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Quantum statistics of the light generated by phase-conjugate resonators
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We examine the quantum noise characteristics of the field produced by a phase-conjugate resonator
formed from two mirrors, one of which is a phase-conjugate mirror. We show that the output field on
the side of the phase-conjugate mirror can be completely squeezed. Numerical results for the quantum-
statistical properties of the forward and backward output fields are given as functions of the reflectivities
of the two mirrors.

PACS number(s): 42.50.Dv, 42.50.Lc, 42.65.Hw

There has been considerable work [1] on optical reso-
nators in which one of the mirrors is replaced by a
phase-conjugate mirror (PCM). Much of the work has
concentrated on the study of the modes in a phase-
conjugate resonator. However, if one wants to use such
resonators for devices such as lasers, it is of interest to
study the quantum noise characteristics of phase-
conjugate resonators. Phase-conjugate mirrors have been
treated using a quantum-mechanical description [2—4],
and there are interesting predictions concerning the extra
noise that such mirrors contribute to the conjugated field.
One might conclude that such mirrors could hardly be
useful if they add an excess amount of noise. However,
as our study shows, phase-conjugate resonators could be
quite useful in generating nonclassical light with a
significant amount of squeezing.

We start by recalling the quantum noise characteristics
of an idealized phase-conjugate mirror [Fig. 1(a)]. Con-
sider the phase conjugation of an incident beam of the
form

the b,„, can be written in the form
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Here ~(p/)cc)*) is a coherent state of the mode a;„with
amplitude (p/)cc) . In deriving Eq. (4), it is assumed that
the input mode b;„ is in the vacuum state. As a result of
the positive nature of the P function (4), one concludes
that the mode b,„, does not possess any nonclassical
properties. Clearly the phase-conjugate mirror leads to
an increase in noise in the mode b,„&over the input mode.
For example, even if both 8;„and b;„are in the vacuum
state, then the field associated with mode b,„, is described
by a thermal-like distribution with an average photon
number equal to the reflectivity of the phase-conjugate
mirror.

E;„(r,t ) =E ';„+'+H.c. ,
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where 8;„represents the annihilation operator for the in-
cident field and C (co)= i (2Mco—/V)' The fi. eld
reflected from the phase-conjugate mirror has the form
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where b „, is the annihilation operator for the reflected
field. The mode operator b,„, can be related to &;„via
[2,4]
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where b;n is the annihilation operator for the vacuum
mode entering from the other side of the PCM. The
coefficient p gives the reflection coefficient of the phase-
conjugate mirror. Using Eq. (3), CJaeta and Boyd [2]
have shown that the P function P,„,(p) associated with

FIG. 1. Schematic illustrations of the fields associated with
(a) a phase-conjugate mirror, (b) a phase-conjugate resonator
with a perfect mirror, (c) a phase-conjugate resonator with par-
tially rejecting mirror.
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dEf = l KEI
dz

dEb*

dz
= —iKE for L ~z L+l . (5b)

Here l denotes the thickness of the phase-conjugate cell
and K denotes the nonlinear coupling constant for four-
wave mixing. The boundary conditions to be imposed on
the total field amplitude E„,(z) =E/(z)+Eb (z) are

E„,(0)=0,
E (L +1)=E'"'+E'"

tot f b

Equations (5) and (6) can be solved, leading to

(0) Ein+ nKi Ein
cos2Kl cos2Kl

Eout 1 Ein+ s sin2Kl Ein*
cos2Kl cos2Kl
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(8)

Note that the reflectivity of the phase-conjugate mirror is
defined by [5]

Ipl =tan Kl .

A quantum-mechanical treatment of the fields leads to
the following expressions for the forward- and
backward-traveling fields in terms of the appropriate an-
nihilation and creation operators,

We next consider the noise properties of the phase-
conjugate resonator in which a 100%-reflecting mirror is
placed a distance L from the phase-conjugate mirror
[Fig. 1(b)]. One would expect that the feedback process
may eventually lead to a reduction in quantum noise. Let
us first consider the semiclassical analysis. For the case
of steady-state phase conjugation by degenerate four-
wave mixing, the spatial field amplitudes and their spatial
evolution [5] can be written as

EI(z)=E/(0)e'"', Eb(z) =Ei, (L)e '"' for 0 ~ z ~ L,
(5a)

Consider now the quantum characteristics of the out-
put mode. Starting from (12) and assuming that 8 'b" is in-

itially in vacuum, one can easily prove that the squeezing
parameter S is given by

&
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where t and r are the amplitude transmission and
reflection coefficients (assumed real), respectively, for the
mirror. The solution to Eqs. (17) and the corresponding
adjoint equations leads to

E out — [u ( 1+r2)E int+ i v2rei2kLE in

1 —Ipl r

Thus, the output field can be fully squeezed in the limit in
which the phase conjug-ate refiectiuity becomes unity, i.e.,
near the threshold of self-oscillation. This is reminiscent
of complete squeezing near the threshold of other sys-
tems, such as optical parametric oscillators and second-
harmonic generators [6].

We next consider the case of a mirror with finite
reflectivity r in order to determine how much flexibility
one has in the choice of the reflectivity of the ordinary
mirror. When the mirror reflectivity is less than unity,
then we also have to consider the "open input port" from
the left-hand side of the mirror. The arrangement is
shown in Fig. 1(c). The boundary conditions at the PCM
and at the mirror enable us to write

( ikz
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If we let X'/"' be the quadrature
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and we assume that E f and A' bn are in the vacuum state
and in a coherent state, respectively, then one can show
that the variance of the quadrature & ( W /"') &

=
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—&X'I"'& is given by
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where p' =p kL —arg(p) /2. In a simi—lar manner, one can calculate the fluctuations in the quadrature X' b"' of the out-

put field E &"'. We can find the result
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In Fig. 2 we show the dependence of the quadratures
(20) and (21) on the phase-conjugate reflectivity lpl and
the reQectivity r of the mirror. It is assumed that the
phase p' has been adjusted so that these variances are
minimum. Figure 2 shows that the output field on the
side of the PCM is squeezed significantly over a very wide
range of parameters. The maximum squeezing occurs
when the phase-conjugate reflectivity lpl is equal to r,
which can be understood from the fact that, under this
condition, approximately equal components of the field
and its Hermitian conjugate are present in the output
field. Nevertheless, the output-field quadrature X'i,"' on
the side of the ordinary mirror is never squeezed.

We next examine the noise properties of the off-axis
fields. Consider the situation shown in Fig. 3. We now
have to include modes propagating symmetrically about
the axis normal to the ordinary mirror. Using the nota-
tions of Fig. 3, we write the boundary conditions as

E]f(0)=tE if +irk2b(0)

E2s(L ) =IJP 2f 2b(o),

X2f (0) rP 2f +irE i&(0)

~ib(L) =iMX' 't"f +vk, b(0) .

(22a)

(22b)

(22c)

(22d)

It should be noted that the parameters r, t, p, etc. , now
correspond to off-axis rejections and transmission s.
These equations and their complex conjugates can be
solved for P if' and P 2f'. The quantum properties of the
generated fields can be studied in terms of the quantum
properties of the input fields. In order to find the squeez-
ing characteristics of the output field, we consider the
linear combination of E 7i' and E 2f',

g out (E out+&@ out)
12 ~2 if 2f (23)

This linear combination could be the output from a 50-50
beamsplitter in which E if' and 2 2f"' are incident on
different input ports. We define the quadrature of E ~&z' in
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FIG. 3. Schematic illustration of the phase-conjugate resona-

tor and the off-axis fields.

g out —d g in+ d g jog+ df 1 b 2 b 3 f 4 f (24)

Since 8 b" and & f are independent modes, mean values
such as (itf"') and ((itf"') ), etc., can be easily ob-
tained. One can in principle construct the density matrix
or the Wigner function 4 for the field 8 b"'. Assuming
that & f is in the vacuum state and & b" is in a coherent
state, then the Wigner function @(a,a*) for the it f"'
mode can be shown to be (see Appendix)

@(a,a*)= exp[ —[(sinhx)e ' (a —ao)

+(sinhx )e' (a*—ati )

+2(coshx ) la —aol']/Q (, (»)

(it out) —a d ain+d aiof o & b 2 b

the same way as in (19) but with P f"' replaced by P iq'.

By using Eqs. (22) and (23), we find that the fluctuations
in the quadrature component are the same as given in Eq.
(20). The only diff'erence is that the reflection coefficients

p and r are for off-axis fields. Thus, the results of Fig. 2
are also applicable to oQaxis modes

We next discuss the photon statistics of the field X'f"'.
Equation (18) in terms of the single-mode operators can
be written as

C4
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Note that the condition for squeezing in the quadrature
(it f"'e'~+H. c.) is

0.2 0.4 0.6 O.S 1
2

Ipl

FICi. 2. Variance in the quadrature components of the output
fields as functions of the phase-conjugate reflectivity littl for
various mirror reflectivities 4,

'a) on the side of the phase-
conjugate mirror, and (b) on the side of the ordinary mirror.
The variances are normalized to the standard quantum-noise
limit (SQL).

Note further that in general the parameter Q%1. This
parameter would be unity if d 3 =d4 =0 and
ld i l

—

ldll

l

= 1. Thus, the deviation of Q from unity is a
measure of the quantum noise entering from the left side
of the mirror as a result of its reAectivity not being equal
to unity.

The Gaussian character of the Wigner function for the
field & f"' is useful in the study of the photon statistics
and higher-order squeezing [7]. For example, using the
moment theorem for Gaussian processes, one can show
that
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( ( gX out)2N ) ( (
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Figure 4(a) shows a plot of the photon-number distri-
bution (29) for the case in which the ordinary mirror is
not present (i.e., r =0) and ~p~ =5. As predicted [2], the
resulting distribution is identical to that of a thermal
source in which the expected value of the number of pho-
tons is equal to 5. Figure 4(b) is a plot of the distribution
for the case of a perfect mirror (i.e., r = 1) and ~itt~ =0.5.
The probability for observing n photons is nonzero only
for the case in which n is even. In this case, the output
field from the phase-conjugate resonator is in the
squeezed vacuum, which is known to have p (n) =0 for an
odd number of photons [9]. This result can be under-
stood from the fact that the four-wave-mixing process
within the phase conjugator produces photons only in
pairs, and all the photons must eventually leave the reso-
nator on the side of the PCM. In Fig. 4(c), the effect of
having a partially refiecting mirror (r2=0. 7 and
~itt ~

=0.7) is to allow for a nonzero probability of having
an odd number of photons, which is simply a result of
photons within the resonator leaking out from the side of
the ordinary mirror.

Thus, squeezing to second order implies to all even or-
ders. The distribution of photon numbers p(n) can be
obtained from the results of Agarwal and Adam [8]. If
both 8 f and & b" are in the vacuum state, then

n
2 O x

1p(n)=
(Q +2Q coshx + 1)'i2 Qe"+ 1
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APPENDIX: WIGNKR FUNCTION
FOR THE OUTPUT FIELD

In this appendix we show how Eq. (25) can be obtained
from Eq. (24). Let us define the characteristic function
for the output field & f"' via

(p p4 ) ( exp(pQ outt p4 Q
out

) ) (Al)

The Wigner function is then the Fourier transform of
(Al), that is,

4(a, a )=—f d PC( P, P*)e~ (A2)

We substitute the expression for & f"' [Eq. (24)] into Eq.
(Al) and use the fact that the modes & f and a 'b" are in-
dependent, to obtain

In conclusion, we have calculated the quantum statis-
tics for the fields emitted by a phase-conjugate resonator.
The output field on the side of the PCM is predicted to
show squeezing, whereas the output field on the side of
the ordinary mirror is never squeezed. In addition, the
photon distribution for the output field on the PCM side
is predicted to contain only an even number of photons
for the case in which the ordinary mirror is 100%
rejecting.
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Equation (A3) can be written in terms of the product of
the characteristic functions for the two input modes,

C (P Pe )
—Cln(Pd 4 Pad Pod Pd e

)

0.3

a
w ww —~—
I I

I I

(c)

XCb"(pd; —p*d~, p*d, —pd2 ) .

Note further that
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FIG. 4. Photon-number distributions for the field on the side
of the PCM for the cases, (a) ~p~ =5, r =0, (b) ~p~ =0.5, r =1,
(c) Ipl'=0. 7, r'=0. 7.

for the case in which the mode 8 is in the coherent state
~a). Using Eqs. (A4) and (A5) yields the following ex-
pression for the characteristic function for the output
field & '"'
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C(P,P') =exp[ —
—,'( IPd 3 P—*d4 I'+ IPd ~

—P'd2 I')

—(p*d, p—d2 )a'b" +(pd f —p'd2)u'b"*],

(A6)

where we assume that the field mode 8 f is in the vacuum
state and that the field mode & 'b" is in the coherent state
~a'b"). Note that the expression in Eq. (A6) is Gaussian in

p and p*, and hence its Fourier transform, defined by Eq.

(A2), will be Gaussian in a'b" and ct'b" . It is straightfor-
ward to obtain the Fourier transform by using

fd"xexp —
—,'gxx 2, +ighx,

I,J l

(2~)n/2
exp —

—,'g h;hj( A '),", (A7)
det( A )

and the result can be written in the form given by Eq.
(26).
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