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Nonlinear selective re8ection in cascade three-level atomic systems
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We study the cascade three-level selective-reAection spectroscopy for normal incidence at a
dielectric —atomic-vapor interface in a pump-probe scheme. Taking into account the efTects of spatial
dispersion arising from deexcitation by collisions with the interface and the transient response of atoms
leaving the surface, we evaluate the modification of the probe-field reAection induced by the presence of
the pump field in terms of a nonlocal nonlinear susceptibility. The dependence of this susceptibility on
the probe frequency for various given pump frequencies is calculated. Sub-Doppler structures in the
selective reAection spectrum are obtained and analyzed. Potential applications to the study of the in-

teraction of highly excited atomic states with the surface are indicated.

PACS number(s): 42.50.—p, 32.80.—t, 34.90.+q

I. INTRODUCTION

Selective reAection of light at the interface between a
dielectric and a dilute atomic vapor has been studied in
recent years by several authors for the case of two-level
atoms [1—4]. It has been shown that at normal incidence,
collisions between the atoms and the wall can give rise to
a sub-Doppler structlire in the reflection coefficient. This
structure is due to the transient behavior of atoms leaving
the interface just after having been deexcited at the con-
tact with the dielectric. These effects appear even more
strikingly in the case of a pump-probe scheme, where one
studies the modification of the reflection coefficient of a
weak probe beam induced by the presence of an intense
pump beam [5]. In this scheme the sub-Doppler struc-
ture is due to both saturation narrowing and transient be-
havior. Moreover, for nonzero pump-frequency detun-
ings, one predicts extra resonances due exclusively to wall
collisions.

In the present paper we extend our previous calcula-
tions to the case of a three-level system with cascade type
excitation. We consider the two possible cases: (i) the
pump is tuned to the frequency of the upper transition
and the probe to the frequency of the lower one [see Fig.
1(a); (ii) the inverse case, i.e., the pump tuned to the fre-
quency of the lower transition and the probe to that of
the upper one [see Fig. 1(b)].

As in Ref. [5], we study the modification of the
reAection coefficient of the probe beam induced by the
presence of the pump beam. Experimentally, this contri-
bution is isolated from the main part of the reflection
coefficient by standard modulation techniques.

The predicted reflectivity-difference signal is compared
with the one expected in a local approach, i.e., in the ab-
sence of a transient regime when the steady-state non-
linear susceptibility is proportional to the local field.
This approach is directly related to standard three-level
spectroscopy in gas cells. In the following we shall re-
strict our discussion to the first nonvanishing term in the
pump-probe interaction, although the case of arbitrary

intensities of the pump is covered by our general formal-
ism as well.

II. GENERAL THEORY

In previous studies [1—5] of selective reflection by
atomic vapors at a vapor-dielectric interface the follow-
ing model has been considered: one assumes that the
state of atoms moving towards the interface is described
by a constant density matrix p (steady-state regime),
whereas atoms moving in the opposite direction are de-
scribed by a density matrix that varies with position as
long as they are sufficiently close to the interface. This
comes about because, assuming that all atoms leave the
surface in their ground state, excitation takes place only
progressively, giving rise to a position-dependent density
matrix p, which merges into the constant one only at
larger distances. As has been pointed out, in the inter-
mediate regime spatial dispersion occurs [1], i.e., the
dielectric polarization is no longer proportional to the ex-
citing loca1 field. By choosing a coordinate system with

(b', )

FIG. 1. Two possible pump-probe schemes for a cascade
three-level system with g, r, and e the ground, the relay, and the
excited level, respectively. The broad arrow represents the tran-
sition induced by the pump field, the slim one that induced by
the probe field. In (a) the pump field is tuned close to the fre-
quency of the transition r —+e, the probe field close to the transi-
tion g ~r, whereas in (b) the roles of the two fields are reversed.
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its z axis perpendicular to the interface, the distinction
between atoms moving towards the dielectric and those
moving away from it amounts to considering separately
the cases v, (0 and u, )0 (z (0 being the half-space filled

by the dielectric, z )0 that filled by the vapor).
In Ref. [3] a two-state atom has been studied with g la-

beling the ground and e the excited state. The off-
diagonal element p, of the density matrix has been split
into that of a reduced density matrix o. multiplied by a
phase factor, according to the relation

e
—i (cot —kz)

( u z) (2.1)

+6(v, )( 2ik)—
Xo, (u„—2ik)], (2.3)

where the Heaviside functions 6( —u, ) and 6(v, ) ensure
the separation of contributions coming from atoms with
u, (0 and v, )0, respectively. W(u, ) is a normalized
Maxwell-Boltzmann distribution, N the number density
of atoms, E

&
the amplitude of the radiation field propaga-

ting through the vapor, and 0, the Rabi frequency,
defined as

20=—p .Eeg 1 (2.4)

with p, the transition dipole moment. It should be noted
that we are specializing the results of [3] for normal in-
cidence. In terms of the quantity T, the reAection
coefficient for radiation incident from the dielectric and
rejected at its surface is given by the expression

2
n —1 4n (n —1)

(2.5)
n +1 (n + l)3

where o., is time independent and co is the radiation fre-
quency. Light is incident from the dielectric into the va-
por. Furthermore, it is assumed that due to the very low
vapor density, each atom is submitted only to the field
that would exist if the vapor were replaced by vacuum.
Considering the stationary value o, (u, ) together with
the Laplace-transforn1ed quantity

o.,g(u„p) = f dz e ~'cr, (gv„z), (2.2)
0

it has been shown [3] that selective refiection is governed
by a quantity T, which is related to the matrix elements,
defined above, by the expression

I dv, 8'(u, )[6(—v, )o.,g(u, )2E 1

the selective refiection of a weak probe (or signal) field E,
with frequency co, . The following two situations are con-
sidered: (i) the frequency co is close to the transition fre-
quency between levels r and e, whereas co, is close to the
transition frequency between levels g and r [Fig. 1(a)]; (ii)
the inverse case with co close to the transition frequency
between g and r and co, close to the transition frequency
between r and e [Fig. 1(b)].

The selective reflection coefficient of the probe field can
be derived from Eq. (2.3) if the pair of states eg is re-
placed by the relevant one, i.e., gr for case (i) and re for
case (ii). As mentioned above, the quantity of interest is
the modification of the reAection coefficient induced by
the presence of the pump field. This modification arises
because the density matrix o. depends on both the probe
and the pump field. It has to be determined by solving
the optical Bloch equations for an atom submitted to the
simultaneous action of the two radiation fields.

III. THK OPTICAL BLOCH EQUATIONS

The state of the atoms in the vapor is determined by
the density matrix p(v„z, t). Note that we are consider-
ing here a local density matrix, i.e., one that describes the
state of the vapor at a given point in space at time t.
Then this quantity obeys the Liouville equation

—+u, p= — [H,p] —I—p .
l

()t ' Bz
(3.1)

The diagonal elements of the Hamiltonian H are the en-
ergies E, Er, and E, of the free atom, whereas the off-

diagonal ones represent the interaction energies with the
radiation field.

Consider first the situation represented in Fig. 1(a).
Then in the rotating-wave approximation, these off-
diagonal elements are given by the expressions

H„=—

Her

—i(co t —k, z)

2 Hgr Hrg

AQ p
—i(co t —k z)

2
e re er (3.2)

H, =H, =O,

where 0, and 0 are the usual Rabi frequencies defined
as the scalar products of either the signal field E, or the
pump field E with the relevant dipole transition matrix
elements. The term —I p in (3.1) describes spontaneous
decay in a closed three-level system. It is represented by
the following matrix elements:

n being the refraction index of the dielectric. Here only
the second term on the right-hand side (rhs) is relevant
for our problem, since it represents the contribution due
to the presence of the atomic vapor. Note that (

—T) can
be interpreted as an effective complex vapor index change
[5].

In this paper we study the case of a pump-probe
scheme in cascade three-level systems. The lowest and
highest level are labeled as g and e, respectively, and the
intermediate (relay) level as r The system is d.riven by an
intense pump field Ep with frequency ~ which influences

and

—(rp)„=—~,p„,
—(I p)„„=—A, p„„+A2p„,

(I p)gg ~ iprr ~

(Fp)eg 2
~ 2peg

—(rp),„=—
—,'(w, + a, )p,„,

(Fp)rg =
z ~ &prg

(3.3)

(3.4)
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—i (co, t —k, z)
prg e Org ~

—i [(co +~, )t —(k +k, )z]
p,g

=e ~ ' ~ ' cr,

(3.5)

together with the corresponding Hermitian conjugate ex-
pressions. k, and k are the wave numbers of the signal
and pump field, respectively. A positive value of k im-

plies pump propagation in the positive direction, i.e.,
from the dielectric towards the vapor, while a negative
value implies propagation in the opposite direction; k, is
always positive. For the matrix elements of o. we then
obtain the equations

z d ee

z d rr

iA
(o„,—o,„)—A~o„,

iA
(o.,„—o „, )

where the two decay constants 3, and A2 refer to the
transitions r~g and e~r, respectively (cf. t6]). With
these definitions (3.1) can be written out explicitly in
terms of matrix elements of p yielding a system of cou-
pled differential equations. These can be written in a
time-independent form if we introduce a reduced density
matrix o. obtained by means of the following transforma-
tions similar to that of Eq. (2.1):

—i(co t —k z)
pr =e ~ ~ or,

the signal and the pump are reversed. Therefore, the
differential equations valid for this case are easily ob-
tained from (3.6) and (3.7) by simply interchanging the in-
dices s and p.

In order to solve the set of equations (3.6) we introduce
a Laplace transformation by which we define a quantity

o(u„p)= J dz e l"o(v„z),
0

(3.8)

already mentioned in the preceding section. The deriva-
tives on the left-hand side (lhs) of (3.6) are then easily ob-
tained from the relation

+ oo

J dz e ~' o = —o.(z =0)+po
0 dz

(3.9)

Remembering that, according to our assumption of corn-
plete deexcitation of all atoms on the surface, the only
nonzero element of cr(z =0) is o~, it follows that taking
the Laplace transform on both sides of Eq. (3.6) amounts
to replacing on the lhs d o.„/dz, d o.„/dz, d o., /dz,
d o.„/dz, d o, /dz by p 0'„, etc. , and d o. /dz by

1 +p &gg
On the rhs it is sufficient to put a caret on al 1

matrix elements of o. . Finally, the stationary value of o.,
which is also needed for the calculation of the reAection
coefficient, is obtained from the relation

iQ,+ (o „cr„)—A, o.„„+—A~o„,
2

cr= limpo(v„p) .
p —+0

(3.10)

iQ,
u, , o. = (o„—o „)+A,o„„,

dz

1

z ~ eg eg eg + rg er I 2 eg

iA iB,

—
—,'( A, + A~)o.,„,

iQ
Vz ~ 0 rg l~rgO rg + 0 egaz 2

iQ,
2

(3.6)

IV. THE WEAK-PROBE LIMIT

Let us first consider the situation represented in Fig.
1(a). Then the transition associated with the probe field
is the one from g to r. Therefore, the relevant quantity
entering the general equation (2.3) is the matrix element
&„. Consequently, since we assume that the intensity of
the probe field is very weak, we derive an expression for
this quantity representing the first-order term of its ex-
pansion with respect to 0, . To do so, we start from the
Laplace-transformed version of Eqs. (3.6), where we re-
tain only terms of first order in A, . In fact, only two of
these equations are needed for the calculation of 0'„, so
that we have

where we have introduced Doppler-shifted frequency de-
tunings defined as

1 ~ p 1
( v,p —i A,z + —,

' A z )c7,'z =i o.,~eg p 2 eg 2

kp V ~p —k (3.7)
and (4.1)

b, , =b,„+b,,„=co +co, —(cv„g+cv,„)—(k~+k, )u,

+6, —(k +k, )u, ,

with co, and co„ the transition frequencies between the
corresponding levels. In (3.6) we assume that the interac-
tion between the electromagnetic fields and the atomic
vapor has reached a steady-state regime, i.e., that o. de-
pends on z and v, only.

For the situation represented on Fig. 1(b), the roles of

(vzP /6 g+T~Al )o g=l o +l os2 'g 2

Here the superscripts 0 and 1 refer to the terms which are
probe independent and linear in probe amplitude, respec-
tively. Hence these equations relate the required quantity
0'„' to 0' =1/p, the only nonzero element of the zeroth-
order terms 0. . Thus only first-order matrix elements ap-
pear in (4.1). The relevant solution is given by the expres-
sion
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g1
Tg

Q,
i —(u,p i E—,g + —,

' A2)

Q
(v,p i b—,„s+—,

' A, )(u,p id,—,g+ —,
' A z)+

(4.2)

By expanding this expression, which is valid for arbitrary
pump field intensities, we obtain for the first nonvanish-
ing interaction term the result

The calculation of the Q, -independent terms o and o „„
from the Laplace-transformed system (3.6) is somewhat
lengthy and shall therefore be presented in a condensed
form. At the beginning one easily shows that
&,g=&,„=&„=0and &gg+&„„=1/p. Note that the
latter relation follows also from the normalization condi-
tion o g+cr„„=l. Hence one has &ss

—&„„=1/p—2&„„.
Then one derives from the second and the sixth of the
equations (3.6) the relations

~
Q, Q

l

p(v, p —i K„g+—,
'

A& ) (u,p —ib, , + —,
' A2)

(4.3)

o(u,p+ A, )&„„=i (&s„—&„s),2
T

(v,p+ —,'A, ib„—)&„=i ——2&„,0 ~ P l 0

(4.7)

Let us now consider the situation represented in Fig.
1(b). As already mentioned, in this case the optical Bloch
equations are obtained from (3.6) by interchanging the in-
dices p and s. Here the quantity of interest is the first-
order matrix element o',„. Again, we only brieAy describe
the method that is used to obtain this solution. If in the
Laplace-transformed equations which are now valid only
terms of first order in 0, are retained, then there will ap-
pear an independent set of two equations which will yield
the required solution. These equations are

2 '" 2

(u,p+ —,
' A, +id„)& „= i —" ——2&„„

2 p
(4.8)

We thus arrive at a system of three equations for the
three unknown quantities o'z„o',g, and o'„,. After solving
this system, we obtain for the required quantities o „and
o „„the following expressions:

Taking the Hermitian conjugate of the latter equation,
we also have

(4.4)

[v,p i 5,„+—,'( A—, + A2)]&,'„+i &,' =i &„„.
2 'g 2

0
&,„= (u,p+ —,

' A, ) (pDO»

&„s= ,'Q~—(u,—p+A, )[b,„—i(u,p+ —,
' A, )]/(pDO),

(4.9)

As will be seen below, we have &„=0. Equations (4.4)
relate the required quantity o.,„ to the zeroth-order terms
o, and o,„, which have to be calculated separately as
function of Q . By solving (4.4) we thus obtain

with

Do =(v,p+ A, )[(u,p+ —,
' A

&
) + b,„]+(u,p+ —,

' A, )Q

(4.10)

&,'„=i [(u,p+ —,
' A2 id, , )&„„i —&—„]/D, (4.S)

with

D =(v,p+ —,
' A2 id, ,g )[v,p+ —,'( A—, + Az) —ib,„]+Q

4

(4.6)
I

If these expressions are substituted into (4.S) we obtain
for the first-order matrix element of o. a result which is
valid for arbitrary intensities of the pump field. Howev-
er, in practice, one is mostly interested in the first non-
vanishing term of the expansion related to nonlinear-
optical e6'ects due to the pump-probe interaction. This
term is obtained by replacing (4.9) and (4.10) by the
simplified expressions

gO ~ PQ
fg [p(u,p+ —,

' A ) id, „)], —

(4.1 1)

gO (u,p+ —,
' A, ) [p(v,p+A, )[(u,p+ —,'A, ) +b. ]],

which lead to the final result

iQ, Q

4 V P+ ~Xi
er

p [u p + —,'( A, + A z )
—i b, ,„](u,p +—,

' A
&

i h„g ) ( v,p —+ A
~ )(u,p+ —,

' A
~
+ & ~,g )

2

vip+ 2 Ap lAeg
(4.12)
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The stationary values of matrix elements of o.,which are
also needed according to Eq. (2.3), are obtained by apply-
ing the defining relation (3.10) to Eqs. (4.3) and (4.12).
The results are thus given by

V. RESULTS AND DISCUSSION

A. General expressions

Q, Q

8—1

( —,
' 2, i b—, „s ) ( —,

' A z i A—,g )

for the case of Fig. 1(a) and

0
in,—1

[—,'(A (+ A2) —ib, ,„](—,
' 3, iE„)—

X [—,
' /( —,

' A ) +i 5„s )+,' /(,' g q
—ig, ) ]

for the case of Fig. 1(b).

(4.13)

(4.14)

The nonlinear contribution to the reQection coefficient
can be calculated by means of a formula analogous to
(2.3). We assume that the velocity distribution function
is Maxwellian for all u, :

1
W(v, )= — exp

v 7TUO

V
2

Z

2
Vp

(5.1)

with up the average thermal velocity of the atoms. The
quantities 0 and k in (2.3) are replaced by those corre-
sponding to the probe beam, i.e., Q, and k„and E& also
changes its significance accordingly. The factor ReT,
which is the quantity relevant for our calculation, can
now be expressed in the form

&nN—Q,ReT=Re I du, exp
2IE, I'uo

U

[6(—u, )o,b(u, )+6(u, )( —2ik, )&,~(v„2ik—, )],
Up

(5.2)

where the quantities &,b and o,b are those given by Eqs. (4.3), (4.12), (4.13), and (4.14), respectively, and with indices a
and b corresponding to either er or rg. We recall that the notation used in (5.2) means that the parameter p appearing
in the results of the previous section [Eqs. (4.3) and (4.12)] has to be given the value —2ik, . For the situation of Fig.
1(a) the explicit form of Eq. (5.2) is given by

2+ 00 U 1ReT=C 1m I du, —,
' exp — 6(v, )

uo [—,
' A2 i(b, , +b~)+—i (k —k, )u, ](—, A, ib., ik, u—,)—

+e( —u, ), 1

[ —,
' A2 i(b, +b~)+—i (k~+k, )u, ](—,

' 2, —i6, +ik, v, )
(5.3)

where the definitions (3.7) have been used and where the
constant C is given by

C= Q, Q~

l~, l'v, 4
(5.4)

When one changes the sign of k, i.e., if the propagation
of the pump beam is reversed, the contributions to the in-
tegral (5.3) of atoms with u, )0 and of those with u, &0
are exchanged. Notice that this invariance only holds if
the distribution of atomic velocities is symmetric with
respect to v, . In the counterpropagating geometry, we

I

l

will neglect the effect of the rejected pump beam, which
is a fair approximation from the experimental point of
view, since the dielectric rejects only a few percent of the
incident light. Moreover, in the Doppler limit, when the
decay rates 3, and A2 and both detunings 6 and 6, are
small compared with the Doppler width kup, the main
contribution to the integral (5.3) arises from atoms with
velocity small compared to vp. Thus, in this limiting
case, W(u) can be replaced by W'(0), and the remaining
integral can be performed analytically, yielding results
given in the Appendix.

For the situation of Fig. 1(b) we obtain

+ oo

Re T =C Im dv, exp
2

Z

2
Vp

X . 6(u, )
1

[—,'(2, + A2) ib., ik, u, )[—,
' 2, i—6—+i(k —2k, )u,]—

2
A i 2lksvz 1

X
2ik, v, —,

' —2, +i b,p i (k~+2k, )—v,
+-'

—,
' 3 2 i ( b, +6, ) +—i ( k~

—k, )u,

+ e( —u, ), 1

( —,'(2, +32) ib, +ik, v, )( —,'2,—i6 +ik v—, )

X(—,'), +
—,'3, +id, —ikpu, —,'A2 i (b, +b,, )+i(—k +k, )u,

(5.5)
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Let us recall that now the definitions (3.7) have to be used
with indices s and p exchanged. Note that in this case
there is no symmetry associated with the change
k ~ —k.

We have evaluated the expressions (5.3) and (5.5) by
numerical integration. The parameters are chosen to
match roughly the values corresponding to the transi-
tions 6s, &2~6p3&2 (852 nm) and 6p~&2~9d, zz (585 nm)
in cesium, which are of interest from the experimental
point of view [7,8]. According to this choice, we have
taken for the ratio between the frequency of the transi-
tion g ~r and that of the transition r~e the value 0.7,
while for the damping constants we have set
3, /A 2

= 10. In the numerical analysis we use the values

3
&
=0. 1kUo and 3 2 =0.01kuo, where we define

k =(k, +kz )/2; these values are several times larger than
the actual ones. Clearly, this latter fact will not affect the
conclusions concerning the features of the spectra,
whereas it greatly facilitates numerical computation and
graphical representation of the results.

We consider curves representing the values given, re-
spectively, by expressions (5.3) and (5.5) as functions of
the frequency detunings 6, of the probe field for several
fixed values of the detuning 6 of the pump field with
respect to the corresponding resonances. Moreover, we
compare these results with those of the local-response ap-
proach in which the atomic response is supposed to be in
the steady-state regime, and spatial dispersion does not

(b)

Probe ref lectivity (arb. units)

—6000.00

-3.00 —1. 0

—50.00
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(b)
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I I l I I ( I I
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(c)

-3.00 g /kvo
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FIG. 2. Spectral variations of the pump-induced probe reAectivity change when the pump drives the upper transition r ~e (solid
lines, nonlocal susceptibility approach; dashed lines, local approach). Pump detuning is positive (h~ = + kv0) in (a), zero in (b), and
negative (A~ = —kvo) in (c). Im(T) is in arbitrary units, probe frequency detunings 6, in units kv0 with k =(k, +k~)/2. (a') is ob-
tained from (a) by modification of the vertical scale to bring out otherwise masked weak structures [the same procedure is used to ob-
tain (b') from (b)j.
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exist. In that case, the reAection signal is given by

&—vrNQ,
ReT& =Re f du, exp

2IE, I'U,

2

z
o.,b(U, ) (5 6)

Vo

instead of being given by (5.2). In this approach, single-
dispersion line shapes are predicted from standard three-
level spectroscopy [9,10].

B. Pump field driving the upper r ~e transition

Let us start with the situation represented in Fig. 1(a),
where the pump field acts on the transition r ~e (i.e., be-
tween unpopulated states) and the probe field is scanning
the transition g~r. Let us recall that the selective-
refiection signal predicted by (5.3) is independent of the
direction of propagation of the pump beam (k (0 or
k )0). This noticeable property differs considerably
from the highly anisotropic character prevailing in stan-
dard three-level spectroscopy [9,10]; for example, in the
Doppler limit, there is no signal if the two light beams
copropagate in the gas cell. On the other hand, if the two
beams are counterpropagating, there is a Doppler-free
signal related to two-photon coherence, only if co )co, .

Let us consider the three cases 6 =0, 6 &0, and

6 &0:
(i) If the pump is exactly on resonance with the transi-

tion g~r, i.e., 6 =0 [Fig. 2(b)), a narrow asymmetrical
structure is present around 6, =0. In the local response
approach [Eq. (5.6)], a much weaker (more than three or-
ders of magnitude), totally antisymmetric Doppler-
broadened dispersion curve is obtained. In Fig. 2(b) the
latter is hidden by the trace of the horizontal axis; we
thus give in Fig. 2(b') the same plot using a more ap-
propriate scale. As discussed above, in the Doppler-limit
approximation for the local response, there would be no
signal at all.

(ii) If the pump is detuned towards the blue by an
amount b,„=+kuo [Fig. 2(a)], a narrow dispersion curve
appears around frequency b,, = —(co, /co )b, . (a) In the
counterpropagating geometry (k (0), this signal comes
from the permanent response of atoms moving towards
the surface with a normal velocity around
U,

' '=b.~/k~= —cb, /co . We have checked that this
structure is identical to the one given in the local-
response approach such as obtained from volume three-
level spectroscopy [9]. In the Doppler limit [i.e. , when
exp( —

U, /Uo ) is set equal to one] an analytical expression
for this structure is obtained from Eqs. (4.13) and (5.6) as

+xReT= —Im
2 OO

—,
' 2 2 i ( 6,—+b,~ ) +i (co, —co )

C
c4 1 l ~s + l cps

C

2 (5.7)

Since we have taken co ) co, and k &0, the poles of the analytical function to be integrated lie on both sides of the real
axis. Using the residue theorem, one obtains

ReT=C Im
1T(CO& CO& )

p
' 2 ~p

'
~p

2 (5.8)

The peak-to-peak width of the dispersion structure
around 6,, = —(co, /co )b, is thus given by

r= 1

V3 co&

CO

A2+
CO CO

CO
1 (5.9)

(b) In the copropagating geometry (k )0), the predicted
dispersion signal (identical to the previous one) now
comes entirely from the transient response of departing
atoms having velocity around v,' '= —v,' '. This latter
fact deserves special attention, since, to our knowledge, it
is the first time that it becomes possible to single out the
contribution of atoms moving away from a dielectric-
vapor interface with a velocity inside a narrow interval.
Velocity distribution of atoms leaving the surface is sub-
ject to experimental test by changing the pump-field fre-
quency detuning. As noted above, in this geometry, the
steady-state atomic response averages to zero after veloci-
ty integration in the Doppler limit.

In addition, in both geometries, a weaker dispersion
structure which has the width A

&
of the lower transition

is present around the frequency 6, =0. A narrow

I

asymmetrical peak is also present around the frequency
b., = —b. [see Fig. 2(a')].

We have carried out the numerical integration of Eq.
(5.3) in a cascade system for which co~ ( co, (i.e.,
co„(co „). The strong dispersion structure around
b,, = —(co, /co )b.~ is then totally washed out. This is not
surprising, since in volume three-level spectroscopy the
corresponding structure is also known to vanish [9].

(iii) If the pump is detuned towards the red by an
amount hz = —kuo [Fig. 2(c)] the spectrum is much less
intense than in cases (i) and (ii). It contains a dispersion
structure with frequency 6, around 0 having a width 2

&

and a narrow asymmetrical peak around 6, = —6 simi-
lar to case (ii).

In all of the above cases, the structures around 6, =0
and 6, = —6 are related to the presence of the surface
and represent the contribution of atoms with small v, .
The resonance around 6, =0 comes from pump-induced
modifications of the logarithmic singularity known to ap-
pear in linear refiection [1—3]. On the other hand, the
structures around 5, = —6 are characteristic of two-
photon resonances. This structure is also a sub-Doppler
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logarithmic singularity, which now originates in the tran-
sient response of two ph-oton coherence (which is maximum
at U, =0). This interpretation is corroborated by analyti-
cal expressions which are obtained in the Doppler limit
(see the Appendix).

C. Pump field driving the lower g —+ r transition

We now turn to the situation represented in Fig. 1(b),
where the pump field drives the lower transition g~r
and the probe field is scanning the transition r —+e. For
this configuration, Doppler-free signals centered at

6, =k, /k 5 are predicted in standard three-level spec-
troscopy independently of the geometry and of the co, /co
ratio. As previously, three cases are considered (with
k &0):

(i) The pump is tuned exactly to the frequency of the
transition g~r, i.e., b, =0 [Fig. 3(b)]; then a narrow
asymmetrical structure appears around 5, =0. In the lo-
cal response case, one obtains an antisymmetrical disper-
sion curve whose width is mainly determined by the de-
cay rate A, of the lower transition. The peak height of
the nonlocal response result is one order of magnitude
larger than that of the local one.

Probe re f lectivity {arb. units)
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FIG. 3. Spectral variations of the probe reAectivity when the pump drives the lower transition g~r (solid lines, nonlocal suscepti-
bility approach; dashed lines, local approach}. Pump detuning is positive (b,~ =+kvo) in (a), zero in (b), and negative (h~ = —

kUO) in
(c). Im( T) is in arbitrary units, probe frequency detunings b, in units k@0 with k =(k, +k~ )/2.
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(ii) The pump is detuned towards the blue with
A~=kva [Fig. 3(a)]. There is a narrow asymmetrical
peak around 5, = —

Az due to two-photon resonances in
atoms with small v, . Furthermore, a shallow structure
around 6, =0 is present. In the local-response case, one
predicts a dispersion curve centered around
b,, =(k, /k~ )b,~, due to the response of atoms with v, )0.
In the nonlocal approach, these atoms exhibit a transient
behavior while leaving the surface, and thus do not con-
tribute to the signal. Therefore, in contrast to the previ-
ous case (i), the nonlocal response result is less intense
than the corresponding "local" one by a factor of 5.

(iii) The pump is detuned towards the red with
b~= —kv0 [Fig. 3(c)]. One has a dispersion structure at
b, , =(k, /k )6, which matches the signal predicted in
the local-response approach, since it comes from the
steady-state response of atoms moving towards the sur-
face. In addition, as previously, one has a narrow peak
around b,, = —6 due to two-photon resonances.

VI. CONCLUSIONS

In this paper, we have considered nonlinear selective
reAection spectroscopy from a cascade three-level atomic
system. Transient response of atoms leaving the
dielectric-vapor interface as well as steady-state response
of atoms moving towards it were taken into account by
solving the corresponding optical Bloch equations for the
velocity-dependent atomic density matrix. Analytical ex-
pressions valid for arbitrary pump-field intensity have
been derived for the relevant matrix elements. In the
lowest nonvanishing order in the pump intensity, integra-
tion over the velocity distribution was performed numeri-
cally (and analytically in the Doppler limit for one of the
two possible pump-probe configurations). Sub-Doppler
structures in the selective reAection spectra are predicted
and related to various specific processes involving atoms

with definite velocity. The position and width of these
structures were related to energy level separations and
decay rates. Selective-reAection spectroscopy in three-
level cascade systems should allow one to monitor the
response of atoms leaving the surface and probe their ve-
locity distribution. On the other hand, it yields a power-
ful tool to study the properties of highly excited atoms
near a dielectric surface. In particular, Doppler-free
two-photon reAection signals, originating in the response
of U, =O atoms, may provide a high-resolution optical
probe of long-range atom-surface interactions [4,8] for
highly excited states.
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APPENDIX

Integration over the velocity distribution in Eqs. (5.3)
and (5.5) can be carried out analytically in the Doppler
limit, i.e., under the assumption
~b,, ~

((kv0. In this appendix we give the result for Eq.
(5.3), i.e., for the case represented in Fig. 1(a) and dis-
cussed in Sec. V B, where the pump field drives the upper
(transparent) r ~e transition, while the weak probe field
scans the lower g ~r transition. The analytical results al-
low a more detailed discussion of the phenomena under
study.

The relevant quantity ReT in Eq. (5.3) can be given a
simplified expression if one takes into account the follow-
ing property: since the velocity distribution is an even
function, the integrand for negative velocity is equal to
that for positive velocity if one changes the sign of k .
Thus one has to calculate

S = f+"dv .

U
2

exp
Uo

A~ —i(b, +5 )+i(k —k, )v
Ai —iA, —ik, U

2 (Al)

When detunings and decay rates are small compared to the Doppler width, resonances occur only close to the center of
the Gaussian function, so that in the integrand this function is replaced by 1 and the integration can be carried out
analytically. One obtains

2
+id, 3~k, + A, (k~ —k, )

2
i (k, A +k 6—, )

+
i(k, b, +k~6—., )

(k —k, )

k, Ai+(k —k, )A,
2

(A2)

where

1+ +arctan
2 k —k,

6, +6 —arctan +i ln + —ln
ik, —ki 2

( 3~/2) +(5 +6, )

(3, /2) +b, ,
(A3)
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The final result in the Doppler limit is given by

ReT= —Im(I+ +I ),C
(A4)

where I is obtained from I+ [Eqs. (A2) and (A3)] by the
substitution k —+ —k . Plots of the numerical values
given by (A4) as functions of the probe detunings 6, for
fixed values of the pump detuning, i.e., similar to those
given in Sec. V B, reproduce qualitatively the main
features of the latter.

If the pump is detuned towards the blue by an amount
Az, a weak dispersion structure at 5, around zero and of
the width A, arises from the first term in Eq. (A2) and
from the corresponding term in I . For co )co„a nar-

row dispersion curve appears at b,, = —(k, /k„)b, due to
the denominators in Eqs. (A2) and (A3), where the com-
bination (b, k, + b, ,k ) is present.

If the pump is detuned towards the red by an amount) A&, the structure near zero is still present, and an
asymmetrical structure around 6, = —6 arises from the
last term in Eq. (A3). The characteristic width of this
structure is given by Qh A2 and is thus dependent on
the pump detuning. This structure can be related to the
two-photon coherence transient response for atoms mov-
ing along the surface, i.e., atoms with sma11 U, . It should
be noticed that this contribution is also present in the
previously discussed case where the pump detuning is
positive but then the strong dispersion curve masks this
shallow structure.
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