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The Liouville equation for the density matrix can be recast so that the external-field terms which
couple density-matrix elements are second order in the field. This approach is shown to have a
profound effect on the steady-state analysis of strong-field resonant nonlinear optical problems. First,
in the case where parity or appropriate field restr:ictions apply, there is a reduction of the number of
coupled equations which must be solved by at leas t a factor of 2. Second, this reformulation naturally
leads to radiative-renormalization terms which are directly related to saturation, Stark shifts, and
Rabi splittings. We can use this simple formalism to obtain solutions to a number of resonant
nonlinear problems including cases where there are two or more strong fields. The renormalization
described here is equivalent to a Dyson-equation analysis.

PACS number(s): 42.65.—k, 42.50.Hz, 32.80.—t

I. INTRODUCTION

Strong-Beld nonlinear optical interactions have re-
ceived attention for a variety of reasons, including re-
cent experiments on electromagnetically induced trans-
parency [1, 2) which can occur in a spectral range of
strong resonantly enhanced nonlinearity [3]. Strong-
field effects include saturation, Stark shifting, Rabi split-
ting, a strong-field-induced extra resonance, strong-field-
induced gain and loss, and "lasers without inversion. "
For strong fields which are near resonances, conventional
perturbation series can diverge and thus give meaning-
less results. While the coupled equations for the relevant
density-matrix elements have been solved in many cases,
this process can become extremely complex and cum-
bersome even in the steady state. For example, if two
frequencies are applied to a two-level system, an infinite
set of coupled equations arise. If only one Beld efI'ectively
couples pairs of levels in an n-level system, the number
of coupled equations is n2 —1. Using a straightforward
determinantal solution leads to (n —1) x (n2 —1) deter-
minants which consist of a sum of (ns —1)! terms. For
the three-level problem this leads to 8! or 40320 terms.
For such problems, Gauss elimination usually is used to
reduce the number of equations. As shall be seen, the
radiative-renormalization method we use leads to multi-
ple Gauss elimination in one step.

It is instructive to consider how the strong-field prob-
lem relates to the perturbation approach normally used
in nonlinear optics. For some simple cases, the pertur-
bation series have been summed to analytically continue
the results to the strong-field limit [4, 7] using Feynman
diagram techniques [4—6]. One example is the diagram-

matic calculation of the density-matrix element associ-
ated with the polarization induced in a two-level system
by a single strong, resonant, and continuous radiation
field. This calculation demonstrates the basic equiva-
lence of the summing technique with the result obtained
by directly solving the coupled equations for the two-
level model. In addition, the sum of all perturbation
propagators and vertices (diagrams) for the density ma-
trix element can be represented by a Feynman diagram
topologically equivalent to the weak-field or lowest-order
perturbation diagram (bare diagram), but with the field-
independent propagator replaced by a field-dependent
or dressed propagator. This field-dependent or dressed
propagator is, in lowest order, bilinear in the field.

In this paper, we develop radiative renormalization by
using the particularly simple approach of iterative re-
placement in the density matrix so that the resulting
density-matrix equation is of a form where the coupling
between the elements is bilinear in the field [8). If the
unperturbed states have parity, there results two sets of
density-matrix elements where the elements of one set
have been eliminated from the equations for the other
set. Thus the replacement process also involves a mul-
tifold Gauss elimination. One set (the dipole set) in-
volves those matrix elements for dipole transitions while
the other set (the diagonal set) consists of the remaining
elements including the diagonal elements. This second
set may be reduced by one using the trace invariance.
For n even there are n /2 in the first set and (n~ —2)/2
in the second set while for n odd there are (n —1)/2 in
both sets. For the three-level case there are four elements
in each set; thus the determinantal solution involves de-
terminants with 4. or 24 elements. This is in contrast
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to the case described in the first paragraph, i.e., before
the elimination was carried out; clearly, a considerable
simplification has occurred. Solving one set of equations
solves the other since the solutions for one set can be
obtained from the other set by substitution in linearly
coupled equations. Even if the states do not have parity
the number of resonant fields can be chosen so that the
iterative replacement process also leads to elimination,

Beside the simplification inherent in this process, it
also should be apparent that the bilinear terms which
couple a matrix element to itself are radiative renor-
malizations which lead to saturation, Rabi splitting, and
other strong-Beld processes. While this gives one-photon
renormalization, we must carry out higher-order renor-
malization to include effects such as two-photon satura-
tion. The radiative-renormalization technique described
here offers a systematic approach to strong-field excita-
tion problems. In a number of cases one or more fre-
quency components of the field is strong while the other
components are weak. In this case, the strong fields may
be treated using renormalization while the weak fields
are treated using perturbation theory.

In addition to the development of the formal theory
of radiative renormalization, as an example we calculate
the polarization induced in a two-level system with two
strong resonant Gelds, one of which is the probe, and,
in the weak probe limit, show a Geld-induced extra reso-
nance. We have also applied this technique to three- [9]
and four- [10] level systems. For the three-level system
we have carried out higher-order (two-photon) renormal-
ization to obtain exact solutions for strong resonant fields
connecting both transitions. In the case of a four-level
system, we also have obtained exact solutions and have
deduced expressions for both third-order sum frequency
generation and sum frequency absorption in the presence
of two strong fields connecting different pairs of unpop-
ulated levels including two strong-Beld Rabi splittings.
The technique reported here bears a relation to the work
of Swain [11];Osman and Swain have applied these meth-
ods to double [12] and triple [13] resonance. We have not
yet made a detailed comparison of the two approaches.

II. USE OF THE OPTICAL BLOCH EQUATIONS

Our calculations are based on the use of modified Bloch
equations [14] for the density operator. It is important
to establish these equations on as firm a footing as possi-
ble and to understand their range of validity. The Bloch
equations can be obtained through a series of approxima-
tions starting from the following generalized model: we
consider a "closed" system which has two parts: (1) a
subsystem of interest (SO/), which interacts with strong,
classical, externally applied electromagnetic fields, and
(2) the residual subsystem (RSS), which, as discussed
below, we take to be a "heat bath. " The interaction
between the subsystems requires that we treat the evo-
lution of either subsystem using density matrices since
Hamiltonian quantum mechanics is no longer appropri-
ate. We may thus speak of the total system as closed in

the sense that its behavior is described by a Hamiltonian
while the subsystems are "open" (i.e. , they interact with
each other) and their evolution is not solely determined
by the individual subsystem Hamiltonians. The SOI is
typically a group of electronic, vibronic, or orientational
states in an atom, molecule, or solid. We treat the inter-
action of the SOI with unoccupied modes of the radiation
field (i.e. , the process which leads to spontaneous emis-
sion) as part of the RSS interaction. The RSS interaction
can also arise from collisions in the case where the SOI
is an atom or molecule in a gas or from electron-phonon
interaction in the case where the SOI is a lattice electron
in a solid.

The development of the model involves deriving equa-
tions of motion for the density matrix of the SOI from
the evolution equations for the total system (for a dis-
cussion of the many aspects of this problem see Refs.
[15—21] as well as further references contained in these
articles). The SOI density operator equation (sometimes
called a "master equation") contains a part which de-
scribes the SOI evolution in the external classical field in
the absence of the RSS and another term which describes
the efFect of the RSS on the SOI. The form of this inter-
action term is quite complex and it is often difIicult to
make further progress unless physically reasonable sim-
plifying approximations can be made. The interaction
term is, in general, nonlocal in time (non-Markovian),
involves the interaction between the subsystems to all
orders, and depends on the effect of the external classical
field on the SOI. In most models the RSS is taken to be
a heat bath in the sense that there is a large number of
degrees of freedom and it is assumed that the interaction
of the SOI with the external field does not perturb the
bath sufIiciently from equilibrium that it in turn effects
the bath interaction with the SOI. Another important
assumption, one which is valid for many situations en-
countered experimentally, is to take the interaction to be
weak in the sense that the interaction term can be taken
in the lowest-order Born approximation, thus leading to
an interaction term which is bilinear in the SOI-bath in-
teraction Hamiltonian. However, for the purpose of the
discussion below, it is to be noted that it is not always
necessary to neglect, in the interaction terms between the
subsystems, the evolution of the SOI due to the external
field.

In this paper, we will make the further assumptions
that the correlation time for the SOI-bath interaction
is short compared to the inverse flopping frequency and
the inverse of interaction term itself (i.e. , the relaxation
time). Note that the Hopping frequency involves both the
detuning from resonance and the Rabi frequency pE/h,
where p is a transition dipole and E is the external elec-
tric field. In the case of gas collisions, we identify the
correlation time with the time duration of an individual
collision. The resulting equations have the basic form
of the Bloch equations [14] and have important aspects
which make further analysis more tractable. The inter-
action terms are time independent and are "diagonal" in
the sense that they couple a density-matrix element p
with itself and, in the case of a diagonal element, with
other diagonal elements. Here n represents the matrix



47 APPLICATION OF RADIATIVE RENORMALIZATION TO. . . 5167

element index pair fi, j), where i and j denote energy
eigenstates of the SOI without the classical driving fields.
In general, the interaction terms are complex quantities
with real and imaginary parts which correspond to damp-
ing and shifts of transition frequencies. The presence of
damping terms indicates irreversibility over some time
scale (times short compared to the Poincare time). The
inclusion of the interaction terms in the propagator for
the SOI density operator is equivalent to renormalization
with respect to collisions. The damping terms for the
diagonal elements of the density matrix arise from non-
adiabatic processes involving changes of energy while the
terms for off-diagonal elements also incorporate adiabatic
(i.e. , dephasing) processes [22].

The range of validity of the Bloch equations has been
the subject of extensive research [15—21, 23]. Important
cases lie outside the range of the approximations de-
scribed in the preceding paragraph; these eases include
some aspects of motional narrowing [24, 19] and opti-
cally switched collisions [25]. It is possible to apply the
approach to generating a master equation for the SOI,
as described above, to analyze these cases if less restric-
tive approximations are made than those leading to the
Bloch equations. This, however, is beyond the scope of
the present work.

A somewhat different approach than the one taken here
is to use the "dressed-atom" picture. The fully quantized
dressed-atom picture involves, in the two-level case, con-
sidering the mixing, through the atom-radiation inter-
action, the degenerate (or near-degenerate) atom in the
excited state with n photons and atom in the lower state
with (n+ 1) photons [26]. In the semiclassical picture,
the equivalent approach is to make the rotating-wave ap-
proximation and to perform a time-dependent unitary
transformation [27, 22, 28, 29] so that the Hamiltonian
becomes time independent; this transformation is pos-
sible for multilevel systems where transitions are near
resonant with only one frequency component of the field.
In a closed system the problem is then reduced to finding
the energy eigenvalues and eigenstates and then retrans-
forming eigenstates so that proper expectation values can
be calculated. Very near resonance, in the sense that
the detuning between the transition frequency and the
optical frequency is small compared to the dipolar cou-
pling strength frequency pE/5, the transformed eigen-
states are strong adrnixtures of the unperturbed states.
For an open system, this semiclassical dressed-atom ap-
proach may be combined with a SOI master equation
derivation [30].

Both radiative renormalization and "dressing" are
aimed at the same general goal: a correct description
of the behavior of material systems in the presence of
strong, resonant electromagnetic fields. However, while
the semiclassical dressed-atom approach first solves for
the states of the atomic system in the presence of strong
radiation fields and then adds interactions with the RSS,
the renormalization approach which we develop does the
opposite. At least for cases where short correlation ap-
proximations cannot be made in the treatment of the
heat bath interaction, there is no clear reason to believe
that the dressed-atom and radiative-renormalization ap-

proaches should lead to different results. More general
situations need to be investigated further.

III. GENERAL FORMALISM

= [&o+~+ ~(t)] p(t).
. dp(t)

(3)

The Liouville operator A given by 20, 7Z, , or B(t) has the
matrix form

(&p(t))- = ) .&-pp~(t)
P

(4)

where n and P each represent a difFerent pair of state
vector quantum numbers (i, j). While the i's and j's de-
note a wave-function basis vector set for the SOI, the n's
and P's denote a basis set for matrices belonging to the
SOI. It is therefore convenient to consider the density-
matrix elements as components of a vector and the Liou-
ville and collision operators as forming matrices in the o,
space which operate on the density vector [31,30]. This
Liouville space picture is not only a natural consequence
of having the system of interest not closed or isolated but
instead an open or non-Hamiltonian system', but it also
has meaning for isolated systems; consider, for example,
the Feynman-Vernon-Hellwarth vector model of the two-
level system [32] and its extensions to systems with more
than two levels [33, 34].

As a consequence of the short-correlation-time approx-
imations made in deriving the Bloch equation and taking
n, P, etc. to belong to the basis set for the external-field-
independent part of the Liouville operator 80, we have a
collision term of the form

and we take the I',~'s and I"'s to be real and positive; SOI
energy-level shifts due to the interaction with the RSS are
assumed to be incorporated into 80. If the system has
a closed population (i.e., the SOI population does not

The Bloch equation for the density operator p(t) of the
SOI has the form

= &Ã(t) (t)]+& (t)
. dp(t) 1

(1)

where H(t) is the Hamiltonian of the SOI including the
time-dependent external field and 'R is an interaction or
"collision" Liouville operator which gives the effect of
the heat bath on the SOI and whose properties will be
discussed below. We can rewrite Eq. (1) as

= [&(t) + &]p(t)
dp(t)

(2)

where Z(t) is the Liouville operator which is the commu-
tator term divided by h. Separating the Liouville oper-
ator into the part independent of the external field 80
and the field-dependent part A(t), we rewrite the density
operator evolution equation once more as



5168 BLUM, HARSHMAN, GUSTAFSON, AND KELLEY 47

r, =Z'p-ir,
so that the Bloch equation takes on the form

i = [Zo + A(t)] p(t) + il'gp~ &.
dp(t) 0

dt

(7)

(8)

Any function of the operator Zp has the following Liou-
ville space matrix elements in the energy representation:

change), then the trace of Eq. (5) must be zero, which
requires the subsidiary conditions I'& ——P,.&&I'&. We
also make the normal statistical physics assumption that
p~ ), the initial value for the density operator before the
external field is applied, is diagonal in the energy repre-
sentation. Detailed balance requires that I'@p&&) —r„pii

forint

k.

In addition, for the calculations carried out in this pa-
per, will make the uniform population relaxation assump-
tion

r,p„(t) —) I',"p„,(t) = I', [p„(t) —p,',"],
s (gi)

where I'g is the uniform population relaxation constant.
In order to obtain this result, we require that I",.
I'~(1 —p, , ) and, for i g k, I'," = I'gp, , The form
of Eq. (6) is valid for any closed population process in
a two-level system. It is generally not appropriate for
radiative relaxation in multilevel systems. It is apparent
that the Bloch equation, as given here, favors the use of
the energy representation in the absence of the external
field. To simplify subsequent calculations, we combine
2p and I into a single propagator as follows:

external radiation Beld can be written in the dipole ap-
proximation as

0 (~) = 0,'.~, (cu)

= p, ,'~, E(~)jh,

where

(12)

IV. GENERAL APPROACH
TO RADIATIVE RENORMALIZATION

As stated in the Introduction, we develop a general ap-
proach to radiative renormalization which will provide a
straightforward but powerful technique for treating the
many strong-field eKects which occur in resonant interac-
tions between quantized material systems and semiclas-
sical radiation. Prior analyses have tended to treat these
problems in an ad hoc unsystematic fashion. By devel-
oping the renormalization in a general way we are able
to develop an approach which can be readily applied to
many problems. We carry out our development in the
Fourier transform domain.

The Fourier transform of Eq. (8) is

clJP((AJ) = ZQP + ) 0f~ p(cu —uf~ ) + zI'~p b(cu).
f1

UP, f~f = Pii'~g'g ~ii'Pgg.

Here E(u) is the semiclassical positive analytic signal
e '~t and p, ,~ are the dipole-matrix elements along the
direction of polarization. We can also write 0 (u) =
0*, (—u)).

(J'(f-o)) p =f((&o) )b ~ (9) Solving for p(w) gives

where

[l: p(t)] = p(t) —i(I'p(t))
= (1 —&,,)(~,, —»,, )p,, (t) —~&,,1'gp, ,(t).

(1O)

Here ~ = (Zo), i and j are the state vector quan-
tum numbers belonging to n, and a = a

&
= ((Ho), , —

(Ho), ,)/h.
If Eq. (8) is expressed in integral form, it can be writ-

ten as

P(4') = ) ~fi P(~ ~fi) + P b(~)
(d —Zp f

In its simplest form, renormalization involves pairs inter-
action vertices. To generate such pairs of interactions in
density operator equations, a single iteration is carried by
rewriting the argument of p on the left-hand side of Eq.
(15) and substituting this result into the first term on
the right-hand side of Eq. (15). The resulting equation,

(~ —~o)p(~)

P(t) = e '~'~' ' lA(t')p(t')dt'

e p
—iso (t—t') (0)gg&

The second term on the right-hand side of the equation
is an inhomogeneous term associated with the free prop-
agation of the initial density-matrix element. It is impor-
tant to note that Eq. (11) is not a perturbative result.
However, the standard nth-order perturbation result can
easily be derived by iterating this equation n times to
obtain the density matrix. in terms of n+ 1 time integrals
of n factors of A(t) multiplying p~o&.

The expression for the Liouville operator representing
the semiclassical interaction of the SOI with the strong

1) Af~ Of~ P(4J —Mf~ —Mf~)
4) —Mf~ —ZP

f1 f2

+'I'„~ lb{ ) + ) n, ~ lb{ —,),
fi

(16)

has the desired second-order form. The diagonal part of
the second-order operator on the density operator can
now be combined with the zeroth-order expression on
the left-hand side of the equation to give a renormalized-
radiative propagator. As has been pointed out in the
Introduction, in the typical model of an energy-level tran-
sition scheme with parity, this substitution can also pro-
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duce a multifold Gauss elimination in a single step which
considerably reduces the difficulty of obtaining analytic
solutions. If the operators 0 change parity, the seeond-
order terms only connect density operator elements of the
same parity. In the two-level ease, neglecting for the mo-
ment the trace invariance requirement, the four coupled
equations for the four density-matrix elements reduce to
two sets of two coupled equations, one set for the diago-
nal terms, the other for the off diagonal terms. Solving
one set, for example, the diagonal set, is sufFicient since
the solutions for the other set may be obtained from the
solutions for the first by substitution in Eq. (15). Using
the trace invariance simplifies the problem even further
as use of this constraint means that only a single equation
for a single variable need be solved. Similar reductions in
complexity occur for more complex energy-level schemes.

In the generalized relaxation case, we have instead of
Eq. (16)

1
(~—l-o)p(~) = ).~f. +f p(~ ~f ~f. )

M —4Jf2 —Zo
f1,f2

(17)

Here l:o = l:0 + 'R and 'R is defined by Eq. (5). To avoid
nondiagonal denominators in the renormalization terms,
we take Eq. (17) to be an equation for the diagonal set
only.

Returning to the uniform relaxation case, the second-
order result can be expressed in terms of the components
of the density vector and propagator and external field
matrices as follows:

+ ). I flf2 ~ ~f I p)3(~ ~f —~f ) +S.(~).
p (g )

4 f2 O f nP
(18)

The quantity S (w) is given by

We see that several types of terms involving pairs of interactions arise in the above equations. The first term is
diagonal in the sense that it involves the evolution of a density component p (cu —~f, —~f, ) through two interactions
with the field to the same density-matrix element p (w), but evaluated at a frequency which is shifted by the difFerence
of the two interaction frequencies. (Af, )~ is the first interaction taking the system from "state" a to an intermediate
density operator state, which we define as p. Further, 1/(a —af, —l:0)~ is the propagator associated with the p
intermediate state, (Af, ) ~ is the interaction associated with the second vertex bringing the system back to the a
state, and 1/(w —l:o) is the final propagator in the o; state. The first set of terms directly renormalize the components
of the density vector when af, = —wf, and provide terms giving saturation, Rabi splitting, etc. The second set of
terms in Eq. (18) is associated with a change in the density-matrix element and has a similar interpretation of the
coefficients. S (u1) is a source term due to the initial values of the elements of the density vector, the first term in the
expression resulting from free propagation and the factor in front, 1/(a —l:o), once again being the bare propagator
for this evolution. The second term in S~(w) gives the evolution to the final element from an equilibrium element
through a single interaction.

V. CALCULATION OF POPULATION DIFFERENCES

One important class of nonlinear optical processes involves strong fields connecting only one pair of energy levels.
In this case, we can rewrite the equations for the diagonal elements of the two levels in terms of the difference between
the density-matrix elements, which we take to be g and t . Introducing the population difference term Lp = p„—p„
we obtain from Eqs. (18) and (19)

1 . ( 1 1
&P( ) = . ). l nf. nf, —

l nf. "f,) )P~( — f, — f. )~+&I i fi, f2

1 l 1
~
nfnf , ~

— nf, nf))P, (~ —~,f —~f, )~ —~f. —l-o )«4' —~f. —l-o

+ ) (l nf nf ) (nf nf )) P (M wf Af )
~ (An~) 6Ck

+z p~o~u(~), (20)
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where we have replaced I"q with the more familiar I"i. The first four terms in Eq. (20) which involve only the rl and e

elements can be represented by 32 Feynman diagrams half of which are shown in Figs. 1 and 2. These and subsequent
diagrams are double sided in that the vertical lines represent the propagation of the density-matrix elements and the
photon lines have the usual meaning [4—6]. Note that each of those four terms generates eight diagrams when the
Liouville operators are expanded so that interactions on both sides of the diagram are shown explicitly. Choosing
cdf i as a positive frequency (downward slope, left to right in the figures) and ~f2 as negative frequency (upward
slope, left to right), as shown in Fig. 1, and also choosing rl to be a lower energy state than e makes the upper set
of four diagrams resonant in the first propagator occurring between the two interactions ( & ) and also the4J —4)f2 —ZO

final propagator ( i,z) after both interactions. The lower four are nonresonant in the propagator between the two
interactions, but remain resonant in the final propagator. The opposite choice for sufi and wf2 (negative and positive
respectively) results in an analogous set of eight diagrams as shown in Fig. 2 with the slopes of the photon lines
opposite to that shown in Fig. 1. For these the lower four would be resonant for the same level selection. There are
also 16 additional diagrams having both af~ and wf2 of the same sign, either positive or negative. All of these are
nonresonant in the final propagator, but half remain resonant in the first propagator.

One observes that the interaction and propagator factors for the four upper diagrams in Figs. 1(a)—l(d) are equal
and those of the lower set of four are equal. Thus combining (a) with (b) and (c) with (d) yields a factor of 2. These
can be written as one factor multiplying Ap(w —sufi —wf2). The two resulting terms, one fully resonant and the
other nonresonant, will be represented by the collapsed diagram shown in Fig. 1(e). A similar analysis can also be
done with Fig. 2. Expressed analytically, Eq. (20) can be more compactly written as

&c(~) = 2 1) Af, Af,
~

Ep(~ —~f, —~f, )
W + iI i Cd —

Cdf&fi, f2

1 1+ ) flf. ~ ~~f. — ~If. ~ ~f l ~-(~ —~x, -~f.)+&c"'~(~) (»)
o. Igg, e}

Cd —&f2 —Zp Cd —Cdfz —Zp )2 ICE 2 fjC1

where each term in the first sum represents the eight pos-
sible diagrammatic contributions. In general the terms
on the second line cannot be expressed as propagator
terms multiplied by the difference between density ma-
trix elements.

The right-hand side of Eq. (21) includes (1) a term
involving the same density-matrix element at the same
frequency as the left-hand side, (2) possibly the same
element at a shifted frequency, (3) terms involving other

density-matrix elements also at shifted frequencies, and
(4) a source term involving the equilibrium population.

The equations for the density-matrix elements or their
differences can be considerably reduced in number by the
above iteration procedure. The solution for a particular
population difference can be obtained by the successive
elimination of density-matrix elements. Since this in-
volves the array of coefBcients of the set of coupled equa-
tions, and in particular the diagonalization of this array,
this elimination procedure is equivalent to a set of nested

(b) (c)

(e)
fz(

Qf,
(e)

(b) (e)
FIG. 1. Diagrams contributing to the first four terms in

Eq. (20) for wfi negative and wf 2 positive. In (a) and (b) the
initial density-matrix element is p„(w —uf, —wf~) and in (c)
and (d), p, (a —wf, —af~). The drawing in (e), defined as the
collapsed diagram, will be used to represent all eight double
Feynman diagrams. For g the ground state and e the upper
state, the four upper diagrams are resonant. The lower four
will be dropped from consideration.

FIG. 2. Diagrams contributing to the first set of terms in
Eq. (20) for cuff positive and cufz negative. As in Fig. 1, in (a)
and (b) the initial density-matrix element is p„(ur m f, (4/f2)—
and in (c) and (d), p, (cu —uy, —wf, ). Also the collapsed
diagram in (e) represents all eight double Feynman diagrams.
For g the ground state and t. the upper state, the four lower
diagrams are resonant.
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VI. TWO-LEVEL SYSTEM—TWO STRONG
FIELDS

As an application of this approach, we consider the
two-level system [35—37]. In the present case we take
Lp = p„—p, = pii —p22, where 1 and 2 are the lower

and upper states, respectively. Since the trace is equal to
unity, one can write p„= 2 (1+Ap) and p, =

2 (1 —Ap).
Assuming for simplicity that the decay rate of the two
states is the same, Eq. (21) becomes

&p(~) = 2 1

+ &~i ~ —f —20) Ay, Ay,
f1 f2 6C

xAp(~ —My, —My, )

+apso&a(~), (22)

where it is noted that the index pair ee could be replaced
by the four other possible combinations of g and e since
these are all equal as discussed above.

Dyson equations for the coefficients in Eqs. (16) or (18).
Thus, once rules are established for this elimination pro-
cedure, knowing the weak-field interaction allows one to
immediately write down the strong-Geld result in terms
of renormalized coeKcients.

In summary, the form of the equations for a given den-
sity component involves (1) external-field terms coupling
the same density component including a term which does
not give a frequency shift and which serves as a first-order
renorrnalization, (2) coupling terms involving other den-
sity components, and (3) a source term involving the ini-
tial population. The particular approach taken in this
section is not very useful for problems where the strong
fields do not change populations; in this case, direct, sim-
ple solutions may be obtained from Eqs. (16) and (18).

We consider the case of two strong fields at two angular
frequencies v and v' where both the positive and nega-
tive analytic signals at both frequencies are to be con-
sidered (~pl = +v, +v' and similarly for ~yq). Including
all possible frequency components n(v' —v) arising from
the mixing of the two signals, the population difference
spectral distribution can be written as

Ap(~) = ) Ap„6(~ —n(v' —v)),

where Ap„ is the spectral component at frequency n(v'—
v). These population beat terms have been studied ex-
tensively [38]. In general for any combination of assign-
ments +v and +v' to af i and ~f2 there are eight di-
agrams analogous to those shown in Figs. 1(a)—l(d).
Given 16 distinct combinations, a total of 128 diagrams
or 16 collapsed diagrams analogous to Fig. 1(e) are pos-
sible. However, wfi and ~f2 must have opposite signs
to consider the beat terms, thereby eliminating the dia-
grams with photon lines of the same slope. There remain
64 diagrams, or eight collapsed diagrams, to be consid-
ered. If one furthermore restricts the analysis to fully
resonant terms [both propagators in Eq. (22)], then each
collapsed diagram corresponds to a single term in Eq.
(22).

In terms of the spectral components, Eq. (22) can be
written in the form

+pn — rn+pn &ni-ipn+1 t)ni-) pn 1+ i-—)'p '4, 0 ~
I.o)

(24)

The first term in r is given by a collapsed diagram of
Fig. 1 with ~fi = v = 4)fQ a second with afi ——v =

Mf2 in addition, a third and fourth with v replaced by
v'. Thus r„ is given by

r„= 2d„ [0[2
1 + 1

n(v' —v) —v+ ~o + ir, n(v' —v) + v —~o + ir, )(
+[0'!'!~ 1 1

&n(rr' v) —v'+~0 +ir2 n(v' —v)+v' —wo+il' )2
which is diagrammatically represented as shown in Fig.
3. Similarly a in Fig. 3 is given analytically by

tl„= 2d„A"0'!
( n(v —V) + V —Mp+iI2

1

n(v' —v) —v' + ~o + ii'2) ' (27)

1a„=2d„A'*0
n(v' —v) —v+ ~p+ il 2

+ l1

n(v —v) + v —Ldp + iI 2)
(26)

In all of these the d„ factor is given by

—1dn-
n(v' —v) + il'l ' (28)

Here af i ———v' and ~f2 ——v for the first term and ~f i ——

v and wfq ———v' for the second term. 6„ is obtained by
interchanging v and v' in a„. Thus

Also, wo = ~2&, I'2 = I'2y, 0 = p2&E(v)/h, and 0' =
P2lE(v')/h.

The resulting equations for Lp~ consist of a set of cou-
pled equations, which can be solved by elimination. To
do this we first write the equations in the form
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b,p(n(v'-v))

hp((n+1)(v'-v))

h, p(n(v'-v})

d p((n-1)(v -v))

Ap(n(v'-v))

)( + )(
Q

d p(n(v'-v) )

A„
B„A„

1—B„ yA„
~ ~ ~

when n is negative. Since A „=B„* for all n, the ex-
pansion for positive integers is the complex conjugate
of the expansion for negative integers. Such continued-
fraction expansions have been used in strong-field two-
level problems to analyze (1) the single frequency case
without making the rotating-wave approximation [39],
(2) standing-wave effects in Doppler broadened systems
[40, 41], hand (3) the case of two independent strong fields
[42, 43]. The last two cases are treated in the present
analysis.

For n & 0, the expression for Ap„ in terms of Apo is

FIG. 3. Diagrams of the renormalization and coupling
terms for the spectral components of the population diA'er-

ence of a two-level system with two strong fields. The initial
spectral components are shown below the diagrams represent-
ing the overall processes while the final spectral components
are shown above the diagrams, r„ is the self-renormalization
component and a„and b the population beat components.

Ap„+ A„Ap„+i + B„Ap„ i = Ap 6„o,(p)
1+r

&p =(—1)"&po

where

L L L

m=1
Bm,

Apo = .
~

Ap (,)

(1 —AoBi —AoBi ) 1+"o

from Eq. (29) and it is noted that Ap „=Ap„*.
The dipolar density-matrix elements at frequency ~ is

given by

(29) p2i (~) = ) p2i „b(~ —v —n(v' —v) ). (36)

Ap„—A„B„+imp„+B„Ap„,= 0. (30)

Substituting Ap = B„Ap i and —solving for B

Bn
1 —A„B„

Successive resubstitution for the B„'s generates the con-
tinued fraction expansion

where A„= a„/(1 + r„) and B = b„/(1 + r„) are
the propagator coefficients renormalized by absorption-
emission processes at the same frequency, that is, the
diagonal, or self-renormalized, components in the fre-
quency domain.

To solve the set of equations for positive values of n, let
6p„+&

———B„+~Ap„, where B~+~ is the renormalization
of B„+& by terms where the value of the index is greater
than n + 1. Using this expression in Eq. (29) we obtain
an equation which generates Lp„ in terms of Lp„»

We use Eq. (15) and substitute the diagonal elements
Ep„and Ap„+i on the right-hand side to obtain the
Fourier coefFicients

1
p2i „= . . . [O'Ap„ i + BAp„] .

v + nt'v' —vj —wp + iI'2

(37)

The diagrammatic representation of these terms is shown
in Fig. 4. It is apparent that there are multiple reso-
nances in v' which occur at v and v+ (uo —v)/n. These
subharmonic resonances are well known in nonlinear op-
tics.

The dipolar density-matrix-element coeKcient at fre-
quency v' is given by setting n = 1 in Eq. (37),

1 /
pgi i ——

, . [0 Apo+ AEpi]
v —Mp+ SIC

[O' —ABi]
v/ —~p+ ~r,

B„
A„B„+g
An+~Be+2

1—

(32) (,)Lp
(1 —AoBi —AoB,*) 1 + ro

when n is positive. This fraction may be truncated at an
appropriate point when the A and B„become smaller
with increasing n. A similar set of equations is obtained
for negative integers; introducing Lp~ q

———A„qLp„,
we find

A. Dyson-equation picture

Equation (3j ) is equivalent to a Dyson equation, which

is apparent by expressing the equation in the form B„=
B„+A„B„+qB„. Thus the strong-Geld-limit term B„
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(a)

Ap((n-1) (v'-v) )

(b)

p (v+n(v'-v))

p ((n-1)(v'-v))
22

p (v+n(v'-v))

I

v +n(v'-v)-e +iI2

1

v +-n(v'-v)-co+il2

p (v+n(v'-v))

p ((n-1)(v'-v))
11

p (v+n(v'-v))
21

(a)

A„)(&
Q

~ ~

~~Q
n+1M W g'

Q
n

22

Ap(n(v'-v))
p (n(v'-v))
22

nf
p (n(v'-v))

ll

FIG. 4. The diagrams giving the dipolar density-matrix
element p2i, as given by Eq. (37). The collapsed diagrams
shown in (a) and (b), which couple p2i, „with Dp„ i and

Ap„, respectively, are given by the sum of two diagrams. (a)
corresponds to the first term of Eq. (37) and (b) to the second
term of Eq. (37).

is given by the sum of the weak-Geld-limit term and
a strong-field contribution, the latter being the prod-
uct of the strong-field-limit term itself, the strong-field-
limit term B„+i and the weak-field-limit term A„, which
is the usual Dyson relationship. The strong-field-limit
term can be interpreted as arising from the strong-field-
limit excitation of n(v —v ) from the strong-field-limit
(n —1)(v —v') excitation, followed by the strong-field-
limit excitation of Ap„+i by B„+ioperating on Ap„and
its subsequent destruction by the weak-field-limit term
A„which brings the excitation back to n(v —v'). B„+i,
the strong-Beld-limit term in the Dyson equation, is in
turn given by an analogous relationship, with n replaced
by n+ 1, thereby leading to a nested relationship which
is equivalent to the continued fraction expansion.

The proliferation of double Feynman terms contribut-
ing to the triple product term of the Dyson relation can
be illustrated by considering the lowest-order contribu-
tion, which is A„B„+iB„This incl. udes the spectral
self-renormalization. This is shown in Fig. 5 where thick
lines are used to represent B. B„has the two resonant
collapsed terms of Fig. 3(c) or Eq. (27) arising in turn
from eight resonant diagrams. To be resonant the sub-
sequent B„+1 factor can only correspond to the same
collapsed diagram as the corresponding B„ to be reso-
nant, thus multiplying the number of double diagrams
by 4. This is also true for the A„ factor resulting in two
collapsed terms arising from 128 double diagrams. The
reduction in the 128 diagrams to 2 using the population
difFerence Ap and the assumption I'ii ——I'22 is quite ap-
parent.

The analysis of Ape in terms of Dyson equations is
simpler in that in the lowest order of approximation
LpQ —Lp, so that the counting of the terms sim-
ply starts with the next higher order, with the number of
diagrams being 4 x 4 coming from the creation of an v' —v
excitation followed by its destruction. With the approxi-
mation I'ii ——I'~2, this number is once again reduced by

(b)

Q~

n'~
Q~

~Q

Q~~

22 22 22

FIG. 5. The terms contributing to the triple-product
terms B„B„+&A„in the Dyson equation for B„.Thick lines
are used to represent strong-field terms, and thin lines, weak-
field terms. (a) shows the eight terms which result when the
first cross vertex is expanded. The first of these is expanded
further in (b) by expanding the second cross vertex showing
that each term of (a) results in four further resonant terms
with this expansion.

2 x 2, thus coinciding with the number of factors coming
from Aii and Bi.

B. Application to the Doppler effect

v= v —kv)

v'= v+ kv,

where v is the frequency of the field in the laboratory
frame and k is the propagation constant.

The Fourier spectrum of the dipolar term is given by

1
p2i(~) =

7rVth

—v4 v~
dpi e ~ thp~i (~ ii) (39)

where the thermal velocity vugh = gkT/M and

The response of a distribution of moving atoms to a
standing-wave optical Beld may be analyzed by assuming
that v and v' are the frequencies, in the rest frame of the
moving atoms, of the oppositely directed traveling-wave
components of a standing-wave field along the z axis.
Assuming the v field propagates in the +z direction and
v' field propagates in the —z direction, we have, for an
atom moving with velocity v, = v,
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p2g(~, v) = ) p~, „b(~ —v —(2n —1 + l)kv). (40) d = 1 n'S d d
21,A — /2 1xg P P~—1 P~v+( n — ) v —4)p+l

The +1 term in the 6 function comes from the transfor-
mation of the polarization generated by the atoms back
into the laboratory frame. The + sign is for the polar-
ization wave traveling in the +z direction and the —sign
is for the polarization wave traveling in the —z direction.
The Fourier coefIicients are given by

(41)

The population differences Lp"„are in turn given by Eqs.
(34) and (35), but with the a„, ti„, r„, and d„ in the
expressions for the A„'s and B„'s replaced by

r„" = 2d"„ ln!' 1 + 1

(2n+1)kv —V +too +II'o (2n —1)kv+v —too +II'o)

+If''I'
~

1 1

(2n —1)kv —v + ldp + iI'2 (2n + 1)kv + v —cup + iI'2 )+ (42)

a"„=2d„"O'*0 1 + 1

(2n+1)kv —v + up+ iI'2 (2n+ 1)kv+ v —~p+ iI'q) (43)

l„"=2d"n*n'I 1

g(2n —1)kv+ i —ovo+ II'o (2n —1)kv —2+too +II'o) ' (44)

d= 1

2nkv + iI'1' (45)

C. Single strong-Beld limit

The limit in which one field is a weak probe which
can be treated perturbatively is of interest because of
its relevance to saturation spectroscopy and inversionless
gain. This limit also allows further insight into the basic

Since we have not assumed that the field amplitudes are
equal, these results are more general than for the true
standing-wave case.

There are two general classes of terms in the Fourier
spectrum. The first class occurs either when n = 0 for
the +z polarization wave or when n = 1 for the —z po-
larization wave. These terms have sharp Fourier compo-
nents at u = v, are spatially phase matched to the field,
and contain contributions from all velocity groups but
weighted by velocity resonances which occur in a~, 6„,r„,
and d„. For these terms, it is apparent that the veloc-
ity groups at v = 0 and v = (up —v)/(2m + 1)k (where
m takes on any integer value) are most strongly affected
by the field [44, 45]. The remainder of the terms in the
Fourier spectrum form the second class in which the po-
larization waves have spatial frequencies that are much
higher than those of the resonant field. In this class, each
atomic velocity contributes a difFerent frequency compo-
nent and, despite the fact that the excitation spectrum is
monochromatic, a broadened polarization spectrum re-
sults which is weighted by the resonances in a„,b„,r„,
and d~.

Ap„= (—1)"2pp

where

1

1+rp

n

m=1
B (46)

(47)

r„=2d„!AIn
2

I

1
In(v' —v) —v+ ~p+ iI'2

+ 1

n(v' —v) ~ v —~p + il'g) ' (48)

and all the other quantities are defined as before. Note
that there are no longer continued-fraction expressions.
If both fields are weak, then r„= 0 and B is replaced
by 6 in Eq. (46).

The leading terms in the Fourier coefIicients of the
dipolar density-matrix elements are given in the weak
probe-field limit by

1
[O'Ap„r + AAp„],v+ n v' —v —up+ ir2

p»,„—& n &1
1

BAp„, n & 0.
, v+ n(v' —v) —~p+ il'g

(49)

renormalization process. Furthermore, extensions of this
approach to situations in which numerous strong fields
are present in multilevel systems are useful.

For a strong field at v, the pump, and a weak-Geld
probe at v', we find that, for n ) 0, the leading term in
Ap„ is
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D. Linear response to the weak Beld

—Z

psi i = [n —nBi] Apo.
2

(50)

There are two frequency components which are linear
in the weak field, one at v' and the other at 2v —v'.
The first is the Stokes response while the second is
the phase-conjugated four-wave mixing or anti-Stokes re-
sponse. Setting n = 1 in Eq. (49), and correspondingly
in Fig. 4, and substituting Lp] = —B]Lpp, the Stokes
Fourier component at v' is given by lQ

&Q
lQ

lQ
Q'I
Q~

lQ
&al Q'

lQ
Ql
Q' ~

(c)

Qy
lQ'

Both Figs. 4(a) and 4(b) contribute terms in this linear
approximation. The anti-Stokes Fourier component at
2v —v' is obtained by setting n = —1 in Eq. 49 and in
Fig. 4. In this case since Ep 2 = B&Ap—i, which is
higher order in n'*, so that the processes of Fig. 4(a) can
be neglected. Thus the linear response at 2v —v' is

~na,*app
P21,—1 =

4
(51)

where we have substituted Ap i = —BiApo. In these
equations

FIG. 6. The diagrams contributing to the Stokes and
the four wave mixing or anti Stokes responses of a two-
level system subjected to a strong pump at v and a weak
probe at frequency v'. (a) First term of Eq. (50),
(b) second term of Eq. (50) involving the ~ propaga-
tor term in the second line of 53, (c) second term of Eq.
(50) involving the ~ propagator term in the second line of
{53),and (d) and (e) the analogous anti-Stakes terms of Eq.
(51). Only those terms involving initial ground-state popula-
tion are shown. The left terms of (b)—(e) involve ground-state
population beats after the second vertex and the right terms
excited-state population beats.

and

4~n)~r, +p (p)

JDP(2I'1

Also,

Di = i(v —v') + I'i,
D2 = i(ufo —v') + I'2,

Ds = i(v —~o) + I'2,

and

D4 = i(2v —v —~o) + I'2

ABg Abg
n' n'(1+ ri)

+1+ri JD2 Ds)
2[nf'D4(D, + D, )

Ds [Di D2 D4 + 2
I

n
I

2 (Ds + D4)]

(52)
and lead to a number of interesting eKects.

These analytical results are displayed nicely in terms
of diagrams as shown in Fig. 6. Figure 6(a) shows the
basic term, which is the first term of Eq. (50). Here
we show only the diagram associated with the ground
state, although the initial population is self-renormalized.
For the second term if Bq is substituted from the second
line of Eq. (53), one obtains four terms involving self-
renormalized population beats. Two of these involve the
1/D2 bare propagator. These are shown in Fig. 6(b), the
first giving the self-renormalized ground-state population
beat after the second vertex and the second an excited-
state population beat after the second vertex. These are
equal if the decay rate of the excited and ground states
are equal giving the factor of two in Eq. (53). Figure 6(c)
shows the analogous set involving the 1/Ds propagator
from the second line of Eq. (52). An analogous set of
diagrams are obtained for the anti-Stokes terms p2q
and are shown in Figs. 6(d) and 6(e).

The denominators can be easily interpreted. D~ and
Ds are, respectively, weak-and strong-field absorptions
with excitation. D~ is the extra or Rayleigh resonance
which involves weak-field emission and strong-field ab-
sorption without excitation. The D4 term is a three pho-
ton resonance which involves absorption of two strong-
field photons, emission of a weak-field photon, and exci-
tation. The Apo factor is the two-level population dif-
ference saturated by the strong field. The B& terms are
due to population beats at the difIerence frequency v —v'

I

E. Extra resonances

Extra or Rayleigh resonances in p~2 occur at v' = v.
This is most readily displayed with the assumption that

~o
I I

v' ~o
I

The terms Di, D2 + Ds
and D2 + D4 in Bq depend strongly on v' —v while the
remaining terms can be considered to be only functions
of v. Thus, to good approximation, D2 ——D3, D4 = D3,
and we may write

QBg
0'

2fn[2

ID, f'+ 4fnf'
1+ (2r, —r, )ID, I'+4[nf'r

[i(v —v') + ril(ID3I'+ 4lnl') + 4(r2 —ri) Inl' (54)
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The extra or Rayleigh resonance vanishes when 2I ~ ——I q

and ~Ds~ )) ~A~. Since the condition on the damping
constants is typically satisfied for radiative decay but not
for collisions, we may say that the extra resonances are
"induced" either by collisions [46] or by the presence of
a strong pump field [43, 47].

F. Probe ampli6cation

We also note that when Ap( ) = 1 (only the ground
state is initially occupied), Eq. (53) substituted into
Eq. (50) gives the expression used by Wu et at. [48] for
the analysis of their experimental studies of the Stokes
gain/loss profile predicted by Mollow [49]. In their case,

2I'2 ——I'q ——I'; also, their z = D3 and bv = v' —v. fur-
thermore, our value of ~0~2 is defined to be four times that
of Mollow and co-workers. It should be noted that the
amplification process is related to the problem of "lasers
without inversion" [50, 51].

Figure 7(a) shows the theoretical Stokes line shape
Impsi(v') plotted as a function of the normalized weak-
field detunin "v' ~T'g 6'v'/I', where 6v' = v —wo, and normalized
strong-field amplitude ~A~/I' with strong field on reso-
nance. This gives the predicted and observed profiles
as is more readily apparent in the form shown in Fig.
7(b). As the intensity is increased, two dips in the weak-
Field absorption profile appear one on either side of line
center. For a specific value of normalized strong-field
amplitude the medium becomes transparent at these two
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frequencies and further increase in the strong-Geld inten-
sity produces gain. The locations of the maxima (solid
lines) and minima (dotted and dashed lines) of ImID2i(v')
are shown in Fig. 7(c) as a function of weak-field detun-
ing 6v/I' and strong-field amplitude [0[/I' with strong
field on resonance. For high strong-Beld amplitudes, the
zero crossings furthest from line center are located at fre-
quency shifts equal to the Rabi frequency, as pointed out
by Wu et at. [49].

When the strong field is detuned as well, the two max-
ima and three minima shift, all except the central mini-
mum eventually merging and disappearing. The trajec-
tories of these extrema in the two-dimensional detuning
plane are shown in Fig. 7(d) for a normalized strong-Field
strength of 1.0. Inversion symmetry through the origin is
apparent. The two maxima (solid lines) and two outer-
most minima (dash-dotted lines) tend to be asymptotic
to the resonance associated with 1/D4, the frequency
conversion or three photon bv' = 2bv resonance. The
minimum along 6v' = 6v (dashed lines) is the extra or
Rayleigh resonance at v = v' explicitly given in Eq. (54)

and associated with 1/Di. Also indicated are the weak-
and strong-field resonance lines given by the zeros of the
real parts of the D2 and D3 denominators as discussed
above.

Similar behavior is observed in the anti-Stokes po-
larization amplitude normalized by [A'[/I' as shown in
Fig. 8 where the normalized strong field strength is 3.6.
Figure 8(a) shows the surface plot of the intensity and
Fig. 8(b) the trajectories of the maxima and minima.
For positive strong-field detuning maxima (solid lines)
occur along the bv' = bv frequency conversion line and
the bv' = 0 weak-field resonance line, respectively. Below
the critical value of the strong field for which the reso-
nance peak is not split, the maximum along the extra
resonance line disappears and only a single minimum is
seen.

The theory can be modified to also include a weak-field
amplitude at 2v —v'; both v' and 2v —v' can then be
amplified together in a parametric process [52].

VII. CONCLUSION
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tuning 6v/I for a value of the strong field given by 0 = 3.61 .
(a) Surface plot of the normalized anti-Stokes polarization
amplitude plotted as a function of the weak-Beld and strong-
field detuning, 6v'/I' and bv/I', respectively. (b) Trajecto-
ries of the maxima (solid lines) and minima (dash-dotted and
dashed lines) of (a) plotted as a function of normalized weak-
field tiv'/I' and strong-field detuning 6v/I'.

In this paper, we have considered an alternative ap-
proach to the treatment of strong-field nonlinear opti-
cal problems. This has involved the substitution of the
density matrix into itself, thereby having a coupled set
of equations for which intermediate density-matrix ele-
ments are eliminated. This reduces the number of equa-
tions which need to be handled for many nonlinear op-
tical problems by a factor of 2. In addition, we have
shown that by using differences between populations of
levels and reasonable approximations to the damping co-
efFicients further simplification occurs. For example, for
two strong fields we have shown that, while 128 terms
occur in the original density matrix equations, the final
number can be reduced to 2.

The resultant equations involve double interac-
tion terms and contain in a concise way radiative-
renormalization phenomena such as saturation, Rabi
splitting, field-induced extra resonances, and other phe-
nomena more traditionally viewed from the dressed-atom
picture. We have applied this approach to obtain sev-
eral two-level results including excitation by two strong
fields, weak-field Stokes transparency and amplification,
and anti-Stokes polarization. There are a variety of other
problems which can be handled in this manner includ-
ing electromagnetically induced transparency in upcon-
version processes, when either two or one of the pump
beams has a high intensity.

The approach which we have developed here is equiva-
lent to a Dyson-equation analysis and therefore incorpo-
rates the dressed-atom picture as well as the perturbation
approach to renormalization. It is important, however,
to emphasize that it is not inherently a perturbational
approach.

Finally, it should be pointed out that, whereas the ap-
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plications which have been considered in the present pa-
per are semiclassical, this need not necessarily be the
case. It will be interesting to explore the quantum limit
for applications to vacuum-field fluctuation calculations
useful for cavity @ED or noise problems. In this case
the paired interactions for a mode results in the photon
propagator, as recently discussed [53]. As such, it is also
related directly to Wick's theorem for pairing of inter-
actions with the elimination of intermediate excitations
[54)
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