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Stochastic quantum dynamics of a continuously monitored laser
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The stochastic dynamics of the quantum state of a laser conditioned on continuous intensity and
phase-sensitive measurements on its output are examined. We first develop the essential model for
a Poissonian laser, and then generalize it for regularly pumped lasers. We show that the rate of
phase diffusion (which gives the laser linewidth) is not affected by the regularity of the pump. In
both cases, heterodyne detection causes the phase variance in the conditioned laser state to become
very small, yet remain significantly above (at least three times) that of a coherent state. The phase
difFusion is manifested by a random walk undertaken by the mean phase, with the stochasticity
arising from the local-oscillator shot noise. In contrast, intensity measurements have no effect on
a Poissonian laser. For a perfectly regularly pumped laser, coarse-grained intensity measurements
(for which an approximate theory is developed here) collapse the state to one with an arbitrarily
small photon-number variance-to-mean ratio,

PACS number(s): 42.50.Lc, 03.65.Bz, 42.55.—f, 42.50.Dv

I. INTRODUCTION

The emergence of quantum optics as an important field
of theoretical physics was precipitated by two important
technological developments: the laser and the efBcient
photodetector [1]. Laser light is unlike other optical light
sources in that it has a large coherent amplitude. To
treat this quantum mechanically, it was found extremely
useful to use coherent-state representations, such as the
Glauber-Sudarshan P function [2,3]. Also, it was nec-
essary to develop new techniques for dealing with open
quantum systems, such as the master equation [4]. Both
of these methods are related to photodetection. Coher-
ent states have been found to be precisely those states
which are not affected by conventional detection tech-
niques. The relationship between the openness of quan-
tum systems and their continuous monitoring is still be-
ing explored.

In this paper we examine many of the early themes in
quantum optics using very recently developed theories of
quantum measurement [5,6]. While not leading directly
to new experimental predictions (although see the final
paragraph of Sec. VIII), these techniques provide new
insights into the stochastic dynamics of individual quan-
tum systems. In particular, we clarify the distinction be-
tween coherent states and the quantum state of the light
inside a single mode laser. To do this, we first develop a
simple master equation for an ideal laser producing light
with Poisson photon statistics, as in a coherent state. An
immediate consequence of this master equation is that
the phase of the laser diffuses, with a linewidth inversely
proportional to the mean photon number. An initially
coherent state inside the cavity becomes a mixture of
coherent states over all phases. The picture of a laser
state with a well-defi. ned phase is restored if we incor-
porate heterodyne detection. Using a stochastic master
equation recently derived for such measurements [6], we
show that the laser state is collapsed by a measurement
to a near-coherent state with a phase which wanders ran-

domly. The source of the stochasticity is ultimately the
shot noise in the heterodyne photocurrent which condi-
tions the laser state. The magnitude of the conditioned
phase variance (three times that of a coherent state under
ideal conditions) is a new and unanticipated result.

More recently in quantum optics, great interest has
arisen in so-called squeezed states [7]. These are states
in which the quantum uncertainty in one variable (such as
one quadrature or the photon number) is less than that
of a coherent state, and that in the conjugate variable
(such as the other quadrature or the phase) is greater
than that of a coherent state, as necessitated by Heisen-
berg's principle. There has been considerable theoretical
work on laser systems which have photon-number vari-
ances below the classical (coherent) limit, and so produce
sub-Poissonian photon statistics [8—16]. Here we consider
ideal lasers with a sub-Poissonian pump, and derive a
simple master equation for such lasers. This yields a
number of results. Firstly we show that the linewidth,
and the random phase walk under heterodyne detection,
is the same as in Poissonian lasers. Now, however, the
conditioned state is a (close to minimum uncertainty)
squeezed state, rather than a mixture of coherent states
as in a Poissonian laser.

Unlike the Poissonian laser, regularly pumped lasers
are affected by intensity measurements. Direct photode-
tection is shown to collapse the conditioned state of the
cavity mode into one with a photon-number variance
below that of its steady-state unconditioned operation.
The extra variance in the unconditioned (without mea-
surement) state comes from classical random variation
in the conditioned mean intensity. As in the random-
phase walk, the source of this randomness is the shot
noise in the measured photocurrent. To derive this re-
sult, it was necessary to develop an approximate theory of
direct photodetection in which the state is conditioned by
the photocurrent. Strictly, direct photodetection should
be treated in terms of individual photodetections, but by
coarse graining in time we heurestically derive a plausi-
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ble stochastic master equation which is valid for a suit-
able class of systems. The theory shows that the condi-
tioned photon-number variance to mean ratio in a regu-
larly pumped laser can be arbitrarily small in principle.

The organization of this paper is as follows. Firstly,
in Sec. II we develop the essential model of a Poissonian
pumped laser, and derive some simple results such as the
laser linewidth. In Sec. III we review the quantum theory
of heterodyne detection which we derived elsewhere [6],
and motivate the theory from simple considerations. This
theory is applied to the Poissonian laser in Sec. IV, and
a physical picture of a laser with a randomly wandering
phase is rigorously defined in terms of conditioning the
state on the heterodyne photocurrent. The quantum the-
ory of the ideal laser is generalized in Sec. V to lasers with
a non-Poissonian pump. In Sec. VI we present an approx-
imate quantum theory of direct photodetection, which is
valid for systems such as a laser at steady state. The
effect of such detection on the generalized laser model is
examined in Sec. VII, as well as the efFect of heterodyne
detection. Section VIII is a discussion.

scale the eIFect by ¹ The density operator W for the
field plus one atom obeys the following master equation:

W = —iy[a o i2 + ao i2, W] + p D[oer] W + P 'D[o op]W
+r. D[a]W. (2.1)

Here, 'D[c] is a superoperator taking the arbitrary oper-
ator e as an argument, defined by

D[c] = &[c] —A[c], (2.2)

where we are using the following notation:

g[c]p = cpct,

A[c]p = 2r(ctcp+ pctc),
(2 3)
(2.4)

where p is an arbitrary density operator.
To achieve amplification by stimulated emission, it is

necessary for level ll) to be rapidly depleted so that a
population inversion on the lasing transition occurs. This
requires that the spontaneous-emission rate p be large,
in the following sense:

II. ESSENTIAL MODEL OF A I ASER
2XP &(1 (2.5)

In this section we present the simplest possible phys-
ical model for a laser. It reproduces the essential fea-
tures of an ideal laser. The steady-state photon num-
ber distribution is Poissonian, as in a coherent state,
but the phase difFuses, giving a finite linewidth. The
laser consists of a single-mode optical cavity containing
N three-level atoms. The atomic-level structure is shown
in Fig. 1. The lowering operator from an upper to a lower
level is denoted o~„. The cavity mode has the annihila-
tion operator a, freely rotating at frequency ~. This is
resonant with an atomic transition between levels ll) and

l2) . The dipole coupling constant is y, which we take to
be real for simplicity. The lower level ll) spontaneously
decays to the atomic ground state l0) at rate p. The
atoms are incoherently pumped, causing the atom to be
excited from l0) to l2) at rate P. Finally, the cavity mode
is damped to the external continuum of electromagnetic
modes at rate r. Now eventually we will adiabatically
eliminate the atoms, so we need consider only the inter-
action between the field and one atom, and subsequently

I2)

where p is the mean photon number for which an ex-
pression will be given later. However, this condition is
not sufIicient to produce a laser. We also require that
the stimulated emission events be Poissonian distributed
in time in order to produce a Poissonian photon-number
distribution. This will occur if the following condition is
satisfied:

(2.6)

Finally, if we wish to adiabatically eliminate the atoms,
then the cavity field must relax much more slowly than
the atomic populations. This will be satisfied if

(2 7)

These three conditions could be satisfied (with e 6
0.1, g 10 ) by a set of realistic parameters such as
p" lQ s P Is p 10 s r, g 10 s
p~10

Now the above master equation (2.1) permits a solu-
tion of the form

10)

FIG. 1. Schematic diagram of atomic transitions in the
ideal laser model. The dipole coupling constant (one-photon
Rabi frequency) for the ll) —l2) lasing transition is y. Level
l0) is incoherently excited to level l2) at rate P. The sponta-
neous-emissiou rate of ll) to l0) is p, and that of level l2) is
assumed negligible.

w(t) = lo)&ol @p"(t)+ 12)&2I @p"(t)
+ 12)&IIp"(t)+H' +II)&IIp"(t)

(2.8)

Here the p's are operators in the Hilbert space of the
cavity mode. The leading term p is of order 1, while
the others are much smaller, due to the above scalings.
Specifically,

"= o(q), "= o("~')o(q), "= o(.)o(q).
(2 9)
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These scalings will be shown to be self-consistent. The
four cavity-mode p operators obey the following coupled
equations:

the following master equation for p:

p = &P [a'l((&[a'9 'P) —P] + ~D[a]p (2»)

P22 &+( P12 P21 t) + p 00 + ~[ ]
22

21 &+(a ll P22a) 21 + ~[ )
2121

2
ll

( t 21 12
)

ll + ~[ )
ll

(2.10a)
(2.10b)

(2.10c)

(2.10d)
rc 'p = (@8[at]+ 'D[a]) p, (2.20)

Multiplying the pumping term by the number of atoms
N, we find the following elegant form for the master equa-
tion of an ideal Poissonian laser:

Consider first Eq. (2.10c). Using the above scalings
(2.5)—(2.9), this can be rewritten as

where 8 is defined by

F[c] = J'[c]A[c] ' —1. (2.21)

[1+&(~) + O(~)O(~)]P" = imp"a - 2P", (2.11)

p21 +p22aQ(~1/2)Q(p22)
y

(2.12)

Substituting this into Eq. (2.10d) gives the following:

[1+O(b)]p" = a p a —pp".4&'

y

(2.13)

As above, p is constant on the time scale over which

p relaxes to its steady-state value of

4 2

, &[a']p" = &(e)&(p") (2.14)

where the terms on the right-hand side are of equal order.
Now this shows that p relaxes at a rate of order p,
whereas p will be shown to relax at a rate of order ~

slower than this. Thus it is valid to say that p will be
slaved to p, and replace the former by the steady-state
value. Ignoring lower-order terms in Eq. (2.11) gives

This is to be compared with the definition of 'D (2.2).
These simple definitions show clearly the distinction be-
tween the Poissonian damping process 'D[a] with rate r
times the mean photon number, and the Poissonian ex-
citation process t [at] with fixed rate K times p where

p, = Wp/K. (2.22)

Here, as in the remainder of this paper, we are measuring
time in inverse units of the cavity linewidth v. It is easy
to see that p, is the steady-state mean photon number by
verifying that the steady-state density matrix satisfying
Eq. (2.23) is

Using the Fock basis for the cavity mode gives the fol-
lowing:

(2+nm@=Pl , P &, —& P, )—n+m

+g(n + 1)(m + 1) p„+1 ~+1 —
2 (n + m) p„~.

(2.23)

where g is as defined in Eq. (2.3). Now we substitute
Eq. (2.12) into Eq. (2.10b) to get p„(oo) = 6„, e ~p

4

(2.24)

4X[1+O(~))p" = — &[a')p" + &p",
y

(2.15)

where A is as defined in Eq. (2.4). The relaxation time
of p is of order 1/b times that of p0 so once again it is
possible to replace the former by its slaved value,

This photon-number distri'~ution is Poissonian, as in a
coherent state of amplitude i/p. Unlike a coherent state,
it has a completely undefined phase as the ofF-diagonal
elements are zero. This can be seen from an alternate
representation of the steady-state density operator using
the Glauber-Sudarshan P function,

p" = 4, (&[a')) p" = &(() (2.16) P(~) =
2

(2.25)

Substituting this into Eq. (2.14) gives

(2.17)

Now the reduced density operator for the cavity mode
is given by

P=Tr~« ~=P +P +P00 11 22 (2.18)

Since the latter two terms are much smaller than the
first (by a factor of order ( 10 s with the parameters
suggested above), we can ignore these and approximate
p by p00. Substituting Eq. (2.17) into Eq. (2.10a) gives

Thus, the stationary density operator can be expressed
either as a Poissonian mixture of number states (with
maximally determined intensity and completely unde-
fined phase), or as a mixture of fixed amplitude coherent
states (with well-defined intensity and phase). Why then
is a laser often treated as being in a coherent state of
unknown phase, but never as being in an imprecisely
known Fock state? (Here we are talking of classical
knowledge, in that the imprecision is merely due to the
experimenter's ignorance. )

The basic answer to the above question is differential
lifetimes, as pointed out by Gea-Banacloche [17]. If a
laser were to be put into a Fock state, then under the
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master equation (2.23), the probability of it remaining in
that state will decay at a rate of order Kp, . Using the pa-
rameters suggested above, the lifetime of a number state
is thus of the order of 10 s. On the other hand, the
survival probability of a coherent state of amplitude ~p,
decays at a rate of order r/p, giving a lifetime of order
minutes. This can be seen by calculating the infinites-
imally evolved density matrix which is initially in the
coherent state ~o.) with ~a;~ = p. . From (2.23), the result
is

p„~(dt) = e !
~

1 —
~

. (226)! !2 o."a*
t dt(n —m)2&

n!m! 2 n+m

For large p, , it is an excellent approximation to replace
n+ m in the above denominator by 2p, . Then, the above
short-time result (2.26) could have been obtained from
the following master equation:

p = I"D[o,ta]p, (2.27)

where we have defined (in units of r)
I = 1/2p. (2.2S)

d I'
(2.29)

Then, by the quantum regression theorem and the fact
that ap is a member of C„ if p is a member, we have

( (&) (o)) = P (2.30)

Thus the laser has a Lorentzian spectrum with full width
at half maximum equal to I'. This is as expected since
a master equation containing a double commutator with
a!'a will cause diffusion in the conjugate variable phase.
This is perhaps more easily seen from the Fokker-Planck
equation for the P function. Since this is nonzero only for
complex amplitudes n of modulus ~p, the P function has
only one real argument, p = arg(n). It satisfies a pure
diffusion equation

(2.31)

The Green's function for this equation [4]

(2.32)

is an alternate route to the linewidth stated above, which
agrees with that of Louisell in the same limits [4].

This short-time master equation is valid for an initial
coherent state of amplitude ~p. By linearity, it will also
be valid for all initial states which are mixtures of such
coherent states. But it is easy to verify that the class C„
of such mixtures is invariant under the master equation
(2.27). Thus, this approximate master equation is in fact
valid for all times.

From (2.27), we can derive the following result:

III. QUADRATURE MEASUREMENTS

The fact that the inverse of the laser linewidth is of
order minutes is often used as a justification for approx-
imating the laser by a coherent state. On the time scale
of many experiments, a laser initially in a coherent state
will remain in that state to a very good approximation.
However, this appears to beg the question of how the
laser got into a coherent state in the first place. An ob-
vious answer is that measuring the phase of the laser
collapses it into a coherent state (or alternatively, deter-
mines which coherent state it really was in). In practice,
phase measurements are made using homodyne or het-
erodyne detection. In this section we review briefly the
quantum theory of such phase measurements which we
have presented in detail elsewhere [5,6].

To investigate the collapse of the laser state due to
measurement we need a theory which describes the Se-
tective evolution of the system. That is to say, we need
to know what the state of the laser is given the result of
the measurement. The nonselective evolution of the laser
is simply given by the master equation (2.27). Different
measurement schemes on the output light of the laser will
give different selective evolution equations. If the result
of the measurement is averaged over, these selective evo-
lutions necessarily reproduce the nonselective evolution
for the density operator.

The simplest kind of measurement on the output light
is direct photodetection. The selective evolution of the
system is easy to describe. In the infinitesimal time in-
terval (t, t + dt), a photodetector of quantum efficiency
g placed at the output of a cavity will register a count
with probability qP, (t)dt, where P, (t) = Tr(+[a]p, (t)}.
Recall that we are measuring time in inverse units of the
cavity linewidth. The subscript c on p, (t) indicates that
the state of the system at time t is in general conditioned
on previous photocounts. If a photodetection occurs, the
new state of the system is p, (t +dt) = +[a]p,(t) /P, (t). If
no photodetection occurs, the state of the system evolves
such that the average evolution of the system is given by
its master equation. This is shown explicitly in Ref. [6].

It is possible to generalize this theory of photodetec-
tion by adding a local oscillator to the amplitude of the
output field before it is detected. This is achieved by
using a beam splitter, and it is advantageous to use two
detectors, one for each of the beams leaving the beam
splitter. If the local oscillator is tuned to cavity reso-
nance, then we have a balanced homodyne measurement
of the quadrature of the system in phase with the local
oscillator. For monitoring both quadratures (or equiva-
lently, the amplitude and phase) of the system, one can
use so-called eight-port homodyne detection, where the
output light from the cavity is split into two indepen-
dent balanced homodyne detectors. The same result can
be achieved by using heterodyne detection, in which the
local oscillator is significantly detuned from the cavity.
The two Fourier amplitudes of the resulting photocur-
rent at the detuning frequency give the two quadrature
measurements.

Since we are interested in monitoring the phase of the
laser, this last scheme is most appropriate. We measure
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the phase of the laser relative to that of the local oscilla-
tor, which is defined as a coherent state with amplitude
P. If the local-oscillator amplitude is much greater than
the system amplitude, then the rate of photocounts is
much higher than it would be without the local oscilla-
tor, but the change in the conditioned system state due
to each photodetection is much less. In the limit where
the local-oscillator amplitude goes to infinity, it is possi-
ble to convert from discrete photocounts to a continuous
photocurrent. Denote the photocurrent measuring the
quadrature in phase with the local oscillator by I; '(t),
and that out of phase by I,""(t).Then it is useful to de-
fine a "complex photocurrent" I;"r (t) = I; '(t)+iI "(t),
which is given simply by

E(((t)( (t )) = ~(t —t ) (3.2)

with all other first- and second-order expectation values
vanishing. Such ensemble averages denoted by E are not
to be confused with conditioned quantum averages such
as (ai), (t) which is given by Tr[atp, (t)]. The condition-
ing of the system density operator on the photocurrent
is given explicitly via the following equation (which is to
be interpreted in the Ito formalism of stochastic calculus
[»]):

P.(t) = &P.(t) + Wnf((t) [a —(a) (t)] + H e )P.(t) (3 3)

Although Eq. (3.3) is generally unfamiliar in content
and in form, we can motivate it from three simple prin-
ciples. Firstly, the conditioned system evolution must
be completely determined from the conditioned complex
photocurrent (3.1). This is true by the definition of a con-
ditioned system state. Secondly, if we ignore the result of
the measurement by averaging over all possible results,
we must return to the original master equation for the
unconditioned state j = Zp. In this case, this amounts
to setting the noise terms in (3.1) equal to their average
value of zero, or to setting the efIiciency of the detector
to zero. Thus, the only additional terms in the master
equation must be linear in the photocurrent noise. Since
the stochastic evolution equation must preserve the Her-
miticity of p, (t), the obvious solution suggested by these
first two principles is

.(t) = & .(t) + ~[((t)& .(t)+ H (3.4)

where T is an as-yet undetermined superoperator which
may be nonlinear in its action on p, (t).

The third principle is that the stoehastie equation (3.4)
must yield the correct correlation functions for the com-
plex photocurrent (3.1), as found by more standard anal-
yses. For example, the two-time correlation function for
the heterodyne photocurrent is defined as the ensemble
average

R(t, t+~) = E(I;" (t+~), I (t) ), (3.5)

(3.1)

where ((t) represents complex Gaussian white noise sat-
isfying

where we are using the notation E[A, B] = E[AB]—
E[A]E[B]. From standard quantum regression tech-
niques [19], this is given by

~(t, t + z) = rl Tr(ai e [ap(t)] j
—rl'T [

' P(t)]T [ P(t)]+nti( ) (36)

R(t, t + ~) = E(Tr [ala'p, (t + ~)]~rl(*(t)) + q6'(~). (3.7)

For this to agree with Eq. (3.6), we simply require that

E( .(t+ )( (t)) = v ([ (t)] —T [ (t)] (t)).
(3.8)

The left-hand side of this equation is not zero because the
conditioned density operator at time t + ~ is influenced
by the photocurrent noise at time t. Specifically, we see
from our postulated Eq. (3.4) that

,(t+ dt)(*(t) = ~E .(t), (3.9)

where we have used Eq. (3.2) and discarded terms of
higher order in dt. Between t+ dt and t+7., the ensemble
average evolution of p, (t) is simply given by the Liouville
superoperator l:. That is, we get to lowest order in dt

E(p, (t+ ~)(*(t)) = v ale Pp(t)]. (3.10)

A more rigorous derivation of this result is given in Ref.
[5]. Comparison with Eq. (3.8) shows that we must define
the superoperator T by

Pp = (a —Tr[ap])p. (3.11)

This is precisely the definition needed to reproduce the
correct equation (3.3).

By use of this equation, we will show that the condi-
tioned laser state does have a well-defined phase at all
times, relative to the fixed phase of the local oscillator.
However, this appears to beg the question as to how the
fixed phase of the local oscillator is produced. In fact, it is
not necessary for the local oscillator to have a fixed phase;
it can come from a completely phase-dift'used laser. Pro-
vided that the local-oscillator linewidth is much less than
that of the system, the dynamics of the relative phase
will be dominated by the system dynamics, as given in
Eq. (3.3). The absolute phase is as undetermined as that
of the local oscillator. This is usually unimportant, be-

where p(t) is the density operator at time t Th. at this
is assumed given is the reason that the current at time
t in Eq. (3.5) is not conditioned; whether or not the
system state at time t is conditioned on previous mea-
surement results is irrelevant. The current at time t + ~
is, however, conditioned on the results of the homodyne
measurements in the interval [t, t + ~). In particular, the
state of the system at time t + ~ is conditioned on the
noise in the photocurrent at time t. -

It is easy to see [5) that, upon substituting Eq. (3.1)
into Eq. (3.5) and using Eq. (3.2), the terms remaining
after cancellations are
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cause in practice only relative phase is measurable at
optical frequencies.

IV'. MDNITDRINC THE POISSONIAN LASER.

First we determine the conditioned state of the laser
under direct photodetection. We showed in Sec. II that
the laser at steady state is in a mixture of coherent states
of amplitude of modulus ~p, . From the theory in Sec. III,
it is easy to see that direct photodetection has no efFect
on the laser state. This is because the coherent states
~o.) are eigenstates of the jump superoperator J'[a], and
the eigenvalues are ~n~, which is independent of phase.
If the uncertainty in the laser intensity was greater (or

I

P, (t) = rV[~ta]p
+V &(&(t)[&p.(t) —(&).(t)p. (t)] + H c ). (4.1)

As noted in Sec. II, the P function for the laser at steady
state is a function of the phase y only. It obeys

less) than that of a coherent state, then direct photode-
tection would have an effect on the conditioned system
state. Moreover, the effect is distinctly different in the
two cases, as will be seen in Sec. VII.

Heterodyne detection, on the other hand, has a dra-
matic effect on the laser at steady state. The stochastic
master equation for the conditioned laser state at steady
state is

I' Bs
P, (p, t) =

~

— + +gyes(t) e*t' —
, dp'e'" P, (p't) + c.c,.)) P, ((p, t).

g2 Olp
(4.2)

g~(t) = -imp~"~-f'lg(t)]

and P, (t) is the central angle of the distribution

4.(t) = dV P.(V»t)V'

(4.4)

(4 5)

Since the variance in the phase is very small, we can
ignore the periodicity requirement on P, ()p, t) and instead
use the following ansatz for the solution of Eq. (4.3):

P.(V» t) = exp(- lV
—&.(t)]'/2U. (t))

/2~U, (t)
(4.6)

If P,(t) is initially in such a Gaussian state, it will remain
so under the evolution of Eq. (4.3), with the conditioned
mean and variance evolving via

4.(t) = v'2n~&. (t)U. (t),
U, (t) = I' —2gp U, (t) .

(4.7)

(4.8)

These equations are derived in Appendix A. Note that
the effect of the measurement on the variance is deter-
ministic, and causes it to reduce as expected. If the laser
state is taken to be initially in a coherent state, the nor-
mally ordered variance is U, (0) = 0. From Eq. (4.8) we
then see that

U, (t) = U tanh(2r)I'pt),

where the steady-state P-function phase variance is

(4.9)

Now we will show shortly that the long-time solutions
to this equation have a variance in &p of order 1/p (( 1.
Keeping terms of lowest order in 1jp in Eq. (4.2) gives

I )9Ph, &) = —,+ v'2nv(hatt))v —4.(~)l) P.h~, ~)
2 B(p

(4.3)

Here, (~(t) represents real normalized Gaussian white
noise, defined by

U = QI'/2r) p. (4.10)

If there is no excess phase diffusion in the laser, then 1 =
1/2p, as derived ln Sec. II. Assuming ln addition that
g = 1, this gives the minimum steady-state conditioned
P phase variance of U = 1/2p, . As the mean photon
number p, goes to infinity, this goes to zero. Nevertheless,
on a quantum scale, it is always significantly higher than
the value of zero for a coherent state. In fact, it is equal to
the Q-function phase variance of a coherent state. Thus
it is not true that monitoring the phase of a laser collapses
it to a coherent state.

Equation (4.9) shows that the phase variance relaxes
to its steady-state value at a rate of order the cavity
linewidth, which is of order p times the laser linewidth.
Thus, we may replace U, (t) in Eq. (4.7) by its steady-
state value. This gives

(4.11)

This equation is precisely of the form of the stochastic
differential equation for the laser phase which would be
derived from the original Fokker-Planck equation for the
P function (2.31). That is not to say, however, that all
we have achieved is a very lengthy and obscure deriva-
tion of a standard result. The phase P, (t) is not a math-
ematical artifact. It has a physical interpretation as the
mean phase of the laser, conditioned on the results of the
continuous heterodyne measurement. The conditioning
occurs via the noise in Eq. (4.11) which is physically
derived from the photocurrent shot noise, not merely a
formal device producing a stochastic equation equivalent
to a Fokker-Planck equation. We thus have the follow-
ing picture for the dynamics of a continuously monitored
standard laser. The laser state is a Gaussian mixture
of equal-amplitude coherent states with a constant phase
variance inversely proportional to the mean photon num-
ber. The mean phase of the mixture undergoes a random
walk on a time scale inversely proportional to the laser
linewidth.
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V. REGULARLY PUMPED LASER MODEL

The laser model developed in Sec. II was based on the
assumption that the excitation process was Poissonian.
Specifically, this was achieved by assuming that the rate
of decay from the lower lasing level to the ground state
was much greater than the rate of excitation from the
ground state to the upper lasing level. This assumption
has the benefit that the Poissonian laser master equation
has a simple form, and that the laser steady state is a
mixture of equal-amplitude coherent states, which gives
Poissonian photon statistics in the output light. Other
assumptions regarding the decay and excitation rates in a
three-level atomic system can give rise to sub-Poissonian
statistics [12]. Furthermore, the more atomic levels in-
volved, the better the quantum noise reduction in the
laser output [13,14]. As the number of levels increases
indefinitely with matched transition rates equal to half
the pump rate, it is possible to get arbitrarily low pho-
tocount variance-to-mean ratios for long times [14].

The explanation for this quantum noise reduction is
that the reexcitation of the upper laser level following a
stimulated emission is regularized due to the many inter-
mediate steps. It is important that the transition rates
are matched; if one is much slower than the others, then
this becomes the rate-determining step, and the excita-
tion process becomes Poi.ssonian, as in Sec. II. A regular
electronic excitation can also be achieved by externally
imposing a regular pump process on the laser [15,16],
such as by a regular injection of atoms. Either method
of sub-Poissonian excitation can be treated simply us-
ing the superoperators derived in Sec. II. The following
argument is similar to that of Ref. [16].

Consider a short time dt in which the number of stim-
ulated emissions n(dt) is expected to be much greater

I

than 1. If the mean rate of excitations is p, as in Sec. II,
then we ca,n write

n(dt) = ddt + Qp, (q+ l)dW, (5.1)

(5.2)

Since 8[at] represents a small change to the state of the
mode (adding one photon to p photons), we can assume
that it is much less than unity, and expand Eq. (5.2) to
get

p(t + dt) = (1 + n(dt)f [ai]

+2n(dt) [n(dt) —l]f[ai] )p(t). (5 3)

Substituting in the above expression for n(dt) and aver-
aging over the uncertainty in the number of stimulated
emissions gives the following master equation:

p= p, Fc~ + —Sa~ p+Vap. (5.4)

Here we have restored the damping term with rate 1. For
the Poissonian pump (q = 0) this reduces to that derived
in Sec. II (2.20), as expected.

To elucidate Eq. (5.4), we write it in the Fock basis,

where de is an infinitesimal Weiner increment and q is
the Mandel Q parameter [20] for the excitation process,
equal to 0 for a Poisson process and —1 for a perfectly
regular process. For an m level (including the two las-
ing levels) atomic system with matched transition rates,
q = —(m —2)/(m —1) [14]. Now the efFect of one stim-
ulated emission is, from. Sec. II, given by the excitation
superoperator 8[at]. Thus, the infinitesimally evolved
density operator is

( 2qgnm(n —1)(m —1) 2(1 —q) gnm
pn, m P'

( + )( + 2)
pn —2,m —2 + pn —1,m —1

+g(n + 1)(m + 1)p„+i,m+1 —
2 (n + m) p„,m.

2 —q P,

(5.5)

Lookirig at photon-number populations P = p, gives

P„=p P„2+ (1 ——q)P„.2 "
+(n + 1)P„+1—nP„.

2 —
Q

2

(5.6)

From this we can easily derive the following for the mean
and variance of the photon number:

n=p —n,
o2 = n+ (1+q) p, —2o. .

(5.7)

(5.8)

~' = V(1+ q/2). (5 9)

These equations show that the steady-state mean photon
number is independent of q, as expected, and that the
steady-state variance is given by

(: n(t + w)n(t):) = p + pqe— (5.10)

This gives the following normalized noise spectrum for
the laser intensity output:

S(~) = p 1+ 1+(J (5.11)

For perfect pump regularity, the noise is reduced to zero
at low frequencies.

The above results for photon-number statistics are as
obtained by previous workers. However, they make no

This can obviously be sub-Poissonian, with a minimum
of p, /2 when q = —1. Furthermore, Eq. (5.7) allows
the steady-state second-order correlation function to be
calculated exactly as
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mention of the effect of pump regularity on the laser
phase. To investigate this, we convert the master equa-
tion (5.4) into a Fokker-Planck equation for the Wigner
function W(o;, o."). It is necessary to use the Wigner

function rather than the P function as in Sec. II be-
cause now we have to deal with nonclassical states (see,
for example, Ref. [19]). The result, which is derived in
Appendix 8, is

+ +1+~ ~ +,. ~+ ~~+ ~~+B — Cl 1 0 B2 B2

BA 2A 2 2 4ini2o. ' 2 Bn 4o.' Bn' 4o. Bo.Bo."
(5.12)

This equation can be considerably simplified by trans-
forming to intensity and phase variables n = ~a~2 —

2
and y = ln(o. /n')/2i. Then the Fokker-Planck equation
for W(n, Ip) becomes

B
(n —p, )Bn

1 B 1B n+p+-,[n+(1+~)/~]+-, B . „.
(5.1S)

From this, the results (5.7) and (5.8) may easily be veri-
fied.

By replacing n by its mean p, in the diffusion terms,
we get the simple expression

B 1 B2 1 1 B2
( —P)+ P( +&) —2+ ——

2 W.
On

(5.14)

This clearly shows that regular pumping does not affect
the phase-diffusion term. That is, reducing the inten-
sity fluctuations in this case does not increase the phase
fluctuations. We thus expect the effect of heterodyne de-
tection on phase diffusion to be much the same as in Sec.
IV. However, the effect on the laser intensity variance
needs to be investigated. Also, since we have a nonclas-
sical state, direct photodetection will now have an effect
on the conditioned state of the laser. To deal with this,
we need the theory of coarse-grained intensity measure-
ments developed in the next section.

I

sities. Such a theory could be called a coarse-grained
theory of photodetection, in that we must average over
many individual photocounts in order to get a photocur-
rent. However, this is not the approach we adopt here
to derive a stochastic equation for the conditioned sys-
tem state. Rather, we develop a heuristic model in the
manner of the motivation for the stochastic equation for
heterodyne detection given in Sec. III.

Consider a cavity with a stable mean photon number
n p, )) 1, and photon-number variance of order p.
Let dt be a small-time increment such that the average
photocount in that time ( ddt) is very large, but the
change in the system ( dt) is very small. Obviously
this requires p, )) 1, which will be satisfied in a laser
with p, 10 . Now since the change in the system over
the time dt may be ignored, the photocount drn will be
a Poissonian random variable with mean and variance
equal to gndt, where g is the efBciency of the photode-
tector. Since this is very large, it is well approximated by
a Gaussian random variable with equal first- and second-
order moments. That is, we approximate dm by

dm = hundt + grlndW, (6.1)

I.(t) = n(a'a). (t) + V'~p4(t) (6.2)

where dR' is an infinitesimal Weiner increment. Since
the mean photon number is assumed stable, we can re-
place n by p, in the noise term of this photocurrent. This
is necessary for the theory developed below. Then a pho-
tocurrent defined by I(t) = dm(t)/dt will be given by

VI. CDARSE-CRAINED INTENSITY
MEASUREMENTS

The quantum theory of direct photodetection has al-
ready been presented in Sec. III, in terms of the prob-
ability of a photodetection occurring in an infinitesimal
time increment, and the effect on the conditioned system
state. However, this theory is of limited use in prac-
tice, because with many systems the photon lux is so
high that only a photocurrent is measurable, not a pho-
tocount. From a theoretical point of view, the noise as-
sociated with stochastic arrival times of photons is much
less tractable than the Gaussian noise typically associ-
ated with steady photocurrents. For these reasons, we
wish to develop a quantum theory of intensity measure-
ments appropriate for systems with large, stable inten-

where ((t) = dW(t)/dt Here we hav.e added a condi-
tioned subscript to the mean photon number (afa), (t) =
Tr[ap, (t)a ] in anticipation of the impending develop-
ment of the theory.

Now we wish to know how the photocurrent (6.2) con-
ditions the system state. Presumably, it would be possi-
ble to derive this from the summation of the individual
effect of each photocount. However, this appears to be
very diKcult, so instead we derive an evolution equation
for the conditioned state based on the three conditions
specified in Sec. III. These were (i) the stochasticity must
be determined by the measured photocurrent; (ii) averag-
ing over the noise must restore the original master equa-
tion; and (iii) it must yield the correct autocorrelation
function for the photocurrent. As in Sec. III, the first
two conditions suggest a stochastic master equation of
the form
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P (t) = [& + v 7((t)2 ]p (~) (6.3)

where 2, is the generator of the original master equation,
and 5 is the nonlinear superoperator for intensity mea-
surements which is to be determined.

The photocurrent autocorrelation function which we
require is [19]

will generate valid density-matrix evolution. This will be
shown to be the case for an ideal laser. The proof relies
upon keeping only terms of leading order in the mean
photon number.

VII. MONITORING THE REGULAR LASER

E(I.(t + ~), I(t))
= q Tr(algae [ap()!)af —(aia)(g) p(g)) j

+g(aia), (t)6(~). (6.4)

We first investigate the effect of direct photodetection
on the regularly pumped laser state, using the theory of
the previous section. Converting Eq. (6.7) into a Fokker-
Planck equation for the Wigner function and adding the
ideal laser terms gives

Within the approximations mentioned above, it is per-
missible to replace the final shot noise term by rIpb(w).
Using the method of Sec. III, we can show from Eq. (6.2)
that the stochastic master equation Eq. (6.3) gives the
result

W, (t) = O 1 O 1 1 O

~ ( — )+- ( + )~, +-
On

0 1 c)'—((t) ~

n —n, (),') + n+ — n
p ( Bn 2 Bnz

x W, (t), (7.1)
E(I,(t + ~), I(t)) = il ~p Tr(a ae [2p(t)]) + rjpb(7. ).

(6.5)
We see immediately that the required superoperator is
defined by

1
Zp = apai —Tr(cpa') p (6 6)

That is to say, with the photocurrent given by Eq. (6.2),
the stochastic evolution equation for the conditioned sys-
tem state is

where n, (t) = (aia), (t). Now we linearize the
measurement-induced terms as above, and discard terms
of order 1j~p, . In doing this we make the crucial assump-
tion that the photon-number variance of the conditioned
state is of the same order as the mean. Since the phase
dependence of the Wigner function is not influenced by
the intensity measurement, we remove this degree of free-
dom to obtain

O 1 O
W, (n, t) = (n —p) + —p(2+ q)

(),(t) = (L+ ((t) (Z(a) —(a a), (t))) P, (t). (6.7) ((t) ~

n —n, (t) + p,
[ W, (n, t).

o) ')

On)
Having "derived" this master equation, we must em-

phasize that it is not valid in general. Although it ob-
viously preserves Hermiticity and trace, it does not in

general preserve the positivity of density operators. For
example, consider an initially pure state with mean pho-
ton number p, in a simply decaying cavity. It is easy to
show that, to leading order in the infinitesimal time dt,

(7.2)

Using the method of Appendix A, we find that this
equation has a Gaussian solution. The mean n and vari-
ance cr~(t) of this distribution obey the following equa-
tions:

T [~(«)'] = 1+ ((~') (a) —(~'a))
2dlV

(6.8)
n, (t) = —n, (t) + p, + .(~) — .(t) ((~) (7.3)

where all of the quantum averages are evaluated at t = 0
and we have assumed g = 1. Unless the initial state is a
coherent state, the infinitesimally evolved state has a 50%%uo

chance of being nonpositive, with Tr[p(«) ] & 1. This
shortcoming is a consequence of the fact that this theory
is intended to apply to coarse-grained measurements. A
stochastic master equation describing fine-grained mea-
surements [such as (3.3) with il = 1] is equivalent to
a stochastic Schrodinger equation for a state vector [6],
providing that the nondamping evolution is unitary. The
density matrix formed from a state vector is of course
positive definite, so fine-grained measurements will al-
ways give valid master equations. Despite this problem,
Eq. (6.7) is useful for those applications for which it
was intended. That is, if the system has a well-defined
stationary mean photon number (with variance of the
same order as the mean), the stochastic master equation

' (t) = -2 .'(~) + ~(2+ ~) —— .'(t) —n. (t)
p

(7.4)

These equations are similar to those for the moments of
the phase distribution in Sec. IV, in that the noise only
appears in the equation for the mean. Note the difFerent
effect on the conditioned mean depending on whether the
state is super- or sub-Poissonian. For a super-Poissonian
state (o' & n), the conditioned mean photon number in-
creases when a higher than average intensity is measured
at the photodetector [((t) & 0]. This is what is expected
from a classical measurement; the higher photocurrent
indicates that; the true mean photon number of the sys-
tem is larger than we had previously thought, and so our
estimate (n, ) is adjusted upwards. For a sub-Poissonian
state, this intuition fails in that a higher photocurrent
causes the conditioned mean to decrease. This is pre-
cisely the mechanism by which squeezed light gives rise
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~' = —
[
—1+re+ QI+qrl].

'rt

If ri = 1 (perfect detection), we have simply

cr' = p, gl+q,

(7.5)

(7.6)

which is to be compared with the nonconditioned vari-
ance of p(1+q/2). From this it is obvious that the condi-
tioned variance is less than or equal to the unconditioned
variance for g = 1. In fact, this is true for any value of
g, and as g ~ 0 we recover the nonconditioned value.
If q = 0, then the conditioned variance is equal to the
nonconditioned variance p, . This is as we concluded ear-
lier: for a Poissonian pumped laser, intensity measure-
ments have no effect. For a sub-Poissonian pumped laser
(q ( 0), the nonclassical nature of the intracavity field is
enhanced in the conditioned state. In particular, if q ~ 1
and q —+ —1, then we get o —+ 0. In this regime, our
approximations break down, as we have assumed that the
variance is always of the same order as the mean. Never-
theless, it indicates that under ideal conditions, the ratio
of the variance to the mean in the conditioned state will
be arbitrarily small.

Substituting the steady-state value for the conditioned
variance into the equation (7.3) for the conditioned mean
gives

n, = —n, (t) + p+ —1+ pl+ qg ((t). (7.7)

to a subshot noise photocurrent, and highlights the dif-
ference between classical and nonclassical states. The
explanation lies in the fact that an above average pho-
tocurrent is caused by an increase in the number of pho-
tons leaving the cavity. If the photon-number variance is
sufficiently small (less than the mean), then the eKect of
this in dropping the mean photon number in the cavity
overrides the "classical" efFect described above.

The deterministic equation for the variance will cause
the photon-number variance to collapse rapidly to its
steady-state value of

+ (,"(t) n —n, (t) + p,

+/2prl g~(t) p —p, (t) + W, (t),
4p &V

(7.11)

where P, (t) is the mean phase of the Wigner function,
and we now have two real white-noise terms,

(,"(t) = Re[v 2e'~ ('l((t)]

(~(t) = 1m[v 2e'~ ( l((t)],
(7.12)

(7.13)

where ((t) is the complex white noise in Eq. (3.3). It
is evident that, in this linearized regime, the efFect of
heterodyne detection on the photon-number distribution
is the same as the effect of direct photodetection, with
the efficiency reduced by a factor of 2. This is not un-
expected, as the heterodyne photocurrent contains equal
information about the intensity and phase of the cavity
mode. The above results for direct photodetection thus
go over to heterodyne detection with the replacement of
g by rl/2.

The effect of heterodyne detection on the phase is the
same as it was in the Poissonian laser. To see this we
derive the coupled stochastic differential equations, again
using the method of Appendix A

interpretation in terms of two components: the quan-
tum variance o.2 around each conditioned mean n„and
the classical (ensemble) variance due to the random walk
of nc under photodetection. The relative proportion of
these two contributions depends on the efFiciency of the
detection.

We now examine heterodyne detection on the regu-
lar laser. Converting the heterodyne stochastic master
equation (3.3) into a linearized stochastic Fokker-Planck
equation for the signer function gives

cr 1 g2 1 1 g2~.(t) = (n —p) + —p(2+ q); +-
Bn 2

E(n, ) = p, (7.8)

E(n2 —ps) = —[1 —Ql + qg+ 2rqri]. (7.9)

The total uncertainty in the photon number in the ensem-
ble of conditioned states is equal to the photon-number
variance in each conditioned state (7.5) plus the ensemble
variance in the mean photon number (7.9),

If g = 0, then there is no noise in the mean, as expected.
The same applies if q = 0. In general, n, undergoes
a random walk with a linear restoring force. That is,
it obeys an Ornstein-Uhlenbeek process [18]. Averaging
over the ensemble of conditioned states, we have the fol-
lowing steady-state expectation values

(7.14)

(7.15)

where V, (t) is the conditioned Wigner phase variance.
These are identical to the equations for the Poisson laser
(4.7) when one remembers that V, (t) = U, (t) +1/4p. As-
suming that g = 1, we have a conditional phase variance
of

(7.16)

o + E(ri~ —tJ2) = y. (1+ —
) . (7.10)

Meanwhile, putting rt = 1/2 into Eq. (7.5) gives the
heterodyne detection photon-number variance under the
same conditions as

This is precisely equal to the unconditioned variance in
the photon number (5.9). Here, this variance has a new cr2 = p(v2 —1) = 0.41p, (7.17)
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where we have put q = —1. Thus the conditioned state
for a perfectly regular laser under heterodyne detection
is highly nonclassical, and has a Wigner phase-space area
of

QV~o. 2 =
2 3(~2 —1) 0.56. (7.18)

This is only just above the minimum of 0.5 allowed by the
Heisenberg uncertainty relations for number and phase.

VIII. DISCUSSION

The stochastic dynamics of a continuously monitored
laser are essentially given in Sec. VII. There we consid-
ered a laser with arbitrary pump statistics under both di-
rect photodetection and heterodyne detection. The pic-
ture which emerged is this: With no measurement, the
unconditioned state of the laser has a well-defined inten-
sity (with variance determined by the regularity of the
pump), but completely undefined phase. Under hetero-
dyne detection, the laser state is collapsed rapidly (on
the time scale of the cavity linewidth) to a state with a
well-defined phase. For an ideal laser with unit efficiency
detection, the steady-state phase variance is three times
that of a coherent state. The conditioned mean phase
undergoes a random walk. The source of randomness is
the shot noise in the heterodyne photocurrent on which
the state of the system is conditioned.

For a Poissonian pumped laser, heterodyne detection
has no effect on the conditioned photon-number variance,
but in all other cases the conditioned variance is less
than the unconditioned variance. In particular, the con-
ditional number squeezing in a regularly pumped laser
is enhanced. The conditioned mean photon number also
has a random trajectory related to the noise in the pho-
tocurrent. Unlike heterodyne detection, direct photode-
tection has no effect on the phase of the laser. To com-
pensate, its effect on the amplitude variance is enhanced
by a factor of 2 over that of heterodyne detection. Unit
efficiency direct detection of a perfectly regularly pumped
laser causes the conditioned photon-number variance to
become arbitrarily smaller than that of a coherent state.

An aspect of interest in the analysis of the condition-
ing of the laser state on external photodetection is that it
reinforces the distinction between classical and nonclas-
sical states. By "classical" states we mean those with a
positive Glauber-Sudarshan P function [2,3]. The state
of an open quantum system conditioned on external pho-
todetection (whether it be direct detection, or with the
addition of a local oscillator) will not be nonclassical un-
less the nonconditioned state is nonclassical. This can be
viewed either as a statement about the nature of external
photodetection (photodetection cannot produce nonclas-
sical states) or about the definition of coherent states
(coherent states are those states which are uninfluenced
by photodetection). In this context, it is worth noting
that the ideal model of a laser which we developed con-
tains the definition of another quantum optical process
which is inherently classical. This process of incoherent
excitation, which we have denoted by the superoperator

8[at], can be added to the list of classical processes such
as damping, detuning, and coherent driving.

Although the results we have derived for the condi-
tioned state of a laser are helpful pedagogically, it is rea-
sonable to ask what practical use they have. Usually, the
conditioned state of a system is of little interest to experi-
menters and some would even doubt whether the concept
is meaningful. In fact, the conditioned states such as we
have investigated are meaningful experimentally, because
they are precisely those states which can be stabilized
by using the measured photocurrent (on which they are
conditioned) in a feedback loop. The proof of this state-
ment will appear in future work. This implies that the
steady-state conditioned variances which we derived here
represent the best achievable steady-state variances un-
der feedback. In summary, the practical significance of
this work is that conditioning is realized by feedback.
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APPENDIX A: GAUSSIAN SOLUTION TO
STOCHASTIC FOKKER-PLANCK EQUATION

Consider a nonlinear Fokker-Planck equation in one
dimension with an Ito stochastic term [18] of the form

P(x, t) = ~A((t) [x —x(t)]P(x, t),

where ((t) represents real Gaussian white noise and

(A1)

x(t) = Cx P(x, t)x (A2)

We call Eq. (Al) a Fokker-Planck equation because, if
we assume a solution of the form

1
P(x, t) = exp( —[x —x(t)] /2U(t)),

+2irU(t)

then we can rewrite Eq. (Al) as

(A3)

P(x, t) = —v A((t) U(t) P(x, t), (A4)

which has the form of a nonlinear drift term. However,
it will be seen to have an effect on both the variance and
the mean of the distribution. To see this we note that
the rules of Ito stochastic calculus give

1+ v AdW(t) [x —x(t)]

=exp AdW t 2; —2 t ——dtx —x t
2

(A5)

Applying this to the ansatz (AS) and rearranging gives
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1 1 AP(x, t+dt) =
+2~U(t)

—I* —*]~)I' + —«+ W~dw]* —*-]~]])2U(t)
1

+27rU(t + dt)
exp([z —x(t + dt)] /2U(t + dt) ), (A7)

where we have defined

x(t + dt) = x(t) + v AU(t)dW,

U(t + dt) = U(t) —AU(t)'dt.
(A8)
(A9)

APPENDIX B: WIGNER FUNCTION
FOKKER-PLANCK EQUATION FOR

REGULARLY PUMPED LASER

That is to say, the nonlinear stochastic equation (Al)
does have a Gaussian solution. The mean obeys the
stochastic equation expected from Eq. (A4), and the vari-
ance obeys a deterministic equation which causes it al-
ways to shrink.

1 1 B2 1
&[a'1 'p ],+

E, ]n/ + — 2/n[ BaBn* 2[n. ]

W.

Next, it is easy to show that

1 1 B 1 B
&[a'1p I ln '+ ———

2 2Bn 2Bn*

(B7)

(B8)

Thus, to second order in the mean photon number we
have

I

That is to say, we have the following approximate super-
operator correspondence:

2 (B1)

We wish to convert the regularly pumped laser master
equation

1 B /' 1 1
I

— .+, . I+cc
0 1

BnBn* [n[2
(B9)

into a Fokker-Planck equation for the Wigner function.
Recall that we are using the notation

t [at] = +[at]A[at] —1, &[a] = J'[a] —A[a], (B2)

and

1 8 1 0 1
C]a~] p — + c.c. + ~ ~ +c.c.)4 Ba; n 2n* Bn2 n*

where

A[c]p = 2(ctcp+ pctc), Q[c)p = cpct.

First, consider the density operator o. defined by

p = —,'(aa'o+ o.aat).

(B3)

(B4)

0 2+BaBn* [n~2

Finally, it is a standard result that

1 B B ~ B
'D[a]p —+ — n+. n*+ W.

2 Bn Bn* BnBn*

(B10)

(B11)
If W(n, n*) is the Wigner function for p and V(n, n') is
that of o, then standard operator correspondences [19]
give

Putting all of these results together gives the Fokker-
Planek equation quoted in the text (5.12)

W= a, + ———,V.
2 4 BaBn* (B5)

Assuming that the mean photon number is very large,
we can invert this differential operator to second order in
[n~

2 to find

Bn 2n 2 2 4[n]2n*

QP+- +
2 Bn 4n' Bn' 4a.

lV + c.c.

1 1 B2 1
s +

2[n[ BnBn' 2[n/
(B6) +, , ~+(i+-,') ", )w. (B12)
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