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Selective excitation via the continuum and suppression of ionization
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Two laser pulses that overlap in time have been successfully used for coherent excitation of a molecule
or atom to a desired state. An intermediate state that is at or near resonance with the laser frequencies
has been used in past experiments and calculations. Here we replace this intermediate state by a contin-
uum of intermediate states. An analytic solution of a simple model suggests that the continuum can be
used in such an excitation scheme, provided that the laser pulses are arranged in the so-called counterin-
tuitive order. %'e use a special case of this solution to relate this work to ionization suppression and
coherent population trapping.

PACS number(s): 32.80.Rm, 33.80.Rv, 42.50.Hz

I. INTRODUCTION

Two stimulated transitions driven by laser beams are
often used to transfer molecules to a selected excited
state, as in three-state adiabatic passage [1] and
stimulated-emission pumping [2]. Use of two laser pulses
that overlap in time is a proven method for selective exci-
tation of a molecule [3] or alignment of the angular
momentum of an excited atom [4]. It may soon be used
for reflection or splitting of an atomic beam [5]. In a
three-state model of this process, the molecule or atom is
transferred from state 1 to state 3 to state 2 (Fig. 1). Re-
cent measurements [3,4,6] and calculations [7,8] show the
advantages of using the "counterintuitive" pulse order [9]
in such a case. The two laser pulses are in counterintui-
tive order if the laser pulse driving the 1-3 transition
reaches its peak amplitude after the laser pulse driving
the 3-2 transition reaches its peak amplitude; the intuitive
order must be used if the two laser pulses do not overlap
in time. In this paper, we replace state 3 by a continuum
of infinitely many states. We calculate the effectiveness of
two overlapping laser pulses in driving the molecule or
atom from state 1 to state 2 or into the continuum. We
suggest that a continuum of intermediate states can be
used in stimulated Raman scattering, so that this method
of coherent laser excitation will find wider application.

Analytic calculations for a simple model of a molecule
or atom driven by two laser pulses are described below.

A quantum system that has two discrete states and a con-
tinuum of states is driven by classical oscillating forces
that represent the two laser beams (Fig. 2). A striking
difference between intuitive and counterintuitive pulse or-
ders will appear when we calculate the final occupation
probabilities. Spontaneous emission of a photon or elec-
tron may cause strong damping of the continuum states,
but this effect is omitted from our model. We also
neglect dephasing of continuum states, and stimulated
continuum-continuum transitions. Neglect of these pro-
cesses may be justified if the continuum states are occu-
pied with low probability for a short time. We shall show
that the counterintuitive pulse order can be used to
reduce the occupation probability of the continuum.
Also, the counterintuitive order makes the transfer pro-
cess insensitive to small changes in the parameters of the
laser pulses. These calculations are given below, along
with the calculated distribution of occupation probability
in the continuum. This distribution shows another
difference between intuitive and counterintuitive pulse or-
ders.

Since we neglect dephasing processes as well as spon-
taneous emission, the Schrodinger equation can be used
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FIG. 1. Three-state model for a stimulated Raman scattering
process driven by two laser beams.

FIG. 2. Uniformly spaced states are used as a model for the
continuum that is coupled to states 1 and 2 by laser-driven tran-
sitions.
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as the equation of motion for our model, which is a quan-
tum system driven by classical oscillating forces. In Sec.
II, we set up the Schrodinger equation for a system of N
states, and then obtain an analytic solution by using

and some other simplifying assumptions. Only
transitions that are driven by nearly resonant oscillating
forces are included in this model, for selective excitation
is inconsistent with high laser intensities. Because of this,
the only continuum states that are significantly populated
lie in a narrow band of energies near resonance. This
leads us to use a uniform and featureless continuum in
our model. However, this continuum model includes
states that are arbitrarily far from resonance.

The time-dependent occupation probabilities obtained
from this model are discussed in Sec. III, where we find
agreement with the golden rule of time-dependent pertur-
bation theory at early times. The growth of the continu-
um occupation probability is treated in the Appendix. At
the end of the two laser pulses, we find final occupation
probabilities that are discussed in Sec. IV. The distribu-
tion of occupation probability in the continuum is de-
scribed in Sec. V. The two overlapping laser pulses can
be replaced by one rectangular laser pulse, so that all the
Rabi frequencies are constant during the pulses. Section
VI treats this rectangular pulse shape, which gives results
that are intermediate between those for intuitive and
counterintuitive pulse pairs. These results connect our
calculation to work on coherent population trapping
[10,11] and ionization suppression [12—14].

II. SCHRODINGER EQUATION
AND ITS SOLUTION

0

—Q)4

0 —
—,
' Qi3

—
—,
'

Qq3

3

—Qi4
—

—,
' 0~4

appears as a diagonal matrix element. The external
forces cause oscillating matrix elements to appear oF the
diagonal. We assume that each laser beam drives only its
own transitions, and we use the rotating-wave approxi-
mation; this is the explicit form of the assumption about
nearly resonant driving forces. In this way, each oF-
diagonal matrix element of the Hamiltonian becomes
zero or a constant multiple of exp(+iQi t), where QL is
one of the laser frequencies. Matrix elements represent-
ing the first (second) laser beam appear in the first
(second) row and column; see Fig. 2. All other off-
diagonal elements of the Hamiltonian matrix are zero.

The laser pulses used for selective excitation are rather
long compared to optical periods, and the transformation
formulated by Einwohner, Wong, and Garrison [15] is
used to remove all optical-frequency terms from the
Hamiltonian and wave function. This time-dependent
unitary transformation leads to

i.
d
dt

where fi= I, t is the time, and 0' is a column vector with
components 3, Az, . . . , A~. As usual,

~ A~~ is the oc-
cupation probability for state j. The Hamiltonian matrix
is

The equation of motion for a molecule or atom driven
by oscillating external forces is set up and solved in this
section. The two laser beams are treated as classical
forces acting on the quantum system. The quantum sys-
tem is described by a wave function rather than a density
matrix, for damping and dephasing processes are neglect-
ed. Using some assumptions and transformations, we ob-
tain an analytic solution for the wave function. It de-
pends on the pulse-strength parameter and two pulse-
shape parameters, as well as the time. Although the
wave function has infinitely many components in the con-
tinuum limit, taking this limit does not complicate our
result. The various features of our result will be shown in
later sections, rather than here.

A. N-state model

A quantum system having 1V states is driven by classi-
cal oscillating external forces. States 1 and 2 are the
discrete states. The continuum is represented by N-2 en-
ergy levels with constant spacing AA, as shown in Fig. 2.
We shall let 1V—+ ~ at a convenient stage of the calcula-
tion, so that the continuum will have no top and no bot-
tom. The continuum will finally be obtained by letting
5~0.

For this model, the Schrodinger equation contains an
NXX Hamiltonian matrix. This matrix is diagonal in
the absence of laser beams, and the energy of each state

where 6 is related to the detuning of the two lasers from
state j and Q . is the Rabi frequency. 0 is proportion-
al to the amplitude of the mth optical-frequency field and
proportional to the dipole matrix element for the m-j
transition. We introduce pulse shapes by allowing 0

&
to

depend on t, but it must change slowly compared to opti-
cal frequencies. This makes (1) into a time-dependent
Hamiltonian matrix. We may choose the phases so that
0 (t) is real. We assume that 0 (t) is independent of
j, in order to get a featureless continuum.

Let T be the duration of the two overlapping laser
pulses; this means that 0 .( r ) =0 unless 0 ~ t ~ T. The
pulse shape used in our analytic treatment is given by

n„(r)=~cose(r),

Qz (t) =M sin6(t)

for j=3,4, . . . ,X and 0~ t ~ T. This trigonometric pulse
shape is associated with

another simplifying assumption. Assumptions (2) and (3)
are suggested by the work of Gottlieb [16] on the three-
state model; see also Hioe, Pegg, and Gottlieb [17].
Equation (3) suggests the arrowhead positions in Figs. 1

and 2.
The Schrodinger equation can now be simplified by the
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rotation

a, (t) = ~, (t) cose(t)+ ~,(t) sine(t)
constant, so that H is a time-independent matrix. The
only difficulty of the computation is putting

and U(t) = exp( i—Ht) (5)

1

id B—/dt

id B/dt ——'M ——'M
2 2

0 0

82(t) = —A, (t) sine(t)+ A2(t) cose(t) .

The new wave function has components
B i 82 A 3 ~ ~ A ~ ~ The new Hamiltonian matrix is

into a convenient form. Any element of this NXN ma-
trix can be found by the Laplace-transform method of
Stey and Gibberd [18]. The limit as N ~ ~ is not hard to
find if 6 has the form suggested by Fig. 2. We may
choose 63=0, because one undetermined constant ap-
pears in the formulas of Einwohner, Wong, and Garrison
[15]. Thus we have——'M

2

2

3 0 (4)
63=0, 64=6, 55= —6, 66=26, A7= —2A

Here, M is real and the diagonal matrix elements are un-
changed by the rotation. We now assume that de/dt is a

I

where 6 is the constant spacing shown in Fig. 2. Evalua-
tion of (5) is now only slightly different from the treat-
ment of the first model described by Stey and Gibberd
[18]. In the limit as N ~ oo, we have

Sp+I oo

U„(t)=
27Tl sp de

S l 1

2
exp(st)ds

(s —i b, , )+ coth
mM m.s
4h

where so is a positive constant, used to keep the path of
integration away from the singularities on the imaginary
s axis. All other matrix elements of (5) are similarly ex-
pressed as inverse Laplace transforms.

Let

I

Since we are interested in the limit as 5—+0, this assump-
tion is hardly a restriction. The hyperbolic cotangent ap-
pearing in (6) can now be replaced by unity. This is
shown by variation of so; see Stey and Gibberd [18].
Hence,

6( t) =Bo+P —1
2t
T

mMU»(t) = cosh(Rt) —sinh(Rt)
86R

so that 6(t) varies from eo —p to eo+p, and
d 6/dt =2P/T. The dimensionless pulse-shape parame-
ters are 60 and p, and the dimensionless pulse-strength
parameter appears below. The assumption that
0 i(t) )0 is not necessary, but this natural assumption
implies that M )0 and that B(t) is an angle in the first
quadrant. If so and if p&0, (2) shows that the Rabi fre-
quencies are increasing and decreasing functions of t;
p) 0 gives the intuitive pulse order and p&0 gives the
counterintuitive pulse order. Four cases are shown in
Figs. 3 and 4. If 6(t) is confined to the first quadrant,
then 60=~/4 and p=+n. /4 represent the two extreme
cases of intuitive and counterintuitive pairs. In these two
extreme cases, one Rabi frequency is zero at the initial
time and the other is zero at the final time; see Fig. 3(a).
These extreme cases were treated in our recent paper
[19]. Here, we give the result for the more general case.
Some examples of the two Rabi frequencies are shown in
Figs. 3 and 4. For the case of P=O, we have two rec-
tangular pulses that start and end simultaneously; this
special case is examined in Sec. VI.

The initial time is t =0, and we assume that the quan-
turn system is initially in state 1. The initial conditions
we use are A, (0)=1 and A.(0)=0 for j)2. Since T is
the duration of the two overlapping laser pulses, we
evaluate (5) only for t ~ T. Evaluation of (6) and similar
integrals is relatively simple if we assume T &2m/4.

mMXexp iA&t — t
8h

U, z(t)= sinh(Rt)exp ib, , t — tRT

and so forth. Here,
'2

mM

8A
de
dt

2 1/2

A, (t)= cosh(Rt)cos[6(t) —6 +p]

mM

86R
sinh(Rt) cos[6(t)+eo —p]

+ sinh(Rt) sin[6(t) —60+p]2

mMX exp i h&t — t86

is a frequency that can be positive, zero, or imaginary.
The initial conditions are such that we need Ujk(t) only
for k =1 and 2.

The solution of (1) is now given by
T
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and so forth. These time-dependent probability ampli-
tudes should be expressed in terms of dimensionless quan-
tities, such as t/T. The dimensionless pulse-strength pa-
rameter used here is

and

Az(t) = cosh(Rt) sin(2Pt /T)

We find

m'M T
86

—x sin[26 +2/3(t /T —1)]
sinh(Rt)

RT

A, (t)= cosh(Rt) cos(2Pt/T)

—x cos[28 +2P(t/T 1)]-sinh(Rt)
RT 0

—2P
sinh(Rt) xt

RT cos(2Pt /T) exp i A, t—T

(10)
+2p sinh(Rt)

i (2pt/T) 'b, t —xt
where RT=(x —4P )' appears as an auxiliary dimen-
sionless parameter. For j ~ 3, we find

(a)

Rabi
frequency

Rabi
frequency

Time Time

(b)

(b)

Rabi
frequency

Rabi
frequency

Time

FIG. 3. Examples of Rabi frequencies given by Eqs. (2) and
(7) for Bo=rr/4, and (a) P= rr/4, (b) P= rr/8. The labels 1 and 2
for the two pulses are interchanged when P changes its sign
from positive to negative. The pairs of Rabi frequencies have
equal maximum and minimum values.

Time

FICx. 4. Examples of Rabi frequencies given by Eqs. (2) and
(7) for Bo=rr/3, and (a) 13=rr/6 and (b) P=O. The pairs of Rabi
frequencies have different maximum and minimum values.
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( —,'MT)[5 cos(6o —P)+2iP sin(60 —P)]
A (r)=

2
exp(ib, t)

5 —4P —2ix 5

( 'MT—) —5 cosh(Rt)+(x5 4—iP )
sinh(Rt)

2 RT

5 4/—3 2i—x 5

cos(6,—f3)
xt

exp ihjt—

( —,'MT)( 2—iP) cosh(Rt)+(x+i 5) sin(6O —P)
sinh(Rt)

5 —4P —2ix 5
xt

exp iA, t—

where

5= T(bJ. —b i) (12)

is the dimensionless detuning parameter used to label
places in the continuum.

B. Continuum limit

We can now complete this calculation by taking the
continuum limit. The results will be written in terms of
t/T, 60, P, x, and 5, dimensionless parameters that are
meaningful in the continuum limit; the last four of them
are defined by (7), (8), and (12). We let b, ~0, but this is
only part of this limiting process. If a large box is used to
discuss the continuum [20], each continuum wave func-
tion approaches zero as the size of the box increases.
Hence, the transition dipole matrix elements and the
Rabi frequencies also approach zero. This means that M

I

and (11) both vanish in the limit; the occupation proba-
bility of any one continuum state is zero. Further con-
sideration of continuum wave functions shows that (8)
approaches a nonzero limit as the size of the box in-
creases. If we neglect changes in M /b. and (8) as the
size of the box increases, then (9) and (10) contain noth-
ing that depends on the size of the box. The remaining
calculation is only the treatment of the continuum states.
We find the density of occupation probability in the con-
tinuum before calculating the total occupation probabili-
ty of the continuum. The probability density for energies
in the continuum is

l A~(t)l /b„but we use (12), rather
than energy or j, to label places in the continuum. The
probability density for this dimensionless detuning is

Ps(&) = I A, (&)I'/~&, (13)

and fP&(t)d5 is the occupation probability for a part of
the continuum at time t. The explicit formula is

Ps(t)= [5cos(6O —P)+2iPsin(6o —P)] exp —cosh(Rt) exp
2x i6t xt

l5 4P .2ix—5l— T T

+ [(x5 4i P ) cos(—60—P) 2i P(x —+i 5 ) sin(6O —P) ] exp
sinh(Rt} xt

2

(14)

where j does not appear. We can now verify that

I
A i(r}l'+

I
A2(r)l'+ f" P,(r)d5=1 . (15)

I

These occupation probabilities are discussed in the fol-
lowing two sections. The density of occupation probabil-
ity in the continuum is given by (14), and is discussed in
Sec. V.

This lengthy calculation is simplified by use of the residue
calculus. It shows that the occupation probabilities al-
ways sum to unity.

We notice a peculiar feature of the present continuum
limit. The quantities (9), (10), and (13) are constant as b,

and M approach zero, provided that small changes in
M /b, are neglected and b, T (2m", this last inequality was
used to simplify the evaluation of (5). The replacement of
j by 5 and the change from (11) to (14) can be regarded as
changes of notation, rather than a limiting process.

Finally, the calculated occupation probabilities for
state 1, state 2, and the continuum are

l
A i(t)l, l Az(t}l,

and 1 —lA, (t)l —lA2(t)l . These three probabilities are
easily obtained from (9) and (10). They are entirely in-
dependent of (3), the detuning of the two laser beams; this
confirms that our model has a featureless continuum.

The transition rate given by our calculation should be
compared with the golden rule of time-dependent pertur-
bation theory [20], and we find agreement at times near
the start of the two overlapping laser pulses. The max-
imurn occupation probability for the continuum is also
considered in this section, for it involves time-dependent
probabilities.

State 1 is initially occupied with unit probability. The
initial decay of this occupation probability is described by

l A, (t)l =1—4x(t/T) cos (6 —P)+ . (16)

where the square and higher powers of t/T are not
shown. The initial decay rate of this quantity is given

III. TIME-DEPENDENT OCCUPATION PROBABILITIES
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correctly by the golden rule of time-dependent perturba-
tion theory [20], which is applied as follows. In (1), the
matrix element for the transition from state 1 to the con-
tinuum is —

—,'M cos(6~ —p). Also, the density of contin-
uum states is I/b„and A'=1. Hence, the initial decay
rate of (16) should be

2
~

—,'~ o (e,—P)~'—= os'(e, —P),

where x is defined by (8). This simple calculation agrees
with (16), and it explains the meaning of (8). This con-
nection with perturbation theory could be used to con-
nect our calculation with detailed information on the
transition matrix elements for a specific molecule or
atom.

The time-dependent occupation probability of the con-
tinuum is of interest here, because spontaneous emission
is likely to limit the application of selective excitation via
the continuum. This occupation probability is
1 —

~ A, (t)~ —
~
Az(t)~, and the Appendix shows that it is

an increasing function of t. Hence, it is maximum at
t = T. We have reason to look at 1 —

~
3 &(T)~—

i 2 z( T) i, and this occupation probability can be small.
Et is considered in the following section.

IV. FINAL OCCUPATION PROBABILITIES

The two overlapping laser pulses end at t = T, and the
occupation probabilities at this final time are examined in
this section. We give particular attention to the final oc-
cupation probability for state 2, because this is an obvi-
ous test of selectivity of the excitation process.

The final occupation probabilities for states 1 and 2 are
easily obtained from (9) and (10):

i A, (T)i =[cos(2/3)C(x, P) —x cos(26 )S(x,P)

+2P sin(2P)S(x, P)]
and

The final occupation probability of state 2 is plotted in
Fig. 5. The maximum of ~Az(T)i is always found at
60=sr/4 and at a negative value of p; if x ~2. 1, it is
found at p( —vr/6. Although a much wider variety of
pulse shapes should be studied, this calculation suggests
that the counterintuitive pulse order is always better for
the transfer of occupation probability to state 2. Further-
more, the final occupation probability of state 2 can be
insensitive to small changes in P or eo; see Fig. 5. Small
changes in x will be considered shortly.

The special intuitive and counterintuitive cases of
6&=m/4 and P=+m/4 were mentioned below (7); they
are the extreme cases if 0 .(t) ~0 is required. Since
C(x,P) and S(x,P) are even functions of /3, the two final
occupation probabilities for these two extreme cases are

I
& (T)l'=[-,'~S(x, ~/4)]'

and

i Az(T)i = [C(x,m. /4)+xS(x, m. /4)]

respectively. These three functions of x are plotted in
Fig. 6, which shows a dramatic difference between intui-
tive and counterintuitive pulse orders. When x is large,
these two pulse orders give

+
28 4 210 5

Final occupation probability
——0.8

~

A z( T)
~

= [sin(2P)C(x, P) —x sin(26&)S(x, P)
—2P cos(2P)S(x, P) ] (17)

Here, C(x,P)=cosh(RT) exp( —x) and S(x,P)
=[sinh(RT)/RT) exp( —x) are positive quantities even
when RT=(x —4p )' is imaginary. We recall that p
and e0 are pulse-shape parameters; see Fig. 3 and 4.

Since our main purpose is study of coherent transfer to
state 2, we now maximize (17). In the first place, (17) has
a simple and explicit dependence on 80, and its max-
imum must be at sin(26&)=+1. The sign is not easily
determined, but changing the signs of both eo and P does
not change the value of (17); it changes only an unimpor-
tant sign in (1). Hence, we emphasize the case of
sin(26o) = 1 and

~bl as—

Final
occupation
probability

e,=~y4 . (18)

If the condition Q z(t) 0 is imposed, we derive (18)
from a different argument. The condition (18) implies
that the values of the two Rabi frequencies are inter-
changed if we replace t by T —t; see Fig. 3.

I

77/y

Ho

FIG. 5. Final occupation probability of state 2 (a) for x =8
and 60=n. /4 and (b) for x = 8 and P= —0.6977.
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rate given by the golden rule, which is of the order of
M /h. When the dimensionless variables (8) and (12) are
used, the probability density has a value roughly similar
to the peak value until ~5~ ))x, if x is large. Although
our continuum model is topless and bottomless, the pop-
ulated continuum states are found only at detunings that
are small compared to optical frequencies. Furthermore,
the counterintuitive pulse order can be used to make the
wings of this distribution much weaker. This difference is
shown in Fig. 7, and it can be derived from (14). In the
extreme counterintuitive case of 60=m. /4 and P= —~/4,
cos(60 —P) =0 and (14) gives

~
A

&
(t)

~

= [(sinBO) +(cos60) exp( 2xt /—T ) ]

and

~ A2(t)~ =(sinBocosBO) [1—exp( 2x—t/T)]

(21a)

(21b)

Using (15), we find that the occupation probability of the
continuum is

single rectangular pulse driving both of the discrete-
continuum transitions, if states 1 and 2 have nearly the
same energy; in fact, they must have precisely the same
energy, because (3) is assumed. Since P=0 implies
RT=x, (9) and (10) give

Ps(T)= [S( xn. /4)] +0 +Kx 2 1

25' (20) J Ps(t)d5=(cos60) [1—exp( 4xt /T—)] . (21c)

Then, x )) 1 gives S(x,~/4) = 1/2x, so that the probabil-
ity density in the wings is (constant)/x5 . However, if
cos(60 —P) is much different from zero, then the popula-
tion transfer out of the initial state starts suddenly. If so,
the [S(x,m. /4)] appearing in (20) is replaced by a num-
ber of order unity, and P&( T) is not so small in the wings.
This is shown in Fig. 7 for the extreme intuitive case for
which Bo=m/4, P=m/4, and cos(BO —P)=1. If x (1,
this contrast is not found; small values of x kill the great
difference between intuitive and counterintuitive pulse or-
ders.

The distribution of occupation probability in the con-
tinuum shows many maxima in some cases. These maxi-
ma occur at energies separated approximately by multi-
ples of 2~/T. When the dimensionless variable (12) is
used as the abscissa, the maxima are separated approxi-
mately by multiples of 2m", see Fig. 7. Large-scale plots of
this distribution can be used to distinguish maxima from
other bumps.

This brief discussion of (14) has shown another
difference between intuitive and counterintuitive pulse or-
ders. If the pulse strength is moderately large, the intui-
tive pulse order can be used to transfer most of the occu-
pation probability from state 1 to the continuum, and to
spread it out over a relatively wide band of continuum
energies; see Figs. 6 and 7. On the other hand, if the
counterintuitive pulse order is used, the maximum occu-
pation probability of the continuum is 0.6311, which
occurs at x =1.0992, and the population in the continu-
um is spread over only a narrow band of continuum ener-
gies when x is large. Furthermore, the population in the
continuum decreases to zero as x increases.

VI. RECTANGULAR PULSE SHAPE

We have used laser pulse shapes given by (2), where
6(t) is an increasing or decreasing function of t. In this
section, we make 8(t) constant, in order to connect our
calculation with simple models of coherent population
trapping and ionization suppression, two phenomena
which may be closely related [13].

The two laser pulses begin at t=0 and end at t =T.
Let dB/dt =0 or P=O, so that the pulse shapes given by
(2) are rectangular. The Rabi frequencies during this
time interval are constants equal to M coseo and
M sineo. Two such Rabi frequencies could arise from a

and

~
A 3(t) ~

= [cos60 sin( —,'Mt ) ] (22)

where state 3 has replaced the continuum and cos—,'Mt
has replaced exp( 2xt/T). The occupa—tion probability
of state 3 is never greater than cos eo, and this agrees

These occupations probabilities agree with those found
by Parker and Stroud [13] in one of their calculations. In
order to make connection with their notation, we notice
that the golden rule gives 2I

&

= (4x /T ) cos 60 or
2I 2=(4x/T) sin 80 as the transition rate for a quantum
system that is known to be in state 1 or state 2, respec-
tively. Using these values of I, and I 2, and the rec-
tangular pulse shape, we find that (21a) and (2lb) agree
with Eqs. (10) and (9) of Ref. [13].

Each of the occupation probabilities (21) shows a phys-
ical effect of the rectangular pulse shape. From (21a),

~ A, (T)~ is never less than sin Bo', we may say that popu-
lation trapping occurs unless sinep=0. If sine0=0, state
2 is completely decoupled from other states, we have
purely exponential decay of

~ A&(t)~, and the time con-
stant agrees with that obtained from the golden rule.

From (21b), ~Az(t)~ is never greater than
( —,') sin (280), and this value is reached only for strong
laser pulses. The greatest transfer to state 2 is obtained
at 60=m/4, where the couplings of states 1 and 2 to the
continuum are equally strong.

From (21c), the occupation probability of the continu-
um is never greater than cos eo, and this value is reached
only for strong laser pulses. This maximum value is less
than unity, except when sine0=0 and state 2 is decou-
pled from other states. Either this maximum occupation
probability for the continuum or

~
A &( T)

~

) sin Bo can
be regarded as evidence of ionization suppression, but see
other explanations [14].

The occupation probabilities given by (21) should be
compared with those found for the three-state model used
by Gray, Whitley, and Stroud [11] to explain their
population-trapping experiment. If we make (1) into a
3 X 3 matrix and set all detunings equal to zero, the time-
dependent occupation probabilities become

~ A, ( t)
~

= [(sinBO) + ( cos80) cos( ,'Mt )]—
~
A2(t)~ =(sin60cos60) (1—cos—,'Mt)
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with the corresponding result for the continuum model.
However, the maximum value of (22) is attained whenev-
er cos( —,'Mt) =0, and (22) oscillates as M increases, rather
than approaching a limit as the laser pulse becomes
stronger.

The final occupation probability of state 1 can be zero
even if sin6o%0. The minimum occupation probability of
state 1 is [min(0, cos26o)] . The occupation probability
of state 2 is never greater than sin (26o), which can be
unity. Complete transfer to state 2 is obtained if
6o=n. /4 and cos( —,'MT)= —1. These results are quite
different from those for the continuum model.

VII. CONCLUSION

We have treated a model for laser-driven coherent
transfer from state 1 to the continuum to state 2. We
have shown that a significant amount of population can
be transferred from state 1 to state 2 if two overlapping
laser pulses arranged in the counterintuitive order are
used. We have also shown the great differences between
the results for the intuitive and counterintuitive pulse or-
ders. The special case in which the two transitions to the
continuum are driven by one rectangular laser pulse has

I

APPENDIX

In our model, the occupation probability for the con-
tinuum increases with time, until the end of the overlap-
ping laser pulses. This is shown by the following calcula-
tion. Since (15) holds, we have to show that

l~ (r)l'+la (&)/'

x +2f3x sin(26o —2f3)
cosh(2R t )

x —4P

RT cos(26 2f3) si—nh(2Rt)

4P +2Px sin(26o —2P)

x —4f3
exp

2xt
T (A 1)

is a decreasing function of t. The time derivative of this
expression is easily computed, and the related dimension-
less quantity is

been used to connect this calculation with ionization
suppression.

d
[~ ~2

~ ~ ]
x cosh(2Rt) —4P

1 x —4P RT sinh(2Rt)

+ 2P x x
RT RT cosh(2Rt) — —sinh(2Rt) sin(26& —2P)RT

+ cosh(2Rt) — sinh(2Rt) cos(26o —2P) exp-x 2xt

The quantity in braces is positive at all times, with possi-
ble one exception. This holds because

x cosh(2Rt) —4P
x —4P RT sinh( 2R t ) (A2)

is a positive quantity, and the other terms can easily be
bounded. The sum of the squares of the coefficients of
sin(26O —2P) and cos(26&—2P) is equal to the square of

I

(A2). Hence, the quantity in braces is positive, except
that it can be zero when the coefficients of sin(26o —2P)
and cos(26o —2P) have a ratio of tan(26& —2P). Howev-
er, this ratio of the coefficients is certainly time depen-
dent. Even if the derivative vanishes at one time, (A 1) is
a decreasing function of the time. This argument needs
only a slight modification if RT is imaginary. The special
case of RT=O need not be treated explicitly in this Ap-
pendix nor elsewhere in the paper.
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