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Chaotic stimulated Brillouin scattering in a finite-length medium
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The dynamics of stimulated Brillouin scattering in a finite-length, homogeneous medium with
the effects of temporal resonance detuning but no external feedback is examined numerically. The
inclusion of resonance detuning leads to nonstationary behavior of the wave amplitudes including
periodicity, quasiperiodicity, and chaos. The results may have applications to experiments with
optical fibers and laser plasmas.

PACS number(s): 42.65.Es, 0.5.45.+b, 52.35.Nx

I. INTR.ODUCTIQN

The dynamics of stimulated Brillouin Scattering (SBS)
in a homogeneous finite medium has captured consider-
able interest both in laser-plasma interactions [1—4] and
in optical fibers [5—10]. SBS is a three-wave interaction
(3WI) that results from a parametric coupling between
electromagnetic (light) and acoustic waves. In an opti-
cal fiber, a laser impinges on the fiber, excites an acoustic
wave by electrostriction, and scatters back (Stokes wave).
In the case of a plasma an ion-acoustic wave is excited.

Nonstationary and chaotic behavior has been previ-
ously reported in SBS with external feedback such as
reflection at the boundaries [1,2,4] or with models in-
volving more than one pump [11,12]. Harrison et aL [9]
have observed chaotic SBS experimentally in an optical
fiber without feedback. Gaeta and Boyd [10] have per-
formed similar experiments and obtained similar results.
However, they propose that the experimentally observed
aperiodic behavior is due to amplification of noise. They
propose a stochastically driven model that agrees with
their experiments.

It is shown here that with the addition of resonance
detuning and without feedback the spatiotemporal 3WI
modeling SBS can be chaotic in a restricted parameter
regime. It has been demonstrated previously that un-
stable three wave interactions in time only (uniform am-
plitudes) with resonance detuning can have chaotic be-
havior provided the highest-frequency wave is unstable
and the other two are damped [13,14]. The model we
propose appears to be one of the simplest SBS models in
spatially extended media that exhibits chaos; the highest
frequency wave (the incident laser) is of course taken as
stable.

The question remains as to how resonance detuning
(i.e. , frequency mismatch) would occur in a fiber. The ex-
periments were done with narrow-linewidth lasers, so the
resonance conditions should always be satisfied. An argu-
ment for how resonance detuning may arise has been pro-
posed by Rubenchik [15]. The wavelength of the acoustic
wave is on the order of the fiber diameter. Thus trans-

verse modes will be set up in the fiber wave guide. The k
spectrum will be discrete, so e~act resonance may be im-
possible. Future experiments could seed the Stokes wave
at a detuned frequency with a second laser, but at a low
level so a three-wave interaction still applies.

For SBS in a finite medium with resonance detuning
in one spatial dimension the equations are [16—18]

Ota, + v, O a, + p, a, = —Ka~aA, exp( —i6t),

Ota~ + v~0 a~ + p~a~ = K*a,a&exp(ibt),

Otal + vkB aA,. + p~a~ = K*a,a~ exp(ibt),

(la)

(lb)

(lc)

where power is fed in through the boundary with a, (0) =
A„. Equations (la) and (lb) describe the evolution of
light waves traveling in opposite directions so v, = —v~ =
c/n, where c is the velocity of light and n is the index of
refraction for the medium. Equation (lc) describes the
evolution of the acoustic wave (ion acoustic wave in a
plasma), where the group velocity is the sound velocity
c, . The resonance detuning parameter is b. It should be
noted that with fixed boundary conditions the resonance
detuning cannot be transformed away in Eqs. (la)—(lc).

In Eqs. (la) —(lc), the slowly varying complex wave
amplitudes a„can be taken with units of electric field.
Then, in a typical experiment with fused-silica optical
fibers and a single-mode argon-ion laser operating at A =
514.5 nm, the parameters are n = 1.46, c, = 5.96 x 10
ms i, pi, 270 MHz, K 66 ms i V, and p, /pA,

—
10 s [5,9,10,19].

Equation (1) can be simplified. For a relatively strong
pump the interaction time scale for the acoustic wave is
given by r = 1/(KA„). This gives an interaction length
of l roc, c/n. The damping length for the acous-
tic wave is lg c, /py For the. case where the damp-
ing length is much smaller than the interaction length
(lg « l) the convective term in Eq. (lc) can be ignored.
This condition is easily satisfied in optical fibers and
can be satisfied in a plasma for heavy-ion acoustic-wave
damping. The damping on the electromagnetic waves are
weak and can be ignored. Length and time scales can be
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rescaled with pgt ~ t, xp~(n/c) —+ x, 6 = b'/pk, and
the wave amplitudes can be rescaled with Eo = a, K/p~,
E, = ai K/pl„E = (aI,K/pg) exp( —iAt). The SBS
equations become

Eo+ EO ———E,E
O, E, —0 E', =EOE

B~Ea+ (1+ i&)Ea = EoE, ,

(2a)
(2b)
(2c)

with the boundary conditions Eo(x = 0, t) = A&K/py =
A, E,(x = L, t) = e. The scattered wave is assumed
to grow from a small amplitude (noise) e at the right
boundary. The laser wave Eo is referred to as the pump,
the scattered light wave E, is often called the Stokes wave
and E is the acoustic wave. In terms of a typical optical-
fiber experiment, L = 1 corresponds to 0.75 m, 4 = 1
corresponds to 270 MHz, and A = e = 1 corresponds to
4 MVm

II. THE DYNAMICS

Equations (2a)—(2c) were numerically simulated. The
details of the numerical integration method are in
Ref. [20]. For each run the spatiotemporal series was
recorded. Diagnostics included monitoring the output
time dependence of the waves: Eo(x = L, t), E,(x = 0, t),
E (x = 0, t) The ph. ase portrait of E (0, t) vs E,(0, t)
was constructed from this information. As a substitute
for a Poincare surface of section the phase portrait was
strobed at the normalized detuning rate, i.e. , E (0, t„)
vs E,(0, t„) where t„= 2am/6, n is an integer. The
system has four free parameters A, 4, e, and L. How-

ever, a numerical survey of the parameter space indicated
that a two-dimensional surface in the parameter space
could capture the unfolding behavior. The 4-A parame-
ter plane for fixed L and e was chosen.

Figure 1 shows the numerically determined unfolding
diagram in the 6-A plane for L = 40 and e = 0.0025.
Parameters L and e were chosen so that the bifurcation
diagram in the 6-A plane contained all the observed dy-
namics. For small 6 and A there is a stable fixed state.
It becomes unstable through a Hopf bifurcation to a peri-
odic state. Then there is a transition to quasiperiodicity
and to chaos. Each region will be discussed in detail.

A. The fixed state

The system has one fixed state. This is best examined
by transforming the complex amplitudes to modulus-
phase form. Substituting the following:

FIG. 1. Bifurcation diagram in the A-A plane for L = 40
and e = 0.0025. There are four different phases: I" denotes the
fixed state, P denotes the periodic orbit, Q denotes quasiperi-
odicity, and C denotes chaos. The line of x's indicates a re-

gion of phase coexistence between a periodic and a quasiperi-
odic orbit.

4o,~+4o,* =— ,A
sin P,

0
ApA

S1rl
S

ApA,
slil

(5a)

(5b)

(5c)

Ao, = —AoA, cos P,

A, = —AoA, cos
(6)

(7)

Combining Eqs. (4c) and (5c) yields tang = —A. The
amplitudes must be positive so from (4c) it can be con-
cluded that

where P = P + P, —Po. The fixed state is obtained by
setting the time derivatives to zero. From Eqs. (4a)—(4c)
this yields the equations

Eo ——Aoe'4",

E, = A, e'&,
E = A.e'&-,

into Eqs. (2a)—(2c) yields the equations

Ao, s + Ao = —A, A cos P,
A, q

—A, ~ = AoA~ cosP,
A~ q + A~ = AoA, cos P,

(3a)
(3b)
(3c)

(4a)
(4b)
(4c)

+1+6'

A'(1 —R)
1 —R exp[—2(1 —R)A~rx]

A~ R(l —R)
exp [2(1 —R)A~rx] —R '

A. = r'~'A. A„r = (1+ z ') -'

Ao ——2

(Qc)

Equations (6) and (7) can then be integrated to yield
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subject to

As(x = I) = ~.

y e oun ary condi-The reflectivity B is determined b th b d
tion at x = L. Its value must be obt '

u s ituting for A~ and sing in Eqs. (5b) and (5c)

~'* =1+v
2A. (12)

Using Eqs. (9a) and (9b), the phases in Eqs. (11) and
(12) can be integrated to yield

Pp ———ln
2

1 —R exp [
—2A2 (1 —R)I'x]
j. —R

exp [2A2 (1 —R)I'x] —R
2 exp [2A~ (1 —R)I'I ]

—R (14)

where the boundary conditions

yp(x = 0) = 0, $, (x = L) = 0 (15)

l, = (1+4 )/[2(l —R)A ).

For distances beyond 2: & th S ke to es wave has negli-

have been applied. The phases are fixed by the bound-

The spatial profile of the fixed state for the envelo e
=O, L=40 an

n in ig. . n this particular example
e re ectivity R for the Sto'

The Stokes w
tokes wave is close to unity.

e tokes wave has a definite deca length
'

given by
y en~~ in space

gible amplitude and thd the pump no longer couples to the
other two waves. Thus lus, gives an effective interaction
length. Although the system box ma be lem ox ay e arger, the dy-

a e p ace in the interaction region 0 ( x & I, .
The stability of the fixed t t bxe s a e can be examined b

substituting Ei = A) exp(iP ) + 6E'i ~ i into Eqs. (2a —2c
where bEI are small perturbations. If the e

linearized e uations
boundary-value problem for the real d

'
s

of bE and
r e rea an imaginary parts

o 0 and, . These equations m t b l
'ca y. This has not yet been done. F

us e so ve numer-
one. or no resonance de-

unmg ( = 0), Blaha et al. [3] showed that this fourth-
order system reduces to two second-ord-or er equations, one

or the real and imaginary parts. Thpar s. ese second-
qua ions can then each be transformed ' t Lme in o eg-

o per ur ations
e found in terms of associated Legendre func

'

a e xed state is unstable in a semi-
in nite medium. A l infi

' '
. pp ying boundary conditions for a fi-

nite medium to their solutions, the fixed state
shown to alwa says ~e stable for no resonance detuning.

Numerically it was found th t th fi i-a e xed-state Ho f bi-
furcates to a periodic state alon

p i-

e parameter plane (see Fig. 1). Although an anal ic
condition for the stability of the fi d
oun, t is particular shape can be under t ders oo qua ita-

y. Consider a nonzero value of A. The fi
is stable for 6 = 0.

o . e xed state
or = 0. The only difference in the fixed

state between 4 = 0 and 4 P 0 is the "
qs. ( ) and (14). The criterion for stabil-

ity is then postulated to be determined b thine y t e amount
phase twisting. " For exam l hpe, w en, 2;=0 ex-

ceeds a critical threshold the fixed b
e. contour portrait of P, (x = 0) in the A-A plane

for L = 40 and e = 0.0025 is shown in Fi . 3. N

,(x = ) 5 contour matches very closely to the
numerically determined stabilit b

orn Eq. (14) it appears that the phase P, (0) depends
on A and I in the same w Th'way. is is not entirely true
because the reHection coeK ' t dcien epends nontrivially on
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FIG. 2. Fixed--state spatial profiles of the pump ~solid line~

Stokes mave ~dash( ashed line), and acoustic wave (dotted line) for
)

the parameters A = 0 A = 1 6 L = 20,, and e = 0.0025.
FIG, 3. Contour plot of P, (z = 0) in the Q-A

I = 40, and e = 0.0025.



47 CHAOTIC STIMULATED BRILLOUIN SCATTERING IN A. . . 5147

the parameters. However, it has a relatively weak de-
pendence and numerical simulations do show that the
bifurcation point responds similarly to A2 and L. In the
parameter plane (Fig. 1), L was set large enough so that
all the bifurcations were included.

10
10
10
10

B. Periodic orbits

When the stability line is crossed in parameter space
the fixed-state Hopf bifurcates to a periodic state. Points
in the parameter plane will be denoted by the ordered
pair (6, A). An example of the spatial profile of a peri-
odic state at (1, 1) is shown in Fig. 4. The three profiles
have the form of the fixed-state profiles shown in Fig. 2,
but with modulations. In this and the following spatial
profile figures, the pump is the solid line, the Stokes wave
is the dashed line, and the acoustic wave is the dotted
line. The pump consists of a periodic pattern that propa-
gates across the box. The interaction between the waves
is confined to a small region given roughly by the decay
length of the Stokes wave Eq. (16). The time series of
the output pump amplitude will be identical to the spa-
tial profile of the pump outside of the interaction region
with the other two waves. The output time series of the
pump and Stokes waves are both periodic. The power
spectrum of the pump is shown in Fig. 5 and shows the
frequency is very near L. The power spectra of the other
two waves are similar. The phase portrait of E, vs E
is shown in Fig. 6(a). A closed curve is seen confirm-
ing periodic behavior. The phase portrait strobed at the
normalized detuning rate 4 = 1 is shown in Fig. 6(b).
In this case the frequency is locked to the detuning rate
with a period of 38. In all cases the frequency will be
near 6, but not necessarily locked to it.

One small section of the periodic regime, indicated by a
line of crosses in Fig. j. , has a phase coexistence between
a periodic state and a quasiperiodic state. Depending
on the initial conditions, the result could be a periodic
state similar to that seen in Fig. 6 or a completely dif-
ferent quasiperiodic orbit can appear. Figure 7 shows
the phase portrait of the quasiperiodic state. One sees

I I II III I I I I I IIII I I I I I IIII I I

10 10 10 10

FIG. 5. Periodic state: power spectrum of pump at (1,1).

1.0

0.8

0.4
0.4 0.6 0.8 1.0

a double-looped figure that does not close. The two dif-
ferent runs were continued for very long times to test
their robustness. However, even after many hundreds of
thousands of periods, the quasiperiodic state did not fall
into the periodic attractor. It is unknown what the basin
of attraction is for each phase. This coexistence regime
was discovered by chance. It is unknown whether more
regimes exist in the periodic regime. In many of the runs

1.5

0.8

10 20 30 4-0
0.4 0.6 0.8

E.(t)
1.0

I IG. 4. Periodic state: spatial profile of the amplitudes at
a fixed time at (1,1).

FIG. 6. Periodic state: (a) phase portrait E, vs E at (l, l);
(b) phase portrait strobed at t = 2m/D.
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FIG. 7. Quasiperiodic state: phase portrait at (1.1,1). This
state coexists with a periodic state.

FIG. 9. Chaotic state: time series of pump at (1,5).

made in the periodic regime, the relaxation times were
extremely long. Often it was dificult to distinguish be-
tween periodic and nonperiodic states because the tran-
sients were so long lived.

10.0

C. C}uasiperiodicity and chaos

By changing the parameters the periodic state can
make a transition to a quasiperiodic state. As the bifur-
cation boundary to quasiperiodicity is approached from
the periodic side, a second frequency corresponding to
the round-trip transit time across the box begins to make
an appearance as a transient oscillation. Its decay time
becomes longer and longer as the boundary is approached
until it no longer decays away at the boundary between
periodicity and quasiperiodicity. Very long computation
times were required to resolve this boundary.

The power spectrum for the pump for the quasi-
periodic state at (1, 2) is in Fig. 8. The other waves
have similar power spectra. There are many peaks in the
spectrum confirming quasiperiodic behavior. The peak
at a 1 is the fast frequency from the periodic orbit.
The broader peak near a 0.07 corresponds to a time
scale of twice the transit time across the box. The phase

6.0

0.0
0.0 5.0 10.0 15.0 20.0 25.0

E.(t,)

FIG. 10. Chaotic state: phase portrait at (1,5).
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III I I I IIIIII I I I I IIIII I I I IIIIII I I I II

10 10 10 10

10

10 10 10

FIG. 8. Quasiperiodic state: power spectrum of the pump
at (1,2).

FIG. 11. Chaotic state: power spectrum of the pump at
(1 5).
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10 40

I IG.IG. 12. Chaotic state: spatial profile at (1,5).

portrait will have a width and be clearly nonperiodic.
The quasiperiodic state makes a subcritical bifurca-

ion to chaos. At the boundary between th t he wo p ases
ere is a region of hysteresis. Howeve th'r, is region is

very narrow. For instance at (1,2) there is another at-
tractor. The phase portrait shows that the orbit has a
double-loop structure similar to that for the quasiperi-
odic phase at (1.1, 1) seen in Fig. 7. The orbit alternates
between one loop and the other Th t te ou put time series
seem to manifest intermittency. The time-only equations
were observed to exhibit type-I intermittency [14]. The
power spectrum for the pump shows broadband behav-
ior indicative of chaos. A measurement of the laro e ar gest

y p v exponent A was made by linearizing about a
fiducial orbit (see Ref. [21]). It was found to be very
small but positive (A 0.001).

As the chaotic regime is entered further the orbits be-
come more aperiodic. The laminar regions in the time
series reduce in size and the general structure of the time
series begins to look difFerent. A third loop in the phase
portrait begins to form. Well into the chaotic region at
(1,5), the time series of the pump is clearly chaotic in
Fig. 9. The phase portrait in Fig. 10 has no real struc-
ture. The power spectrum in Fig. 11 Battens out below

1, e ning a coherence or correlation t' hime w ere
e spectrum bends over. The spatial profile is in Fig.

12. The waves appear chaotic yet the interaction length
where the Stokes wave has substantial amplitude remains
small. From the plot it appears that the coherence length

of th
o the pump structures is on the order of the deca l ~ h

e Stokes wave. Thus the resulting chaos is expected
to be low dimensional.

Given that resonsonance detuning is present in SBS, a
~ ~

sequence of transitions from stead state t hy o c aos is pos-

rnust be hi h an t
or he chaotic regime to occur th 8e re ectivity

e ig an the medium must be larger than the
decay length (growth length) for the Stokes wave. The

g e system is complicated andparameter unfoldin of the
i cult to ununderstand. Even the linear stabilit ana

sis is unwield .
s a iiyanaly-

instabilit of t
dy. However the phase-twist h th ' fypo esis or

' '
y o he fixed state seems to capture the be-

haviour qualitatively. This fact, along with th
a ive y mell-defined bifurcation sequence to chaos,

is an indication that there may b d
'

y-ay e a re uce ordinary-
differential-equation description for the dynamics. This
is i o non inear t ree wave in-

considered here is that the bound d' '

~'

oun ary con itions impose
an inhomogeneous fixed state. Th 1'

be
e. e inear equations must

e solved numerically to obtain th e eigenva ues. Simple
expansions in a harmonic series do not satisfy the bound-
ary conditions. Thus, some nontr' '

lon rivia mo e expansion is
likely to be required.

The addition ofof resonance detuning appears to provide
the simplest SBS model thus far that has chaotic solu-
tions. Gaeta and Bae a an oyd [10] have strong evidence that
the aperiodicit
o tical

p
'

i y o served thus far in experim t 'then s wi

to sa t
p

'
ers is due to amplification of ' . Th'o noise. is is not

o say t at chaotic SBS due to resonan d tnance e uning may
s. or ig re ectivity in anot exist in other experiments. F h' h

arge medium the effect of the noise ne d t b
[ ]. ture experiments using a second laser at very low
powers to seed the Stokes wave m b lve may e emp oyed to re-

fiber c
uce t e e ects of noise. The temperatu f thure o e optical

er could also be lowered to reduce the noise. The fre-
quencies could be scanned to se h fscarc or acoustic modes
that would lead to dephased SBS.Th
and len th

e power of the lasers
an ength of the fiber could then be varied to search f
chaotic behavior.

varie o scarc for
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