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Some recent experiments indicate that certain rare-earth negative ions exist. Some local-density calcu-
lations indicate that attachment of f electrons is most favorable for Tm and Md. Here we investigate by
means of relativistic configuration-interaction methods whether Tm~ 4f'# and Md~ 5f'* are bound.
Our results strongly suggest that they are not, and that a different attachment process (perhaps that of a
p electron, as recently proposed by Vosko and Chevary [Bull. Am. Phys. Soc. 37, 1089 (1992)]) must be

contemplated.

PACS number(s): 31.20.Tz, 31.30.Jv

Not much is known about the electron affinity of the
rare earths except for a few local-density calculations.
Work by Bratsch on lanthanides [1] and by Bratsch and
Lagowski on actinides [2] and more recent work of Guo
and Whitehead [3] indicate that quite a few of these
species may exhibit positive electron affinities when an f
electron is added. However the uncertainties in their
electron-affinity values are sizable and are often as large
as the electron affinities themselves. Recently however,
Vosko and Chevary have predicted [4] a negative ion of
lutetium by attaching a p electron to the valence shell.
Berkovits et al. have also reportedly observed negative
ions of lanthanum and thorium in the laboratory [5] and
Garwan et al. [6] have observed those of many of the
lanthanides. However the electron configuration and
electron affinity of none of these systems have been ob-
tained experimentally. Tm™ and Md™ are predicted, by
local-density theory [1,2] to be the most stable ones when
an f electron is added. For these reasons rare earths pro-
vide interesting systems for electron-affinity studies.

Tm™ [4f'6s?] and Md~ [5f%7s] are among the
simpler negative ions of rare earths due to their closed-
shell nature. For these negative ions to exist their
ground-state (!S,) energies must lie below the ground-
state (*F9 ,,) energies of the corresponding neutral atoms.

Unlike many other atomic properties, electron affinities
are hard to determine with a small relative error. The
negative ions are often so loosely bound that the effects
usually regarded as small, especially electron correlation,
may play a crucial role in binding them. Starting with
the 3d transition series of the Periodic Table relativistic
effects also affect the affinities significantly.

We have undertaken a relativistic configuration-
interaction (CI) calculation to investigate the possibility
of formation of such metal anions by attachment of an
additional f electron to the ground state of thulium and
mendelevium. Application of ab initio theory shows that
at the Dirac-Fock level Tm™ is unbound by 9.29 eV and
Md™ is unbound by 4.0 eV, an energy seemingly too large
to be recovered by correlation effects, contrary to the ex-
pectations of the local-density theory.
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Our starting model is the relativistic Dirac-Fock Ham-
iltonian with the Breit magnetic and retardation correc-
tions treated by first-order perturbation theory. The
zeroth-order wave functions are the restricted Dirac-
Fock solutions obtained using Desclaux’s program [7].
The many-body wave function is first order in form, i.e.,
it is connected to the zeroth-order function only through
configurations generated from single and double excita-
tions into the unoccupied, viz., virtual spinors. For the
radial parts of the virtual spinors, we use screened rela-
tivistic hydrogenic wave functions; these avoid complica-
tions occurring due to variational collapse into the posi-
tron sea [8,14]. The effective charge, which is the single
adjustable parameter of the virtual spinor, is chosen by
minimizing the CI energy eigenvalues subject to the re-
quirement that their average value of r resembles that of
the occupied spinor they are replacing.

According to the first-order perturbation theory and
prior computational experience, the most important
many-body effects are expected to arise from excitations
out of the valence space, here mostly the 4f electron
pairs. To begin with, correlation effects are incorporated
by exciting one or two 4f electrons into unoccupied spi-
nors which we call virtual spinors. Relativistically, three
types of pairs are involved, namely, (4f5,,)% 4f5,,4f 7,2
and (4f5,,)?. Based on earlier experience, the pair corre-
lations should be well described through bivirtual excita-
tions into virtual spinors with azimuthal quantum num-
bers zero through nine where the cutoff is chosen accord-
ing to the 3/, rule [9,10]. As we can see from Table I
however, a cutoff at / =6 seems adequate for the current
species.

Nonrelativistic practice suggests that one radial func-
tion for each symmetry type (/) can account for about
70% of the correlation energy, while two can capture
about 90% [9]. Current experience, although limited,
suggests relativistic virtual orbitals are at least this
effective, when we require n =I/-+1. Since this work is
the first application of relativistic CI methods to such
complicated angular functions (many f electrons), we
have restricted ourselves to one radial function for each
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TABLE I. Correlation contributions from bivirtual excitations in Tm and Tm™ (in mhartrees).

Tm [4f13652%]

Tm~ [4f16s2]

Excitation (4f7,, ) 4f'sp4f 1,2 (4f s, ) (4f7,) 4fsp4f 1 (4fs,2)?
vs? —0.0180 —0.0164 —0.0380 —0.0245
vp? —0.2432 —0.1148 —0.2196 —0.4995 —0.2040 —0.3277
vd? —10.92 —13.66 —8.634 —16.13 —17.69 —9.517
vf? —66.66 —140.2 —45.92 —91.22 —149.9 —44.17
vg? —50.12 —87.23 —37.20 —60.43 —90.34 —33.73
vh? —6.273 —10.027 —4.902 —7.642 —10.39 —4.324
vi? —1.525 —2.314 —1.214 —1.856 —2.446 —1.137
vsvd —0.0958 —0.0256 —0.0871 —0.1217 —0.0279 —0.0831
vpuf —0.3780 —0.3280 —0.3108 —0.4330 —0.3877 —0.2916
vdvg —0.5771 —2.323 —0.6225 —1.210 —3.957 —0.8704
vfvh —0.7971 —1.566 —0.4109 —1.150 —1.448 —0.2144
vgi —2.097 —4.235 —1.496 —2.494 —4.334 —1.344
vsvg —0.240 —0.303 —0.153 —0.0388 —0.0423 —0.0228
vpvh —0.0374 —0.2051 —0.0225 —0.0912 —0.4223 —0.0418
vdvi —0.0040 —0.0182 —0.0037 —0.0041 —0.0167 —0.0031

symmetry type.

For both the neutral atom and the negative ion we find
the largest contributions to the correlation energy are
from 4f%—vd?+vf?+vg? excitations, which range from
a couple of tenths of an electron volt to about 4 eV (Table
I). For excitations to crossed virtual spinors such as
vdvg, vfvh, vpvh, pairs formed from virtual spinors with
Al=2 contribute more significantly than those for which
Al=4 or more. The single excitations 4f —uvp +vf +vh
(Table II) and excitations to the hole virtual spinors
(4fs,,)>—4f;,,(vp +vf +vh) (Table III) have also been
included but only a modest contribution is observed from
them, typically less than 0.1 eV.

When we look at the difference in correlation contribu-
tions in the negative ion and the neutral species, electron
correlation indeed tends to bind the negative ion, result-
ing in an overall lowering of the energy gap between the
two. However because of heavy cancellations (see follow-
ing paragraphs), the effect of a particular configuration is
no more than a few tenths of an electron volt. Overall,
these lowerings are found only to be about 1.3 eV for
both thulium and mendelevium, leaving Tm~ and Md™
unbound by 7.9 and 2.7 eV, respectively.

In 1969, Oksuz and Sinanoglu [11] showed to first or-
der, that the nonrelativistic bivirtual energy E, . for an
arbitrary open-subshell atomic state (double excitation
into two virtual subshells) could be written as a sum of
pair energies €, which depended solely on the two elec-
tron S, L and the originating subshells, multiplied by

TABLE II. Correlation contributions from single excitations
in Tm and Tm™ (in mhartrees).

Tm [4f136s2]

Tm™ [4f1%6s?]

coefficients determined entirely by angular restrictions
(“group theory”). In two special cases, the contributions
to E,,. from two subshells a and b can be expanded as [9]:

Cb
== 3 (2S+1)(2L + De(n“1%nt1%SL) ,
Ew=5001 1)S,L( I )e(n 1% n®1%SL)

where either (i) a is closed, then O, is equal to the num-
ber of electrons in n %1%, or (i) n%1°=n"1® and there is one
electron missing, then O, =4I/ In other cases, the gen-
eral expression [9] should be used. While accuracies have
improved since 1969 so that this methodology can no
longer be regarded as a first-line computational tool, it
can provide important information for analyzing results
or diagnosing problems.

If Tm, Md, and their negative ions were nonrelativis-
tic, and first-order perturbation theory were sufficient, we
would predict [11,9] using the above formulas that the f2
bivirtual correlation energy in the atom would be exactly
6/7 of that in the negative ion. In fact that is fairly well
satisfied, as can be seen from Table I—theory predicts a
ratio of 0.8571, while the computed ratio for Tm is
0.8986.

In this work, we have worked out a relativistic variant
of the methodology for the purpose of analyzing sepa-
rately the contributions from the (fs,,)% fs,2f7,2, and
(f7,,)? bivirtual pair correlations. To do this, we trans-
form a pair of spinors in the uncoupled representation, to
the coupled representation in the standard manner [12]:

TABLE III. Correlation contributions from hole-virtual ex-
citations in Tm (in mhartrees).

Tm [4f136s%]

Excitation 4f, 4fs, Y 4f., 4fs,, Excitation (4fs,2)?
vp —0.069 —0.082 0.0 0.0 4f,,,0p —0.023
of —0.793 —0.754  —0.0003 —0.0002 4f, uf —0.146
vh —1.507 —1.626 0.0 0.0 4f, ,vh —0.116
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TABLE IV. Relative differences in correlation contributions: dominant effects (in eV).

Tm™ [ISO]—Tm [2F7/2]

Md~ [150]”Md [zF7/2]

Excitation (417, )? 4fs 411, (4fs, )2 (5f1,2 )? 5fsn5fn (5fs, )?
vd? 0.141 0.109 0.024 0.175 0.110 0.020
vf2 0.668 0.264 —0.047 0.435 0.415 0.012
ng 0.280 0.084 —0.094 0.387 0.181 —0.087
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Following the original work [11], we write the bivirtual
pair energy for cases where the Dirac-Fock solution is a
single determinant, to first order as

E,<3 3

J 2 s . P .
|lem1;j2m2| E(”11.117712.]2;'1) .
J onjyymy<ng,j,,my

w

Note that the ‘“‘irreducible pair energies” € in this in-
stance depend on their subshell origins (#j) and the two-
electron J only. In effect, this means less separation is
possible than in the nonrelativistic case. If we apply this
to the current problem, we find that theory predicts that
the (f5,,)* bivirtual pair correlation should be the same
(ratio of 1); that f5,f;, bivirtual pairs in the atom
should have 7/8 of the energy of the negative ion and
that the (f,,)* bivirtual pair in the atom should be 3/4
that of the negative ion. From Table I, we find the Tm-
to-Tm™ ratios are 1.05, 0.933 (7/8 = 0.875), and 0.765
(3/4 = 0.75), which again are in fair agreement with the
theoretical prediction.

The dominant contributions to the energy difference
are listed in Table IV. The next most important correla-
tion effects are expected to be those associated with
valence space sf pairs (i.e., 4f6s pairs in Tm). Based on
the nonrelativistic formula for E,, (above) one might ex-
pect their contribution to the electron affinity (increasing
it) to be 1/14 of the sf pair energy in the ion. However,
the increasing diffusivity of the negative-ion radials may
nearly compensate for this, as in Mg™, for example [13].
In the case of the outer s2 pair energy there is only the
diffusivity change (occupations are same), and this would
tend to decrease (i.e., make less binding) the electron
affinity. The most important core-valence pairs are, in
Tm, S5p4f; here the change in occupation (favoring an in-
creased electron affinity) may exceed the decrease due to
diffusivity changes. In no case do we expect these contri-
butions to be as large as those from 4f2 (52 for Md) so
both systems should remain unbound.

Correlating f electron pairs poses significant complexi-
ty and difficulty in terms of diagonalizing the angular-
momentum and energy matrices. To reduce the size of
the energy matrix, the relativistic version of the REDUCE
procedure has been implemented [10,14]. To illustrate
the method, let the reference function be ® and the origi-
nal eigenvector set be {x;}. The first-order matrix ele-
ment (®|H|y;),i=1,...,N, can be written

-M

lj1j2 I MY M =m,+m,) .

ljjJM) = ZRJj
J

1My3iamy

C+3 a*R¥ 4,B;C,D) .
k

For most configurations (and all complicated ones) the
number (M) of radial integrals R %( ) (plus the core con-
tribution C if present) is much less than the number (N)
of the eigenvectors.

The REDUCE method rotates the original basis set {¥;}
to a new orthonormal one {Y;} such that for the first
N —M elements, {®|H|Y,;)=0. These first N—M cou-
plings are then discarded. Due to the large number of
determinants encountered here (up to several thousand)
from which the X; are constructed, we introduce here the
relativistic Bartlett-Condon-Beck (BCB) method [15] to
avoid having to obtain up to several hundred roots of a
matrix that can be of order several thousand (e.g., here
300 roots of a matrix of order 2000 may be encountered),
a task which is difficult for current diagonalizers.

BCB is based on a 1931 method introduced by Bartlett
[16]. The configuration is divided into two (or more)
parts. Angular-momentum eigenvectors are obtained for
each of the parts, call them X; and X;; by diagonaliza-
tion, for the case of J=+M,. Other M,’s are generated
using the step-down operator (to maintain proper phase).
The final result is assembled simply as

|JM,)=v2J +1

XX (J 1M ) [ Xy (T,M)

A code has been written by Beck that does the REDUCE
transformation and generates the BCB eigenvectors for
configurations interacting with a single Dirac-Fock
parent [17]. BCB construction times are negligible, a few
seconds on a SparcStation2.

We should also mention that there was a lack of self-
consistency in obtaining the multiconfiguration Dirac-
Fock solutions [7] for Md and Md ™ to the extent of 0.03
a.u. Using a finer mesh and tightening up on energy and
normalization tolerances had little effect on the results.
Improved self-consistency is obtained using a newer ver-
sion of the Desclaux code [18]. The size of the incon-
sistency however is small compared to the energy
difference between Md and Md™ and presumably is not
going to affect their relative positions significantly. A
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much better self-consistency is achieved for Tm and
Tm™ (~0.0004 a.u.) but a very fine Z extrapolation
(AZ =0.02) was needed presumably because Tm™ is rela-
tively more unbound than Md ™.

If the trends of the local-density calculations [1,2] are
to be believed (i.e., that Tm™ and Md™ most tightly bind
an extra f electron of all the atoms in their respective

rows), then we expect that none of the ground-state
lanthanides or actinides will accept an extra f electron.
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