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Multiple time scales for recurrences of Rydberg states
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An initially localized Rydberg wave packet, with hn «n, spreads uniformly over its entire classical
orbit within a time much larger than the classical period T,l. However, it eventually reassembles, with a
hierarchy of recurrence times: (n/3+ —')T,&, (n /4+ —')T,&, etc. This phenomenon has no classical ana-

log.

PACS number(s): 03.65.Ge, 31.50.+w

Quantum systems with equidistant energy levels, such
as harmonic osciHators, or particles precessing in a mag-
netic field, have a motion which is periodic in time.
Surprisingly, excited hydrogen atoms also have a periodic
behavior, in spite of the fact that their energy levels,

E = —me/2nA

are not equidistant. This can be seen as follows.
Consider a hydrogen atom prepared in such a way that

the positive-energy part of its spectrum is negligible (that
is, ionized atoms are removed by the preparation pro-
cedure). We can then expand the state vector into
bound-state eigenfunctions,

—iE„t/A
g(r, t ) =gc„u„(r)e

where ju„*u,dr=5„, and g„lc„l =1. Since this sum

converges, a finite number of c„can make g„lc„l arbi-
trarily close to 1, and are therefore sufficient to represent

P with arbitrary accuracy. As a consequence, any ttt is ar-
bitrarily close to a periodic function of time [1]. In the
present case, all the exponents in (2) have the form
2&it /Ton where To =4~A /me =3.04 X 10 ' s. Let
be the least common multiple of all the n for which we do
not neglect c„. Obviously, P has a period TOL .

This recurrence is exact, but the required time is enor-
mous if many levels are appreciably excited. However,
nearly exact recurrences occur considerably earlier. The
recurrence probability is

multiples of 2+i whenever

t=T„=N To/2 . (5)

When t =2NT, j, the second term in this series yields an
integral multiple of 2~i, and the wave packet reappears at
its original position. Actually, upon closer examination,
it is found that this recurrence already occurs after
(N/3)+ —,

' classical periods (where N, which was only
loosely defined above, has to be adjusted so as to be a

This is the classical period of revolution for energy E&, as
expected. For short times, the quantum wave packet
moves as a classical particle. For longer times, higher
terms in (4) destroy the phase coherence, and the wave
packet spreads over the entire orbit.

Yet, the wave packet eventually reassembles: if we
take more than two terms in Eq. (4), the exponent in (3)
becomes, apart from an irrelevant additive constant,

exp[(trit/T„)(2v —3N 'v +4N ~v3 5N v +— . . )] .

2

P(t)= I ~li(o)ltt(t) ~ I

= +to, e (3)

where w„= lc„ l
. If the initial wave packet is well local-

ized, its energy spread is small and the coefficients w„are
large only in a narrow domain of n (typically b, n -v'n ).
Let N be an integer anywhere near the middle of that
domain, and let v= n —N. We can expand

n 2 =N —2N v+ 3N v —4N v

+5N v —.. .—6 4 (4)

If we keep only the first two terms, the exponents in Eq.
(3) are (2trit /ToN )(2v —N ). Apart 'from a common
phase —2~it/TON, all these exponents become integral

Time

FIG. 1. Recurrences of a wave packet consisting of Rydberg
states with n =990—1010. The value l(g(0)lit(t))l is plotted
vs time. The time at the center of each graph is, from top to
bottom: Tcl (one classical period), 100T,

~
(a random time),

333.5T,l (first-order recurrence), 250000. 5T,l (second-order re-
currence), and (2X 10 +0.5)T,l (third-order recurrence). Each
graph extends over two classical periods.
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multiple of 3). Indeed, let t =(N/3+ —,
' )T,i. The first two

terms in (6) give

1
27Tl v +

3 2
3v . N v 1

1 — =2' v +
22V 3 2 2

vN v(v —1)=2&l
3 2

We can always adjust N so that N/3 is an integer. Also,
v(v —1)/2 always is an integer. Therefore, apart from
terms of order N ', the exponent in (6) is a multiple of
2rri Th. e factor N/3 (without —,') can also be obtained
from semiclassical arguments [2]. This recurrence has
been experimentally observed [3,4]. There also are "frac-
tional revivals, " namely partial recurrences, which occur
for rational fractions (with small denominators) of the
full recurrence time [5,6].

As time passes, the third term in the series in (6) gradu-

ally destroys these periodic recurrences, but new ones ap-
pear at integral multiples of X T„. Here too, the same
argument shows that the first such reappearance already
occurs at t = [(N /4)+ —,

' ]T„,where N must again be ad-

justed to make it even, if necessary. These recurrences
are then destroyed by the following term in (6), and reap-
pear at integral multiples of [(N /5)+ —,']T,i, and so on.
This hierarchy of recurrences is illustrated in Fig. 1 for
the case N = 1000, with 21 energy levels having a binomi-
al distribution of weights (roughly a Gaussian distribu-
tion): w =2 20!/(n —990)!(1010—n )!.

An experiment indicating the existence of a third-order
recurrence was performed by Parker and Stroud [7], who
unfortunately overlooked the factor —,

' in N T,i/5. It is

likely that sharper results could have been obtained if the
waiting time after the laser pulse had been five times
shorter.
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