction on the scale
of the de Broglie wavelength )(,d =2)r/X, with
E:,=mu, /))i, and then we separate out the fast-varying
part by the transformation

I nk~ )OI
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,
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After neglecting the second derivatives 8 y. /()z and the
terms ))i iI),, q& /mu, compared with K, (()qr, /Bz), we have
the equations for the slowly varying envelopes:
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pling coefficients V~~ (i Xj) depend on the oscillation fac-
i(A,. —h. )r

tor e ' ' . For nondegenerate ground-state sublevels,
if the separation between two sublevels

~ b; —b,j ~
has a

large value, the oscillation factor will rapidly wash out
the coupling terms in Eqs. (11) with increasing r A. s a
result, Eqs. (11) are further reduced into two independent
Schrodinger equations as follows:

fi(—Q, e '
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where P, =—1/(y/2 i5 +)—and. 5J+ =—h~. +kLu, (j =1,2).
It is evident that the spatial distribution of the excited-
state wave packet depends on that of the light Geld. In
the Geld-free space, the atoms cannot be excited and one
cannot obtain the excited-state atomic wave. Therefore,
we deduce that the excited-state wave is located in the re-
gion of the laser field in the semiclassical adiabatic ap-
proximation. We substitute Eq. (10) into Eqs. (9a) and
(9b), which gives the following coupled equations for q2,

arid 1(p2'

a
zA" B.

8 8+ Pl+ Vilq 1+ V12 P2
2m /~2 Qy2

'P2. a
Bf'

iri2 B2 B2

2
+
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V~J. (j=1,2) give the effective-potential functions and
coupling coefficients. They have the following
definitions:

—ifiQ,*Q.
VJ = F(x,y )2(P +P+. +P e2'~ '

~ ~+ —2i her) i( i
—

AJ )r
(12)

Equations (11) are difficult to solve. However, in some
simple cases, we can give approximation solutions. The
first case corresponds to the decoupling of two ground-
state wave packets. From Eqs. (12), we see that the cou-

where the efFective time variable r=z/u, and hco=kr u,
is the Doppler shift. For a glancing angle of incidence of
the atomic wave, one can expect a long interaction time
v.o))y '. As a result, we can follow the same treatment
as used in Ref. [g] and make the semiclassical adiabatic
approximation for the excited-state wave packet. By in-
tegrating Eq. (9c) and taking out the r slowly varying
wave packets p, 2, we obtain the adiabatic solution y3.

where we have assumed that the atomic wave packet has
a smaller width than the laser beam width wo along the x
axis and a zero kinetic energy E so that the second
derivatives with respect to x can be dropped. Equations
(13) are time-dependent Schrodinger equations with
effective time periodic potentials. The scattering of parti-
cles by a time periodic potential has been well
studied in quantum mechanics [13,14]. According
to Ref. [13], we rewrite the potentials into two parts

VJJ
=

VJJ + V '(r ) wi. t.h. the static potentials V~~.

=( —iiri~Q.
~

/4)F(x, y) (p. +p+) and the time-depen-
dent parts V'. (r)=( iA')Q—J. ~

/4)F(x, y) (pj e '

+pj+e ' "'). For convenience, we assume that the laser
beam has a uniform distribution in its width wo, i.e.,
F(x,y) =1 for —a (y (a =wo/&2 and F(x,y )=0 in
elsewhere. If the time-independent problem

{112/2m )B /By + V~~. has ~~~J(—
then we have the analytic solutions for the time-
dependent equations (13) in the region —a (y & a [13]:

q)+(q )= exp[ i e(q )~/A]y—)*(q )

(14)

where J„=gP OI( i)"/[l—!(1+n)!]][~Q&~PJ /
(greco)]'[~Q ~2p+/(gb, co)] +" and the time-independent
solutions y +—(q)= exp(+iq'y ) with q'= [2m[e(q ) —V~~]/
A' ]

' . For simplicity, we omit the subscript j for
e(q ) =A' q /2m, q' and J„. Equation (14) shows that the
Doppler shift results in energy sidebands. To Gnd the
solutions for the rejected wave and the transmitted wave
in the regions y )a and y & —a, we match a linear super-
position of incident and rejected waves, and also
transmitted waves on the boundary y =a and —a with
the energies e(q)+2nkhco (n = —00, . . . , oo ), to the
linear superposition of solutions y (q ) and q (q ) in (14).
In this paper, we will mainly concentrate on zero-order
sideband scattering corresponding to a very large
Doppler shift so that higher-order sideband coefficients

I J„] may be neglected. This is quite reasonable for a
glancing incidence of the atomic beam with a large veloc-
ity v, . In this case, the atomic wave only "sees*' a static
average potential in the scattering process. Now, we as-
sume that a thermal atomic source is located at the posi-
tion z =z;„=0. It provides a random-phase thermal
atomic beam which is statistically described by the densi-
ty operator
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where P(E) gives the energy distribution of the thermal
atomic beam. The bar denotes the average over all possi-
ble phases. P, and P2 are the statistical weights of the
two ground-state sublevels. g(y ) is the envelope function
of the incident wave with the center velocity v~ =fiK~/rn
in the y direction. According to (15), we can express the
state vector for a thermal atomic beam with energy E as

X dy y exp —&K„y

x [P,e 'g(y)l 1 &

+P,e
'

'g(y)12&] . (16)

(17a)

(17b)

The reflection coefficient R (q) and the transmission
coefficient S~(q ) have the definitions [15]

8, 2 are the random phases of the atomic beam. The
average over 0, and 82 destroys the coherent terms

l2& & ll and l 1 &&2l in the density operator p;„(t). Hence,
the state vector (16) is not a coherent superposition state.
In terms of (16), we have the incident atomic wave packet
gj(r)=PJe 'g(y) exp( iK y—) at ~=z;„/U, =o. As a
result, we have the expressions for the wave packets in re-
gion y & a after reflection:

(r)=P e .'w(r, y)+P e ~f~(r, y) .

w(r, y)= f "„dq G(q+K )exp[iqy ie(q)r—/fi] gives
the evolution of the incident atomic wave packets.
f (r,y )—:f 0"dq R (q ) exp[iqy .ie(q )r/—A'] are the
reflected wave packets. Similarly, we have transmitted
wave packets in the region y (—a

qvj(r)=P e ' f dq S (q)exp[ iqy ie(—q)r/k] —.

zero-order waves are of the order of l J„l . The higher-
order reflection and transmission correspond to the
diffraction of atomic waves due to the ripple structure of
the atomic mirror. We point out that the expressions (18)
for the reflection and transmission coefficient are the re-
sults obtained with the assumption of a rectangular trans-
verse distribution of the laser beam. The transverse dis-
tribution of a real laser field is a Gaussian function. In
this case, more exact expressions for the reflection and
transmission coefficient can be given by employing the
WKB method. However, the expressions (18) can be con-
sidered as a valid approximation for the reflection and
transmission of a glancing incident atomic wave or a slow
atomic wave with very small wave vector E„compared
with the inverse width of a real Gaussian laser beam. In
this paper, we have assumed a glancing incident condi-
tion.

III. SEPARATION AND SUPERPOSITION
QF ATOMIC WAVES

We have given the reflection and transmission
coefficient in the previous section. In this section, we will
discuss their dependence on the energy e(q ) and the laser
parameters. For convenience, we define the reflectivity
A. =lR (q)l /G(K —q) and the transmittivityJ J

2
3'

&, = ISJ(q)l /G(Ky —q) . According to Eq. (18) we have

the relation AJ+'Ti=1. Therefore, we only need to
work out the reflectivity. The reflectivity and transrnit-
tivity determine the probabilities of atomic waves in the
region y )a and y & —a. For a real q' which corresponds
to an effective potential well ( V~~ &0) or a potential bar-
rier with height less than the incident energy in the y
direction [ VJJ & e(q )], we can maximize the reflectivity if
2q'a=(2n+1)m/2. This is the resonant condition for
the reflection of particles in quantum mechanics. This
gives the following relation between the incident energy
e(q) in the y direction and the laser parameters for the
maximized reflectivity:

R ( )= (q' —q')e ""sin2q'a
G(K

(q +q' ) sin2q'a +2iqq' cos2q'a

(18a)

p mAe(q)= Vzz+ (n+1/2) (n =0, 1,2, . . . )
8ma

(19a)

—2iqa
S (q)= G(K —q),

(q +q'2)si 2naq+2iqq'cos2q'a

(18b)

2/2
e(q)=V" + zn (n=1,2, 3, . . . ) .

8ma
(19b)

Similarly, one can find the condition to maximize the
transmittivity:

where G(q ) =(1/2m)f dy g. (y ) exp( iqy ) is—the
Fourier transform of g(y). Generally, the higher-order
reflection and transmission coefficients have a more com-
plicated form. However, from the solutions (14) and the
discussions of Ref. [13],one can conclude that the ratios
of the probabilities of the higher-order reflected and
transmitted waves with wave vector q to those of the

In Fig. 1, we show the reflectivity as a function of
$=2q'a and g= VJ" /e(q) for a potential well and a low
potential barrier. We find that when V~~

=0, the
reflectivity is zero for any value q'a and also e(q). In ad-
dition, the resonant conditions (19) and Fig. 1 also imply
that the reflection and transmission of atomic waves have
the property of energy or velocity selection in the y direc-
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FIG. 1. The reflectivity dependence on the parameters
(=2q'a and q= VJJ/e(q). The peak values of the reflectivity
correspond to the resonant condition (19a).

and for the transmitted wave

7T8 =8 ——
T R (20b)
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FIG. 2. The reflectivity dependence on the parameters
$=2~q'~a and q= VJ/e(q) ) l.

tion. However, for a potential well or a low potential
barrier, the reflectivity is very small even when the reso-
nant condition (19a) is satisfied. Therefore, in later dis-
cussions, we will concentrate on the case where one has a
high potential barrier by selecting the laser frequency
above the atomic resonance. For a high potential barrier
V" )e(q), formula (18) and the relation % +'T =1 is
still applicable but q' should be replaced by
i [2m[ VJJ.

—e(q)]/A I' . In this case, the transmission
of the atomic wave through the laser beam is just an ex-
ample of quantum-mechanical tunneling through a po-
tential barrier. The reflectivity is plotted in Fig. 2 for
this case. We find the reflectivity rapidly approaches one
when $=2~q'~a increases. This means that the wider the
laser beam and the higher the efFective potential barrier,
the larger the reflectivity. On the other hand, in terms of
formula (18), we have

R (q ) =QR J G.(K~ —
q ) exp( i Bz ), —

S (q)=+V.G(K —q) exp( iBr)—.

This means that the process of reflection and transmis-
sion induces a phase shift for both reflected waves and
transmitted waves. The phase shift has the following ex-
pression for the reflected wave:

This shows that there is a fixed phase difference of ~/2
between the reflected wave and the transmitted wave.
What is interesting is the fact that for an incident plane
monochromatic atomic wave, one can select the laser pa-
rameters to achieve a reflectivity RJ =the transmittivity

In this case the incident wave is split into two
parts with the phase relation Bz —Br =m/2. In this
sense, the laser field is equivalent to a "semimirror" for a
plane monochromatic atomic wave.

We shall now demonstrate how we may use these re-
sults to obtain state-dependent reflection and transmis-
sion. For the separation of states, we need to have a
reflectivity close to 1 for the wave packet corresponding
to one internal state and a transmittivity close to 1 for the
wave packet corresponding to the other internal state.
This may be achieved by selecting different detunings for
the ground-state sublevels. For a large value of detuning,
we can neglect the dissipative term induced by spontane-
ous emission in the potential V- and approximately have

VJJ =RISE
~

b, /[2(&J —bc@ )](j=1,2).. If the detuning
b, . for some sublevel

~j) is adjusted near zero, the wave
corresponding to the internal state ~j ) transmitted into
the region y & —a will have transmittivity close to 1. For
a three-level atom interacting with a single-frequency
laser, the detuning b; for another sublevel ~i ) is limited
by the relation b, ,

—b,
~

=b, . ~b,
~

is the separation between
two sublevels. As a result we have b, ,

= b, . If sublevel ~i )
is a higher level than

~j) and 6) hco, the wave corre-
sponding to level ~i ) is reflected into the region y )a.
One can adjust the other laser parameters to maximize
the reflectivity to l. If ~i ) is a lower level than

~j), we
have 5;= —

~
b, ~. In this case, the reflection occurs for the

wave with level ~i ) when
~
b,

~
( b, co. Generally, we can al-

ways obtain reflection for the higher sublevel with
A&Aco. This illustrates how we may separate atomic
wave packets by reflection and transmission. A schemat-
ic diagram is given in Fig. 3.

If the two ground-state sublevels are nearly degenerate
or the standing-wave laser field has two components with
different frequencies matching the large separation be-
tween two nondegenerate sublevels, we have 4&=42=—5.
In this case, one cannot neglect the coupling terms in
Eqs. (11). Fortunately, we can solve Eqs. (11) by noting
g, =P2~= f3 and introducing th—e following transforma-
tlons:
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e[e ' ' '""(q(+)I+&+e(-)I—&)]. (24)

The new orthogonal state vectors
I
+ & and

I

—
& have the

definitions

Q) ll &+Q212&

in(I'+ IQ21'
' In(i'+ IQ2I'

(25)

FIG. 3. A schematic diagram for the separation of atomic
wave packets by reflection and transmission by an optical ripple
mirror. The lines with arrows in the reflected and transmitted
wave represent various diffraction orders from the periodic
structure of the standing-wave laser.

e(+)=n,q, +n2q 2,

+2%1 192
(21)

Applying (21}, we transform Eqs. (11) into two indepen-
dent Schrodinger equations:

It is evident that the state vector I
—

& is a "dark" state
[16] with the probability amplitude )Ii' '. Schrodinger
equation (22b) implicits that the "dark" state does not
"see" the light field effectively. If one selects the detun-
ing 5) he@ and the other laser parameters to maximize
the reflectivity close to 1, the other combination +'+' will
be fully reflected into the region y )a. Thus we have an
entangled state with the reflected and transmitted waves
corresponding to different internal states.

To investigate the coherence of the atomic waves, we
still consider the thermal atomic beam described by state
vector (16) as the initial incident beam. Equation (22b)
gives the freely propagating wave packet in all space—oo (y + ao:

~ g
B% A 3 @{+)+~@{+)

(+) 2 2

B~ 2m Qy

gyp(
—)

l, fi
Bg 2m 3y

The potential

(22a)

(22b)

'=(Q2P, e ' —Q)P2e ')(i)(r,y) . (26)

—i8) —i8
(Q )P, e '+ Q2P2e ')w(r, y )

—i 0) —i 82'+Q2P2e )f(r,y) (y )a),
(27a)

(27b)

@(+) .
,

+(Q,P, e

(y& —a).

The wave packet 0'+' has the following form for perfect
reAection (A =1):

—ia(IQ, I2+ ln, l')
F(x,y )

X (p
—+p+ +p

— 2i i) co~+p+ 2i i)~g )—

Equation (22a) has the same form as Eq. (13). Equation
(22b) is the Schrodinger equation in free space. This
means that when the incident atomic wave passes
through the laser field, the combination

2 will not be affected and directly
transmit into the region y & —a. +' ' corresponds to the
probability ampHtude of a "dark" state [16]. To show
this, using the transformations (21), we express the atom-
ic waves y1 2 in terms of +'*' and then have

f(r,y ) is the spatial dependence of the reflected atomic
wave packet It has . the same form as fj(~,y) but the
reAection coefficient should be calculated in terms of the
potential V. The expressions (23) and the solutions (26)
and (27) give the atomic wave packets corresponding to

n*, +{+)+n2+{-)

ln, l'+ In, l'ip, (r) =

net(+) Q (Ii(
—)

2 1

I nil'+ I
Q21'

(23}

Substituting the expressions (23) into the transformations
(8) and the expression (6), we have the atomic state vector
in the regions y & a and y & —a:

FIG. 4. A schematic diagram for the coherent superposition
of atomic wave packets by reflection and transmission by an op-
tical ripple mirror. The wave lines linking the two sublevels in
the reflected and transmitted atomic wave represent the coher-
ence between these atomic levels.
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different sublevels
Ij & (j= 1,2):

—i8.
y =P e . 'w(r, y) Qii + in

and

Q' —i8) —i8&+
2 2 (Q&P&e '+Q2Pze ')f(r, y)

Q, + Q2

(for the region y )a ) (28a)

(k&j=1,2) (for the region y & —t2) . (28b)

According to the expressions (28) and (6), we can give the
statistically observable density operator p,„,(E, t ) for the
atomic wave with energy E after reflection and transmis-
sion:

p,„,(E,t) = &z=z,„, ,yl Ig„(E,t) && @&(E,t)l lz =z,„, ,y &

=y*y Ii && il+y'(t 12&& ll+((*y Il&&2I+y'y I2&&2I, (29a)

Q,
P,*. P =PP~5~ Iw(r, „„y)l +

z Pi(n&P&5, +QzP25 2)w(r, „„y)f(r,„„y)'

Q
P, (Q,P, 5, , +Q2P~5;2) w (r,„„y)*f(r,„„y)

in, i'+in, ' '

+ ' ' (In, l'P', +In, l'P', )If(r.„„y)l' «,j=i,2; «r y&~)
( In I'+ In I')' (29b)

and

( —1)'+~n„'Qq",, (ln)l'Pp+lnpl'Pf)lw(r. .„y)l' («i=1,2; k&j=i, 2, «r y & —~)
( Q, + Q2 )

(29c)

where r,„,=z,„,/U, . The density operator p,„,(E,t) ex-
cludes the contribution from the excited-state wave pack-
et, since it is located in the region —a (y &a. The
second and third terms, in (29b) are determined by the in-
terference of incident atomic wave packets with the
reflected atomic wave packets. The interference region
depends on the overlap between incident wave packets
and reflected wave packets. The interference terms van-
ish with the reflected wave packets propagating into the
region far from the incident wave. The fourth term in
(29b) is caused by the self-interference term of the
reflected wave packet which does not vanish anywhere
for y &a. For the transmitted wave, in the expression
(29c) one only finds the self-interference term. The self-
interference terms in both the reflected wave and the
transmitted wave play an important role in preserving the
coherence of the atomic waves as they propagates into a
far region from the mirror. We can see this by putting
i+j=1,2 in (29). This gives the dependence of the
coherent terms Pfgzl2&&1I+Pzg, ll &&2I on the self-
interference terms. We always have nonzero values for
P*, Pz and PzP, in the regions after refiection and
transmission. Comparing (29a) with (15), we deduce that
the standing-wave laser field creates a coherent superposi-
tion state of reflected and transmitted atomic waves en-
tangled with different internal states. We give a schemat-
ic diagram in Fig. 4.

IV. CONCI. USIONS

In this paper, we derive the coupled wave equations
describing the scattering of atomic waves with a very
small angle of incidence from a standing-wave laser field.
The reflection coeKcient and transmission coefFicient are
obtained for the zero-order scattering. We demonstrate
the possibility to separate the atomic waves correspond-
ing to different internal states by reflection and transmis-
sion. We can make a "semimirror" with one-half of the
atomic beam being reflected and the other half being
transmitted. The phase difference between the transmit-
ted and refiected wave is m /2. We also show the
standing-wave laser field can reflect and transmit the
atomic waves in a superposition of internal states entan-
gled with different center-of-mass motion.
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