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Quantum-optical version of Cramer's theorem
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Cramer's theorem is formulated in the context of quantum optics. A physical meaning for the

theorem is given and is illustrated by the generation of thermal noise from a pure quantum state.
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I. INTRODUCTION

Consider a beam (designated by 1) that is split by an
ideal splitter into two beams (3 and 4). We now inquire:
can we have, within quantum mechanics, these beams (3
and 4) independent? That is, can we have their combined
density matrix factorized: p(3, 4)=p3(3)p4(4)? If so,
we could, in principle, emulate them by two independent
sources. This problem was raised and solved about 25
years ago [1]. It was shown that only if beam 1 is in a
pure Glauber coherent state [2], then does this factoriza-
tion obtain. This was [1] contrasted with classical phys-
ics, where it is always possible to generate two indepen-
dent beams that will emulate the splitting of a single
source (1, in our example).

A natural generalization of this is as follows: consider
two independent beams 1 and 2 that are (nontrivially)
split to form two new beams 3 and 4. What could 1 and 2
be if we require, as before, that the resultant beams be in-
dependent [i.e., p(3, 4)=p, (3)p4(4)]? Thus, if, in the
previous analysis, we had port 2 nonempty, with

p(1,2)=p&(1)8pz(2), yet we still required the "final"
beams 3 and 4 to be independent —what would be the al-
lowed p(1, 2)? Density matrices possessing this property
were termed bifactorizable [3]. It was shown [3] that
they are necessarily Gaussian (i.e., their density matrices
are exponential in, at most, a quadratic form of the ap-
propriate creation or annihilation operators). It is always
possible to associate (uniquely) a temperaturelike parame-
ter to a Gaussian density matrix (e.g. , cf. Appendix A).
In this parametrization, a general property of a bifactor-
izable density matrix is that all of its constituent single-
beam density matrices (p, , i =1, 2, 3, and 4) are at the
same temperature. [Thus, e.g. , the first case that was dis-
cussed above, port 2, was in its vacuum state
(pz= ~0) 22(0~); this forced all the other density matrices

(p;, i =1,3,4) to be at zero temperature (the temperature
of the vacuum), and with the added requirement of being
Gaussian, we got a pure coherent state. ] Further general-
ization can be studied with the aid of Cramer's theorem,
which we now introduce.

In classical probability theory, Cramer's theorem is
considered with special interest [4]. The theorem exposes

a peculiar property of Gaussian distributions that per-
tains to any number of random variables. Thus it asserts:
given two independent random variables X, and X2, and
given that the distribution of their sum X, +X2 is Gauss-
ian, then all the distributions (i.e., for both X, and X2)
are Gaussian. The transcription of the theorem to quan-
tum mechanics and field theory was given by Hegerfeldt
[5], and he and Emch [6] used it in their study of thermal
coherent states [7]. Interrelation of the quantum and the
classical versions of the theorem was considered recently
[8] in a study of Gaussian distributions. In the present
paper, we use the quantum version of Cramer's theorem
[5] to generalize the studies discussed above to the case
where the "final" beams (3 and 4 in our example) are not
independent. Indeed we will, after defining means of or-
dering correlations [9], consider maximally correlated
beams. This will allow us to accommodate the case of
"temperature in a pure state" [10,11] within the quantum
version of Cramer's theorem.

The paper is organized as follows. In Sec. II, we give
the basic formalism and definitions. In Sec. III, the quan-
tum version of Cramer's theorem is presented and some
of its physical contents is discussed. Section IV is devot-
ed to conclusions and remarks. Appendix A includes a
proof that the most general Gaussian density matrix can
be parametrized as a thermal squeezed state. A proof for
the quantum-optical version of Cramer's theorem is given
in Appendix B, while Appendix C contains a derivation
of the thermal distribution for one mode when the two-
mode density matrix is maximally correlated.

II. COHERENT-STATE FORMALISM

Our analysis will be given in terms of Glauber's
coherent-state representation [2]. This representation al-
lows visualization of mode interchange, which we now
proceed to elucidate.

Consider an idealized splitter, as depicted in Fig. 1.
The effect of the splitter is given by

Q
&
=pa3+vQ4,

Q2 — V Q3+p Q4

47 53S 1993 The American Physical Society



47 QUANTUM-OPTICAL VERSION OF CRAMER'S THEOREM 539

we may always parametrize a general Gaussian density
matrix (GGDM) as a thermal squeezed state [7,13]. The
latter is defined by

ss=S(g)e -'S'(g), (14)

Ipl'+
I

vl'=1 . (3)

In the case of pure states, the state in terms of modes 1

and 2 (to the left of the splitter) is

f &
(a

&
)f,(a, ) I0), (4)

while in terms of the modes 3 and 4, the state is

f&(p a3+vaz)f 2(

—v a3+p a4 )IO) =F(a3 a—4)IO) .

In modes 1 and 2, the density matrix factorizes,

& aa21 pl a ~a2 &
=

& a~ I p& laI & & a21p2la2 &

with [2]

(6)

FIG. l. Idealized splitter: two uncorrelated beams 1 and 2,
resulting in beams 3 and 4.

S(g)=exp[(ga —/*a )/2], /=re'&, r, y real .

(15)

(Here we take (a ) = (a ) =0, as we can always consider
a'=a —(a).) Now, in the above, the parameter Pco is
non-negative, P is referred to as inverse temperature, and
co is the frequency. Returning to the case of bifactoriza-
tion [(ll) and (12)], in this case it was shown that Pcs
must be common to all (i.e., P;co; =P,.coj, i = 1,2, 3,4). In
our case, where we consider modes of the
electromagnetic-radiation field all of the same frequency,
bifactorization implies common temperature to all modes
involved.

It is convenient at this point to define the index of
correlation [9] I, of modes 3 and 4:

I, ' =S3+S4,—S,
S= —Trp lnp,

S,. = —Trp; lnp; .

(16)

(17}

Here p is the two-mode density matrix, and p; is the den-
sity matrix obtained upon tracing out the coordinates of
mode j (Wi) Clear. ly,

(a lp la' ) =e ' ' f (a')f (a'), (7) I,' =0 whenever p=p, (sp (19)

a, =pa, —v*a, ,

a4= va I+p*a2,

(9)

(10)

with similar expressions for a3 and a4. The above formu-
las were given to illustrate our approach. In general, we
assume throughout this paper that, in terms of modes 1

and 2, the density matrix factorizes:

p(1, 2)=p&(1)p2(2) .

Furthermore, we shall take a11 beams to be of equal fre-
quency (we shall return to this point later).

As was stated in the Introduction, an additional re-
quirement that

i = 1,2. Here la; ) is the eigenfunction of the annihilation
operator a;, of mode i. In terms of the modes 3 and 4,
the density matrix is

&a,a4IF(a„a4)lo) &0IF'(a„a4)la', a4& .

Here

III. QUANTUM VERSION OF CRAMER'S THEOREM
AND ITS PHYSICAL CONTENT

The quantum-optics version of Cramer's theorem is the
following theorem (proven originally by Hegerfeldt [5],
cf. also Appendix B): Given (i) two independent beams 1

and 2 (Fig. 1), which are intermixed via a splitter to form
modes 3 and 4, and, (ii) upon tracing out the coordinates
of mode 3 (say), the resultant density matrix (for mode 4)
is a general Gaussian density matrix; then, states the
theorem, both mode 1 (constituent of beam 1) and mode 2
are given by Gaussian density matrices. A more detailed
connection between the classical and quantum versions is
given in Appendix B. Our point is that concurrence with
Cramer's theorem allows, with modes intermixed via a
splitter, the inclusion of correlated density matrices for
the 3 and 4 modes with striking Gaussian properties. We
now illustrate this in a particularly interesting case: con-
sider the distribution of a pure state g for modes 3 and 4,

p(3, 4) =p3(3)pg(4) (12) g(3, 4) =exp[ya 4a 3
—

@*a 3a4] IO) . (20)

C (A, ) =Tr[p exp(A, a. —A.*a )]

=exp[ —,'((A,a,t —A.*a, )') ] . (13)

It can be shown (and is outlined in Appendix A) that

would imply that all density matrices are Gaussian [3],
i.e., their characteristic functions [12] are given by This state was shown [9] to be maximally correlated, i.e.,

to have a maximal index of correlation (for fixed average
energy), for modes 3 and 4. Since it is a pure state, it is
also a pure state in modes 1 and 2. We show in Appendix
C that tracing out mode 3 leads to a thermal (hence
Gaussian) density matrix for mode 4,
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p~= g e ~""ln){nl (1—e ~ ),
n=0

(21)

with

tanhly I

=e (22)

In terms of modes 1 and 2, the states must be Gaussian
because of Cramer's theorem. The distributions are (i.e.,
the pure state wave functions)

f2
Q

g(i)=exp iy—' +iy" ' I0), i=1,2,
2 2

(23)

i.e., the splitter parameters p =
I p I

exp(i g„) and
v= lvlexp(ip ) in Eqs. (1)—(3) are such that

IV. SUMMARY AND CONCLUSIONS

The quantum-mechanical formulation of Cramer's
theorem that was given by Hegerfeldt and Emch [5,6] is,
in this paper, formulated in quantum-optics language.
This formulation of the theorem revealed new physical
interpretations for it. One such interpretation showed
the relation of the theorem to the general problem of gen-
erating thermal noise from pure states. As such, this in-
terpretation is realizable in radiation from a black hole
(Hawking's radiation [14]). For example, consider two

This example illustrates how Cramer's theorem accom-
modates the possibility of combining two independent
states (1 and 2) to form a state such that expectation
values involving only the coordinates of one mode (4, in
our example) cannot be distinguished from a thermal
state. The example we considered is particularly simple,
but it underscores a physical implication of Cramer's
theorem: the generation of thermal noise from a pure
state [10]. Here it is a limiting special case, e.g., a splitter
whose parameters are not those given by (24) and (25),
but for which y +y„Anger, n an integer will give rise to,
upon tracing out of one variable, a nonzero temperature
distribution for the other variable, i.e., y +y„Ann leads
to correlations between modes 3 and 4. The example
considered gives rise to maximal correlation and hence to
maximal temperature difference.

The underlying mathematical reason is that, whenever
we start (i.e., the independent modes 1 and 2) with non-
trivial Gaussian states (e.g. , squeezed states), intermix-
tures of modes via unitary transformation (splitter's pa-
rameters p and v complex) are allowed inasmuch as
Cramer's theorem is applicable to the resultant state.
This is to be contrasted with the requirement for bifactor-
ization, which, when we start with a nontrivial Gaussian
density matrix, allows only orthogonal transformations (p
and v real) to retain the independence of the modes.

independent (such as are emanated from sources that are
a spacelike distance apart) pure states that combine and
involve both coordinates of interest and coordinates of a
mode that is a part of a black hole that are to be traced
out. This leaves the modes of interest in a thermal state.
An analogous situation is present in thermofield dynam-
ics [15],where one traces out the unobserved ("tilde" ) de-
grees of freedom, leaving the physical degrees of freedom
at a finite temperature. Cramer's theorem assures us that
in these cases the sources (if independent) are Gaussian.
The quantum-optics version of Cramer's theorem that
was studied in this paper allows a fresh interpretation of
the result of Ref. [6]. Here the authors took the modes 1

and 2 as two independent particles in harmonic poten-
tials. Modes 3 and 4 were the center of mass and relative
coordinates of these particles. In this case, if different
frequencies are allowed for the motion of the center of
mass and that of the particles, we cannot get a simple
linear relation between the field operators of modes 1 and
2 and those of modes 3 and 4. It is possible, in this case,
to study the problem in terms of position and momentum
operators [6]. Here, too, Cramer's theorem allows
different temperatures for the various modes.

Our conclusion is that the field-theoretic Cramer's
theorem expresses the possibility, within quantum field
theory, of bringing together two systems of temperature
T, and Tz, and obtaining a system whose (observational)
temperature is higher than either, and all of whose distri-
butions are Gaussian. As such, the theorem deals with
situations that are generalizations of the interesting stud-
ies (involving Gaussian distributions, too) where two in-
dependent beams led to two (other) independent beams.
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APPENDIX A: PARAMKTRIZATION
OF A GENERAL GAUSSIAN DENSITY MATRIX

AS ATSS

Here K =Pc@ [Eq. (14)] and

S(g)=exp[(ga ~ —/*a )/2], /=re'r . (A2)

Our definition (Al) assumes (this incurs no loss of gen-
erality) that {a ) = {a ) =0.

One readily derives

S(g)a S (g)=a coshr ae 'rsinhr . —

We can now evaluate the characteristic function,

(A3)

A thermal-squeezed-state (TSS) density matrix is
defined [cf. Eq. (14)] by [7]

pTss:S (g)e S(g)/Z (Al)

Z =TlpTss
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(g) —Tr eia i. a

=Tre Ka ag( g)e ka —x ag t( g) /Z (A4)

64=i(Aa4 —
A, a„)=G4 . (B1)

Upon introducing a scaling (real) parameter u [8], Eq.
(13) reads

Using (A3), we get, in terms of thermal
p =Z exp( —Ka a ) ] expectation values,

—1

CTss(k) =exp( —,'(aa —a*a ) &,

with

a=A, coshr +A, *e'+sinhr .

((aalu —a*a ) &
= —aa*coth(IC/2) .

Using (A6), this becomes

—,'((aa —a*a) &

[i.e.,

(A5)

(A6)

(A7)

QC (u)=exp — ((G ) &

Utilizing Eqs. (1) and (2), we have

C4=C, +02,
with

Gi =i(Av'a. , —A, "va, ) =G, ,

02=i(kpa2 —
A, *p*a2)=Cz .

Let us express the trace [left-hand side Eq. (13)]

(B2)

(B4)

(B5)

[IA, I
(cosh r + '

h r)

+(A, e 'P+c.c. )coshr sinhr] . (A8)

Taking the general Gaussian density matrix as

Trp exp( —iuG&) (B6)
in terms of complete orthonormal sets of eigenfunctions
and eigenvalues of G, and G2. In this case, (B6) reads

dg, g, P&g& e '
dg2 g2P2g2 e

Here we used

&glplg'&=&, exp
2 g 2 g +Cgg' (A9) G, lg, &=g, lg, &, i=1,2. (B8}

1/2

Q+ -P,
2a

A =A)+iA2,
D =a —(I ~

I

—C )+2iaA2,

(A 10)

(A 1 1)

(A12}

we can make the following identification after evaluating
the characteristic function corresponding to (A9):

the requirements for Hermiticity, normalizability, and
positive definiteness lead to Re A & 0, C ~ 0, C =C*.
Defining

APPENDIX C: THE DERIVATIGN
OF THE THERMAL DENSITY MATRIX, EQ. (21)

The operators

E+ =a 3a4,

K =a4a3,

(C 1)

(C2)

We have that (g; Ip, Ig, &
)0 and f dg; &g; Ip; Ig; &

= i~

i.e., we may consider it as a classical distribution. Equat-
ing (B7) to (B2), we have, by the classical version of
Cramer's theorem, that each of these factors is Gaussian
in A, . The unique relation between density matrix and
characteristic functions ensures that p, is Gaussian.

2l g-~ D
D Q

coshr =

coth(K /2) = A )+C
Ai —C

Iw I' —c'
2( g 2 C2)1/2 a2

(A13)

(A14)

(A15)

sechlylexp

Ko =
—,
' (a 3a 3+a~a 4 ) (C3)

close the su(1, 1) algebra, hence it is readily shown that

I y I

tanhlyl a,a, lo&

=exp(ya3a4 —y*a4a3)IO& . (C4)

The essential result is (A15) which, with 2, )0 and
C ~0, allows the parameter K to be non-negative and
thus be interpreted as the temperature of a TSS (C=0
corresponds to a pure state —P~ ~).

APPENDIX 8: QUANTUM FIELD VERSION
OF CRAMER'S THEOREM

Given (1) that the two-mode density matrix factorizes
in modes 1 and 2 [Eq. (6)], and (2) that mode 4 is Gauss-
ian, i.e., Eq. (13) holds for j=4; we wish to show that pj
for j=1,2 are Gaussian. Define [8] a Hermitian operator
(i =3/ —1),

Thus our pure-state density matrix is

p(3, 4)=(sechlyl) exp
lyl
y tanhlyl anat, Io&

X (Olexp tanhlyl a4a3
y*

. y

Tr3p(3, 4)= g (n3lp(3, 4)ln3 &

= (sechl y I

)' g (tanhl y I ) "In & & n
I

with tanhly I
=e ~ ~, and we get Eq. (36).
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