
PHYSICAL REVIEW A VOLUME 47, NUMBER 1 JANUARY 1993

Resonant diffraction mechanism, nonreciprocity, and lock-in in the ring-laser gyroscope
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Diffraction is shown to play a dramatic role in the frequency characteristics of ring-laser gyroscopes.
It is proved theoretically and experimentally that a small misalignment of the cavity leads to a nonre-
ciprocity of the resonant diffraction mechanism. The resonant diffraction losses of the two counterpro-
pagating modes being then different, the asymmetries of their output-power versus cavity-frequency
profiles are different. This leads to the existence of a frequency bias between the two modes. Diffraction
is also shown to play a fundamental role in the lock-in mechanism. It is indeed experimentally demon-
strated that the asymmetric evolution of the lock-in threshold with the laser frequency is governed by
resonant diffraction mechanisms.

PACS number(s): 42.60.Da, 42.60.Jf, 42.25.Fx

I. iNTRODUCTION

The main difference between ring lasers and usual
Fabry-Perot cavity lasers is the possibility to sustain the
oscillation of traveling waves rather than standing waves.
This has led to many applications, such as, for instance,
the use of unidirectional ring lasers to cancel the spatial
hole burning due to the nodes and antinodes of the stand-
ing waves in order to obtain more important powers or to
increase the coupling between the different longitudinal
modes of the laser [1]. A very important application of
bidirectional ring lasers is their use as inertial rotation
sensors in ring-laser gyroscopes (RLG's) [2—4]. In such
devices, the rotation leads to a path-length difference be-
tween the two counterpropagating paths, known as the
Sagnac effect [5]. This induces a frequency difference be-
tween the two counterpropagating modes that is directly
proportional to the angular velocity of the cavity. The
main problems in these devices are the null shift and the
lock in regio-n [4]. The null shift consists in a rotation-
independent nonreciprocity that is a major error source
in the RLG. A possible mechanism to explain this null
shift is based on Langmuir Aows present in the active
medium that induce nonreciprocities via Fresnel drag [6].
This effect is compensated by building cavities admitting
a plane of symmetry with two symmetrical gas
discharges. Null-shift errors are also observed when the
aperture that selects the TEM fundamental Gaussian
mode of the cavity is not located in the plane of symme-
try of the cavity and is misaligned [7—10]. This effect has
been investigated theoretically for hard [11—15] or
Gaussian apertures [16—21]. The lock-in region is a fre-
quency locking of the two counterpropagating modes
that occurs for values of the angular rotation rate Q
smaller than a value OL&, called lock-in threshold. This
effect is attributed to the mirror defects that create a cou-
pling between the two counterpropagating modes of the
laser [4,22]. However, some aspects of the physics of the
lock-in region have not yet been clearly explained, such
as the asymmetry of its evolution with the mean frequen-

cy detuning of the laser [23]. Besides, recently, the cause
of the asymmetries of the output-power versus frequency
profiles in ring lasers has been isolated [24). It has been
shown that these asymmetries are due to the frequency-
dependent lenslike effects that exist in the active medium.
These lenslike effects have been shown to induce
frequency-dependent variations of the tangential and sag-
ittal sizes of the elliptical Gaussian mode at the location
of the diffracting aperture. This mechanism induces a
dependence of diQraction losses with frequency that
creates the observed asymmetries. This dynamics has
been described theoretically using the ABCD matrix for-
malism [25] in the sagittal (perpendicular to the cavity)
and tangential (parallel to the cavity) planes. The con-
cepts of short (long) cavities in the sagittal and tangential
planes have been isolated, for which a convergent lenslike
effect leads to a decrease (increase) of the mode size at the
aperture and of the diffraction losses [24]. The cases of
tangential or sagittal critical geometries have been pre-
dicted and observed, for which the tangential or sagittal
mode size at the aperture is independent of the lenslike
effect. A fully critical geometry which is critical in both
planes simultaneously has also been isolated. This
mode-size dynamics has been investigated for different
types of lenslike effects and different isotopic composi-
tions of the active medium [26]. This permits one to un-
derstand the observed asymmetries for any ring laser.
However, these effects have been investigated for ring
lasers at rest, when the two counterpropagating modes
have the same frequency and can consequently be treated
as a unique standing wave with a good approximation.
The aim of this paper is consequently to explore the
inAuence of the resonant diffraction mechanisms on the
frequency characteristics of the RLG. In the first part,
we show theoretically and experimentally how the reso-
nant diffraction-losses mechanism studied in Refs. [24,26]
can become nonreciprocal and induce a null shift. In the
second part, we show, as partly pointed out in Ref. [27],
that diffraction can play an important role in the lock-in
mechanism.
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II. NONRECIPROCITY OF THE RESONANT
DIFFRACTION LOSSES MECHANISM

A. Theory

1. Diffraction of a Gaussian beam by a misaiigned aperture

To introduce the physics of nonreciprocity in the ring
laser, let us consider a circular Gaussian beam produced

0

by a commercial 6328-A He-Ne laser with mode size
w =932 pm and wave-front radius of curvature R =1.84
m. This beam is incident on a circular aperture of diame-
ter /=2 mm whose center is slightly translated in the
horizontal plane perpendicularly to the beam axis of
a =0.25 mm [see Fig. 1(a)]. The resulting power profiles
obtained by scanning a small-size detector in the horizon-
tal plane at a distance d behind the aperture are shown in
Fig. 1(a) for d =0.12 and 0.9 m. We can see that just
behind the aperture the beam appears to be truncated
and that its shape evolves along its further propagation.
One can calculate the resulting beam thanks to the
Huyghens-Fresnel principle [28]. The transverse depen-
dence of the electric field associated with the incident
beam can be written

O y( x(mm) '1 () +1x(mm)

d=118 mm
a

0 +& x(mm) & 0 +]x(mm)

d=900 mm
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FIG. 1. (a) Experimental and (b) theoretical intensity profiles
of a Gaussian beam diFracted by a slightly misaligned aperture,
observed at two different distances behind the aperture [the
misaligned aperture is schematized in (a)].
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where z is the propagation direction and x the horizontal
axis. k =2~/A, is the wave number and wo the beam
waist. The electric-field distribution at distance d behind
the aperture can be written
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The detected field is then approximately given by

u (x)= e
&kd

This calculation can be simplified in approximating the
aperture by a stripe of width p located in x =a. Then,
keeping only the field dependence along x and z, the in-
cident field can be written

1/2

rors. The active medium is located in a symmetric
manner with respect to the mirrors. Let us introduce a
diffracting aperture in D, and no aperture in D2. Then,
the path length from the aperture to the active medium is
longer for the counterclockwise (CCW) wave than for the
clockwise (CW) wave. If the aperture is slightly
misaligned, the results of Sec. IIA1 show that the two
distorted beams will not have the same transverse intensi-
ty profiles inside the active medium any more. As the
so-called saturation lenslike effect undergone by one

a +p/2 ~ k 2X u, (x, ) exp i (x ——x, ) dx, .
a —

tt /2 2d

(4)

The results of this calculation are shown in Fig. 1(b) and
are in good agreement with the experimental results.
These results show that when a Gaussian beam is
diffracted by a misaligned aperture, its shape evolves
along its propagation. In particular, the curvature of its
transverse intensity profile evolves very quickly.

2. Nonreciprocity of the resonant di+raction: Theory
MEDIUM

3

Let us now consider the ring cavity schematized in Fig.
2. It is built with a spherical mirror and two plane mir-

FIG. 2. Considered ring cavity. Notice the two possible posi-
tions of the diffracting aperture, labeled D1 and D2.
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where Icw and Iccw are the intensities of the two modes,
cnew and coccw their angular frequencies, Pcw and Pccw
their phases, acw and accw their unsaturated net gains
per second, Pcw and Pccw their self-saturation
coefficients, and Ocw-ccw and ccw-cw their cross-
saturation coefficients. Ocw and Occw are the resonance
pulsations of the empty cavity, ocw and o.ccw are the
pulling coefficients, pew and pccw the self-pushing
coefficients, and ~cw ccw and ~ccw cw the cross-pushing
coefficients. With respect to the usual Lamb's equations,
we have added the two terms 6pcwICCW and &pccwICW
inside Eqs. (5) and (6) to take the resonant diffraction
mechanism into account. Indeed, the resonant diffraction
losses undergone by one mode are due to the saturation
lenslike effect induced by the other one and consequently
evolve like the square of the field, like the cross-pushing
term. Thus we can see that this resonant diffraction-
losses term is a competitionlike term, i.e., a cross-
saturation-like term. Hence, we can define modified
cross-saturation coefficients that allow one to rewrite
Lamb's equations in their original shape:

~ cw-ccw =cw-ccw+ &pew

ccw-cw= ~ccw-cw+&pccw .

(9a)

(9b)

One can then define a new coupling constant between the
two modes:

mode is due to the transverse inhomogeneity of the satu-
ration of its refractive index by the other mode [29,30],
the two modes will not undergo the same variations of
the mode sizes at the aperture any more. Consequently
the resonant diffraction losses and the asymmetries of the
output pow-er versus frequency profiles will not be equal for
the two modes anymore. The Lamb equations that de-
scribe the evolutions of the intensities and angular fre-
quencies of the two modes can then be written, without
taking lock-in mechanisms into account [1]:

ciated with the homogeneous broadening of the transi-
tion:
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where y is the homogeneous width of the transition and v
the mean frequency detuning of the two modes with
respect to the transition center frequency. The
coefficients 5Bcw and 5Bccw are positive (negative) for a
short (long) cavity, i.e., a cavity for which a convergent
lenslike effect reduces (increases) the size of the mode at
the aperture. The stationary regime intensities for the
case C ( 1 (weak coupling) are given by

Icw =
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+CW CW-CCW ~»ccw
&cw(1 —C)

(12a)

Iccw =
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(12b)

2' (Icw Iccw ) . (13)

If the aperture is misaligned, then 5Bcw&5Bccw so that
Icw&Iccw. Equation (13) shows consequently that
Av&0: a null shift appears. Figure 3 represents the evo-
lution of such a null shift with respect to the mean fre-
quency detuning of the two modes for a relative excita-
tion q=1.3, y =50 MHz and for &Bccw & &&cw &0. In
this case the output-power versus frequency profile of the
CCW mode is more asymmetric than that of the CW
mode and both modes exhibit the same kind of asym-
metry: The output power is more important on the low-
frequency side of the transition than on the high-
frequency side. The intensity difference Icw-Iccw is con-

&ccw —vcw (kHz)

For a ring laser at rest and a null shift negligible com-
p~~~d to ~ one has cw =ccw o cw =o ccw
&cw-ccw=&ccw cw=& and a»o pcw=pccw=0 ««rav-
eling waves [1]. Then, the frequency difference between
the two modes becomes

1
[(cvccw+ 0ccw) (~cw+ 0cw) ]2'

6 cw-ccw ccw-cwC=
f3cwl3ccw

(10)

The expressions of the different Lamb's coefficients are
summarized in the Appendix for the case of an inhomo-
geneously broadened single-isotope active medium. Con-
cerning the resonant diffraction-losses coefficient, its evo-
lution with frequency is identical to the one of the satura-
tion lenslike effect [30,31], i.e., the dispersion curve asso-

-100 v (MHz)

FICx. 3. Calculated evolution of the null shift vs cavity detun-

ing. The cavity is supposed to be short in both planes and the
lenslike effect undergone by the CCW mode stronger than the
one undergone by the CW mode.
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sequently negative on the low-frequency side and positive
on the high-frequency side of the transition. As the
coefficient ~ is also negative on the low-frequency side
and positive on the high-frequency side of the transition
[see the Appendix, Eq. (A6)], the frequency difference Av
is always positive .For a short (long) cauity, the mode
with the higher frequency is consequently the one which
exhibits the more (less) asymmetric power pro@le T. he
curve of Fig. 3 exhibits a zero at the center of the profile.
This is due to the fact that ~=0 at the center of the tran-
sition. Obviously, if one removes the aperture D& from
the cavity of Fig. 2 and introduces the aperture D2 and
misaligns it in a symmetrical manner, the roles of the two
modes are exchanged in the preceding results. In partic-
ular, the null shift Av must change sign.

B. Experimental results

The experimental setup used to test the predictions of
Sec. II A is schematized in Fig. 4. The laser oscillates at
A, =3.39 pm and the active medium is a 5:1 He- Ne gas
mixture at total pressure I' =1 Torr. The discharge tube
is 30 cm long with a 6-mm bore diameter. Such a large
bore diameter allows us to select the saturation lenslike
effects [31]. The spherical mirror M2 has a radius of cur-
vature R =2 m and the perimeter of the cavity is 1.2 m.
Mirrors Mz and M3 are totally reAecting and mirror M,
transmits 10% of the incident intensity. The two output
beams are recombined on the detector by mirror M4 and
the beamsplitter. Mirror M4 can be translated perpen-
dicularly to its plane, in order to determine the sign of
the observed beating, by using the Doppler frequency
shift undergone by the CCW beam due to the movement
of M4. The circular apertures used in D, and D2 have di-
ameters equal to 2.6 mm. Such a cavity is short in both
the tangential and sagittal planes [24]. The observation
of the intensity collected by the detector with respect to
the cavity length scanned by a piezoelectric transducer
gives the result reproduced in Fig. 5 when the aperture is
misaligned by a fraction of a millimeter. One can see that
the two counterpropagating modes do not have the same
frequency anymore. Let us then observe the output-
power versus frequency profiles for the two counterpro-
pagating modes when the aperture is aligned and

FIG. 5. Typical experimental output-power vs cavity-
detuning profile obtained when the aperture is misaligned and
the two modes are recombined on the detector.
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misaligned successively. The results are reproduced in
Fig. 6. Figure 6(a) displays these profiles when the aper-
ture is located in D, and is well centered on the beam.
The two profiles then exhibit similar asymmetries that
show that, as expected, the cavity is short and the satura-
tion lenslike effect is predominant. In this case no fre-
quency difference is observed when the two output beams
are recombined. By slightly shifting the aperture perpen-
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FICx. 4. Experimental setup used to observe the nonreciproei-
ty of resonant diftraction.

FICr. 6. Experimental observations of the evolution of the in-
tensities of the two modes vs cavity detuning. The aperture is
successively located in D, [(a), (b)] and in Dz [(c), (d)]. When
the aperture is centered on the beam [(a), (c)], the asymmetries
of the profiles of the two modes are identical and no null shift is
observed. On the contrary, when the aperture is misaligned [(b),
(d)], the asymmetries of the profiles are different for the two
modes and a null shift appears. One observes that the mode
with the larger asymmetry has the higher frequency (see Fig. 7).
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dicularly to the beam one obtains the profiles of Fig. 6(b).
By moving mirror M4 one can see that vcw& vccw all
over the profile. This is in agreement with the fact that
the output-power profile of the CW mode is much more
asymmetric than that of the CCW mode. By locating the
aperture in D2 and misaligning it in a symmetrical
manner, one obtains the results displayed in Figs. 6(c)
and 6(d). This time, the mode with the more asymmetric
profile is in the CCW one [see Fig. 6(d)] and one has
vccw + vcw One can also check that the frequency
difference disappears when the two apertures are inside
the cavity with the same misalignments. By slowly scan-
ning the cavity length one can measure the evolution of
the optical beat frequency with respect to the mean de-
tuning of the two modes. The results for the two posi-
tions of the aperture are reproduced in Fig. 7 for a rela-
tive excitation g=1.45. The result is in good agreement
with the theoretical calculation of Fig. 3. As expected,
one can in particular notice that the null shift is more im-
portant on the high-frequency side of the transition for a
short cavity laser.

We have consequently given theoretical and experi-
mental evidence for the nonreciprocity of the mechanism
of resonant diffraction losses. This mechanism is, in sum-
mary, the following one. If the aperture that selects the
TEMOO elliptical Gaussian beam of a ring laser is
misaligned and is not located in a plane of symmetry of
the laser, the residual deformations of the two counter-
propagating beams in the active medium are different.
Consequently, the saturation lenslike efFects that the two
modes induce on each other are not identical. Thus the
asymmetries of the output-power versus frequency
profiles of the two modes are different, leading to
different intensities for the two modes. This induces a
null shift because of the cross-pushing mechanisms. One
of the main characteristics of this null shift is that its sign
remains constant for any cavity detuning, as predicted in
Sec. IIA and already observed in previous experiments
[7—10]. This is incompatible with the nonreciprocal
losses effects due to the empty cavity discussed in Refs.
[32—36]. Indeed, in this case, the difference Icw Iccw-
would not change sign with the detuning and the null

&ccw —&cw (k»)

v (MHz)

Di

FIG. 7. Experimental measurements of the null shift vs cavi-
ty detuning for the two positions Dl and D& of the misaligned
aperture.

shift would change sign with r, as shown in Eq. (13). The
discussion in Refs. [32—36] originated from a fundamen-
tal error in Refs. [32—33]. The mechanism put into evi-
dence here is different from the ones investigated theoret-
ically in Refs. [11—15] and from the ones predicted in the
case of Gaussian apertures [16—21). Indeed, these refer-
ences do not take into account the resonant diffraction-
losses mechanism which explains the asymmetries of the
output-power versus frequency profiles and whose nonre-
ciprocity explains the null shifts observed here.

III. DIFFRACTION AND LOCK-IN MECHANISM

As already stated in the Introduction, experimental
works on RLG's show that the lock-in threshold A, L& de-
pends strongly on the detuning of the laser [2,23]. On the
one hand, QL& is reduced when the gain-to-loss ratio is in-
creased, as predicted by theory [2]. This explains why

QL& is minimum at the center frequency of the transition.
However, another dependence of the lock-in threshold
with frequency appears in the experimental results: The
evolution of AL& with the frequency is always asymmetric
and AL& is always smaller on the high-frequency side of
the transition. This fact has never been satisfactorily ex-
plained. Besides, we now know a phenomenon that
breaks the symmetry of the output-power versus frequen-
cy profiles: the resonant diffraction-losses mechanism
[24]. In particular, we have shown that in the case of the
usual RLG (two-isotope mixture, short cavity in both
planes), the output power is always more important on
the high-frequency side of the transition than on the
low-frequency side [26] and that nonresonant diffraction
can play an important role in the lock-in mechanism [27].
Consequently, one may wonder whether the lock-in
threshold is minimum when the diffraction losses are
minimum. The aim of this section is to show experimen-
tally that the asymmetries of the lock-in versus frequency
profiles are indeed correlated with the asyrnmetries of the
output-power profiles and that the lock-in threshold is
minimum on the side of the profile where the output
power is maximum.

In order to study the dependence of the lock-in thresh-
old with the laser frequency one must scan this frequency
by changing the cavity length. Besides, we know that
scanning the cavity length modifies the lock-in threshold
for another reason. Indeed, the lock-in threshold is usu-
ally interpreted as due to the local defects of mirrors [4].
When one of the mirrors is moved, the points of in-
cidence of the beams on the mirrors are changed and the
distances between the involved residual local defects are
changed. This modifies the vectorial sum of the back-
scattered waves [4]. The effect we are trying to observe
here can consequently be hidden by these changes of the
relative phase shifts between the backscattered waves.
Hence we choose arbitrarily to build a "bad" RLG. We
indeed choose to use very diffusing mirrors for which the
position of the incidence point of the beam on mirrors
will not have any inAuence on the lock-in threshold. We
will then be able to explore the role of the frequency de-
tuning on the lock-in threshold.

The experimental setup is schematized in Fig. 8. The
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FIG. 8. Experimental setup used to observe the dependence
of the lock-in threshold with the frequency detuning.

laser oscillates at k=3.39 pm and the cavity is equila-
teral with a perimeter equal to 84 cm. The spherical mir-
ror has a radius of curvature equal to 50 cm. Two identi-
cal 12-cm-long discharge tubes are located on each side
of the spherical mirror and have a 6.2-mm inner diame-
ter, allowing one to select the saturation lenslike effects
[31]. In these conditions, when the two discharge tubes

are located near the spherical mirror, the cavity is long
(short) in both planes when the diffracting aperture at
point A is located near the spherical mirror M& (at point
B between mirrors Mz and M3) [24]. Mirrors M& and
Mz are totally rejecting and mirror M3 transmits 6% of
the incident intensity. The use of two identical discharge
tubes with the same discharge currents allows our cavity
to remain symmetrical and to avoid the null-shift effects
investigated in Sec. II. The two output beams are recom-
bined in order to measure the frequency difference be-
tween the two modes. The whole setup is mounted on a
rotating table with variable angular velocity and one
makes sure that no null shift exists by comparing the re-
sults obtained for the two directions of rotation of the ex-
periment.

In the first step, the discharge tubes are filled with a 5:1
He- Ne mixture at total pressure P = 1. 1 Torr. We first

check that the saturation lenslike effect is predominant
and that the cavity is short when the aperture is located
at B [see Fig. 9(a)] and long when the aperture is located
at point A near mirror M& [see Fig. 10(a)]. The experi-
ment is then rotated and one can observe that the beating
due to the Sagnac effect appears first on the low-
frequency side of the transition for a short cavity [see Fig.

(a)
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FIG. 9. Experimental results for a one-isotope RLG with a
cavity that is short in both planes (horizontal axis: 30 MHz per
division). (a) The RLG is at rest. Output power of the CW
mode only vs frequency. The asymmetry of this profile shows
that the cavity is short in both planes. (b) The RLG turns at an-
gular frequency Q=25'/s. The two output beams are recom-
bined on the detector and one notices that the lock-in threshold
is lower on the low-frequency side.

FIG. 10. Experimental results for a one-isotope RLG with a
cavity that is long in both planes (horizontal axis: 30 MHz per
division). (a) The RLG is at rest. Output power of the CW
mode only vs frequency. The asymmetry of this profile shows
that the cavity is long in both planes. (b) The RLG turns at an-
gular frequency 0=22/s. The two output beams are recom-
bined on the detector and one notices that the lock-in threshold
is lower on the high-frequency side.
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9(b)] and on the high-frequency side of the transition for
a long cavity [see Fig. 10(b)]. The tubes are then filled
with a 1:1:10 Ne: Ne: He at P =1.1 Torr. At this
pressure for the 3.39-pm transition, we know that the
sign of the saturation lenslike effect must be the same for
the two-neon-isotope mixture as for the one-neon-isotope
mixture [26]. Here again the asymmetries of the output-
power profiles and of the lock-in threshold profiles with
respect to frequency are inverted when one passes from a
short cavity (see Fig. 11) to a long cavity (see Fig. 12). In
all experiments, two points are carefully checked: (i) the
asymmetries of the output-power versus frequency
profiles for the RLG at rest are the same for the two
counterpropagating modes; and (ii) the lock-in threshold
measurements give the same result for the two directions
of rotation, showing the absence of any null shift.

These results show 'that the lock-in mechanism de-
pends not only on nonresonant diffraction effects, as
shown in Ref. [27], but also on resonant difFraction
effects. The lock-in threshold is indeed minimum where
the output power is maximum, i.e., where the diffraction
losses are minimum.

IV. CONCLUSION

In conclusion, we have shown that the resonant
diffraction mechanisms that are correlations between the

transverse mode structure and the intensity in ring lasers
[24,26] also induce correlations between the transverse-
mode structure and the frequency characteristics of ring-
laser gyroscopes. We have indeed shown that these reso-
nant diffraction mechanisms have important conse-
quences on two characteristics of the RLG: the null shift
and the lock-in region. We have indeed seen that the
nonreciprocity of the resonant diffraction-losses mecha-
nism induces two different asymmetries for the two coun-
terpropagating beams and is an important source of null
shift in the RLG. The experimental results are found to
be in agreement with the theoretical calculations. This
allows one to justify a posteriori the empirical rule that
states that a RLG without null shift must be symmetri-
cal. Besides, we have seen that the resonant diffraction
mechanism explains the asymmetries observed in the
dependence of the lock-in threshold with the laser fre-

0

quency. This explains why in the usual 6328-A two-
isotope RLG's that are built with short cavities the lock-
in threshold is smaller on the high-frequency side of the
transition than on the low-frequency side of the transi-
tion. These features and others [27] may have important
consequence on the building of RLG cavities.
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The self- and cross-pushing coefficients are given by

Pcw =Pccw =0
Crab COO

+cw-ccw, ccw-cw I cw, ccw L(~ab ~o)

(A5)

APPENDIX (A6)

In this appendix we summarize the expressions of
Lamb's coefficients [1] used in Eqs. (5)—(8) for the case of
a two-counterpropagating-mode ring laser with a single-
isotope inhomogeneously broadened active medium at
third order in field. The net gain coeKcients are given by

where

L (tomb too) 23' +(to b too)
(A7)

&cw, ccw F& exp ' &ab ~CW, CCW

ku
too ~ (tocw+ toccw) (A8)

is the Lorentzian line shape associated with the homo-
geneous broadening of the transition,

1 co

2 Qcw, ccw
(A 1)

The self- and cross-saturation coefficients are given by

is the mean angular frequency for the two counterpro-
pagating modes, and

1 'V ab
~cw, ccw= Fi e"p '

2 r
~ab ~CW, CCW

ku
F, =

—,'cov'vrP (Rku Eo) 'N . (A9)

2
2 ~Cw, CCw ~ab

ku

CW, CCW ab 2
X ' F e" dx .1

ocw, ccw= exp '
7T

~cw-ccw, ccw-cw=f3CW, CCWL (tomb ~o) .

The linear pulling coefficients can be written

(A2)

(A3)

(A4)

In these expressions, P is the matrix element of the elec-
tric dipole, y„yb, and y are the relaxation rates of the
levels and the optical coherences, co,b is the pulsation of
the transition, ku is its Doppler width, y, b =(y, +yb )/2,
Qcw ccw are the quality factors of the cavity, Eo is the
dielectric permittivity of vacuum, X is the mean popula-
tion inversion along the cavity length, and A is Planck's
constant. The approximation of inhomogeneously
broadened transition assumes that ku ))y.
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