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We will demonstrate that four-wave mixing with linearly chirped (phase-modulated) pulses is a unique

tool for obtaining information on the dynamics and level structure of a system. Especially, it will be
shown that the transient-grating-scattering type of experiment with chirped pulses provides an immedi-

ate answer to the question of whether the dynamics of a system occurs on a fast and/or slow time scale.
In addition, we present compelling evidence that chirped four-wave mixing in a molecular system is a vi-

able method for measuring excited-state vibrational frequencies. Double-sided Feynman diagrams are
used for a third-order perturbative calculation of two-level four-wave-mixing effects and chirped
coherent Raman scattering. The diagrams provide a visual representation of the quantum-mechanical

pathways that the system can take as a result of the different field interactions. The number of
quantum-mechanical pathways that contribute to the signal is shown to depend on the chirp rate com-

pared to the time scale(s) of the system dynamics. A stochastic model is used to describe the optical dy-

namics of the system. The resulting expressions for the third-order nonlinear polarization are so corn-

plex that numerical calculations are necessary to simulate the time dependence of the optical response.
It will also be shown that our theoretical results in the appropriate limits converge to those obtained for
impulsive or continuous-wave excitation.

PACS number(s): 42.50.Md, 78.47.+p, 42.65.Dr, 42.65.Re

I. INTRODUCTION

A chirped wave has a phase that varies nonlinearly
with time, and hence its instantaneous frequency is time
dependent as well. In nature, chirped acoustical waves
are well known. Birds generate them to communicate
among each other [1],and certain species of bats employ
them for maneuvering in the dark, and to locate and
track their prey [2]. Electromagnetic chirped pulses have
been used for a long time in radar, to detect and guide
airplanes and ships [3]. At optical frequencies chirped
pulses are often formed spontaneously during the buildup
of a pulse inside a laser cavity [4], in which case the chirp
is not well defined.

By phase modulation of optical fields a chirp can be in-
duced that is defined over the entire pulse envelope. This
was originally accomplished by electro-optic modulation
[5], and more recently by injection of the field in a
monomode optical fiber [6]. It was soon realized that
these phase-modulated, frequency-broadened pulses
could be compressed in time to their Fourier-transform-
limited width by passage through frequency-dispersive
delay lines such as a pair of gratings [7] or an array of
prisms [8]. However, it was not before full understanding
was achieved of the chirp-forming process in single-mode
fibers [9,10] that breakthroughs were made in fem-
tosecond pulse generation [11] and long-distance com-
munication [12]. Also, the amplification of ultrashort
pulses to extremely high energies has benefited from the
controlled chirping of pulses, in order to extract the ener-

gy in the amplifier medium most efficiently [13].
Recently, the potential of pulses with a controlled

chirp was also recognized for laser chemistry [14,15],

selective optical excitation [16,17], and the study of opti-
cal dynamics [18,19]. In the field of pulsed NMR it was
shown that excitation with chirped pulses produces states
that are not easily accessible with transform-limited
pulses [20].

In this paper we demonstrate that linearly chirped op-
tical pulses can be used advantageously in a study of the
optical dynamics of a molecule in solution. These pulses,
which may have a duration-bandwidth product that
exceeds the transform limited value by orders of magni-
tude, excite the system in a unique way. We show that
dynamical information can be obtained that is not avail-
able from experiments using continuous-wave or short-
pulse excitation. Specifically, we show that transient-
grating-scattering type experiments with chirped pulses
provide an immediate answer to the question of whether
or not the dynamics of the solvent can be separated into
fast and slow fluctuations. If so, the optical Bloch equa-
tions can be used to describe the dynamics; if not, a non-
Markovian master equation needs to be employed.

The main body of this paper is focused on numerical
calculations of chirped four-wave-mixing effects based on
third-order perturbation theory. A stochastic model is
used to simulate the optical dynamics of the probe mole-
cule. Double-sided Feynman diagrams provide a pictori-
al representation of the calculations, and act as an aid in
the interpretation of the results obtained for the different
limits of solvent dynamics. We further show that good
agreement is obtained between the calculated response
and the signals that were observed experimentally. A
brief report of this work was recently published [19].

The experimental arrangement that we will treat ex-
plicitly is shown in Fig. 1. Two beams with wave vectors
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FIG. 1. Layout of the chirped nonlinear scattering experi-

ment. Two pulses sweep through a system resonance and gen-
erate a signal in the direction 2k2 k&. The integrated signal in-
tensity is observed as a function of the relative delay ~, which is
small compared to the pulse duration. The delay is associated
with an instantaneous frequency difference between both beams.
The object of this experiment is to obtain information on the dy-
namics of the system.

k, and kz interact in a sample and cause a signal to be
emitted in the direction k, =2k2 —k, . This is the general
kind of geometry that has been used in impulsive scatter-
ing [21—24], steady-state interactions [25,26], with sto-
chastic fields [27,28], and also in the first experiments
with chirped laser pulses [18,19]. Figure 2 shows for a
particular dye molecule in solution how the signal with
chirped pulses depends on the relative delay between the
two beams. The chirp was generated by focusing a 50-fs
amplified colliding-pulse mode-locked (CPM) laser pulse
in a monomode fiber. For comparison, the experimental

result using short (9 fs) compressed pulses with the same
frequency spectrum is also depicted.

We will demonstrate that these results can be interpret-
ed within a two-level model for the system dynamics. In
addition, coherent Raman scattering signals are generat-
ed, from which ground- and excited-state vibrational fre-
quencies can be obtained. The relative intensities of the
Stokes and anti-Stokes signals depend on the direction of
the chirp, i.e., whether the instantaneous frequency in-
creases or decreases in time. "With femtosecond lasers
becoming as ubiquitous as 5 Volt batteries" [29], it may
well be that this relatively simple two-beam scattering ex-
periment will become a routine technique for acquiring
information on vibrational frequencies in the ground and
excited states of molecules.

The paper is organized as follows: In the second sec-
tion double-sided Feynman diagrams are introduced and
used to calculate the third-order nonlinear response func-
tions, adopting a stochastic relaxation model. In the
third section the effect of linear chirp of the excitation
fields is explicitly accounted for, and the limits of very
fast and very slow chirp are examined. It is shown that
for very fast chirp the impulsive excitation limit is
reached, while for very slow chirp the connection with
continuous-wave excitation is made. In the fourth sec-
tion the numerical calculations of the nonlinear signals
are presented. In particular it will be shown that the
chirp rate in comparison with the time scale(s) of system
dynamics is the crucial factor in determining the shape of
the coherent signals. In Sec. V, chirped four-wave mix-
ing in multilevel systems is examined, both experimental-
ly and by calculations. Here the sign of the chirp param-
eter will be shown to have pronounced effects on the ob-
served signal intensities. Finally, in Sec. VI our findings
are summarized and some conclusions are drawn regard-
ing the potential of chirped transient-grating-scattering
experiments.

II. NONLINEAR RESPONSE THEORY

A. Four-wave mixing

'~
~ ~ ~ ~ I s I ~ i I

The transient-grating-scattering process depicted in
Fig. 1 can be seen as a member of a broad family of pro-
cesses, known as four-wave mixing. The general four-
wave-mixing process involves the interaction of three
light fields with wave vectors k„k2, and k3 and frequen-
cies cu&, co2, and m3 to generate a signal with wave vector
k, and frequency co, :

—i 00 —50 0 ]00 150 k, =+ki+k2+k3, (1a)

pul se de I ay t ime (fs) CO —+CO i+C02+C03 (lb)

FIG. 2. Two-pulse delayed scattering signal at room temper-
ature for the dye molecule resorufin dissolved in dirnethylsulfox-
ide. The solid trace was obtained with chirped pulses. The
pulse duration was about 1.5 ps with a chirp rate in angular fre-
quency units of 0.5 THz/fs. The dotted trace was obtained
when the pulses were compressed to a duration of 9 fs. In the
compression process the phases of the frequency components
are rearranged while the frequency spectrum is not influenced.

In the usual perturbative treatment of these processes the
medium is assumed to be partly quantized and the elec-
tromagnetic fields are taken to be classical. The quan-
tized system and optical fields interact through dipolar
coupling, and the signal is generated through the non-
linear response of the system. In this section we will con-
sider a two-level system, stochastically perturbed by bath
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degrees of freedom that interact with the two-level sys-
tem but not with the electromagnetic fields. The system
Hamiltonian thus consists of two levels Ia ) and Ib),
dressed phenomenologically with parameters that de-
scribe damping and line width for ensemble-averaged
properties.

A convenient way to include damping in a description
of the system dynamics is to make use of the density-
matrix formalism. The third-order nonlinear response of
the material is calculated by considering three consecu-
tive interactions between system and field. This then
yields an ensemble-averaged nonlinear polarization ac-
cording to

I

P ( r, t ) =Tr [pp(r, t ) ] —= ((p I p(r, t ) )) . (2)

Here, p is the dipole moment operator of the system and
p(r, t ) is the reduced density operator of the system. For
simplicity we take P and p to be scalar quantities here.
The density operator is calculated by propagating the sys-
tem from a time at which the radiation field is not yet
present (e.g. , t = —00 ) to time t = t after the three
system-field interactions. For a two-level system at room
temperature with a transition frequency much larger than
kT the unperturbed state at t = —~ is the ground state
p(r, —~ ) = Ia ) (a I. The nonlinear polarization at time t
then has the following general form [30—33]:

P(r, t)=( —i) g f dt3 f dt2 f ™dt,((pIG(t3)L;„, &(r, t t3—)G(tz)L;„, t, (r, t t3 t2—)—
0 0 0

j&k&l

(3)

The meaning of this expression is as follows: starting at
t = —~ three interactions L;„,(r, t ) occur between system
and field at times t —t3 —t2 —t, , t —t3 —t2, and t —t3. In
the intervals t„ t2, and t3 between the interactions the
system evolves according to the Green's-function propa-
gators G(t), which gives rise to oscillations and decays of
the density-matrix elements.

The three interactions between system and fields are
represented by Liouville space operators (or super opera-
tors) defined by

(4)

The interaction Hamiltonians can be expanded in the
states of the two-level system, which yields in the dipole
approximation

E (r, t)= ,'[E (t)e ' +E*—(t)e ' ] . (6)

The time dependence E (t) will be specified further in
Sec. III when chirped fields are introduced explicitly in
the formalism [Eq. (17)].

The physics of Eqs. (3)—(6) can be conveniently
displayed in the form of diagrams [30—33]. These dia-
grams provide direct insight into the time evolution of
the system and therefore in the infiuence of damping pro-
cesses on the outcome of the nonlinear optical experi-
ment. Each diagram can be translated by straightfor-
ward computational rules into mathematical expressions
that can be evaluated analytically or numerically. The
details of this translation depend on the character of the
interaction Hamiltonian, and on the model that is chosen

Here Ip, b I
is the magnitude of the transition dipole mo-

ment between states Ia ) and I b ) and E~ (r, t ) is one of
three applied classical electromagnetic fields, which we
take to be plane waves:

for the system dynamics. We will now brieAy describe
which diagrams are relevant for the process of Fig. 1, in
which the nonlinear polarization is induced with wave
vector 2k2 —k, . Subsequently we introduce a general
dynamical model that applies to a large variety of optical
systems.

B. Double-sided Feynman diagrams

Since each L;„,(r, t ) represents a commutator [Eq. (4)],
the interactions of Eq. (3) can work on the bra and on the
ket sides of the density operator. With three such in-
teractions that can work on both sides of the density
operator there are (2) =8 different pathways from the
unperturbed state at t = —~ to the final state at t =t.
The emission of the signal field can also occur on the bra
and ket sides of the density operator but since this leads
to diagrams that are Hermitian conjugates of each other,
only 8 independent pathways remain.

The three fields that induce the changes in the state of
the system are not necessarily time ordered. So, in the
most general case of four-wave mixing 3!=6 possible per-
mutations have to be considered in the time ordering of
these fields. For the type of scattering displayed in Fig. 1,
one of the fields acts twice so two interactions are not
permutable. This leaves only 3!/2=3 remaining time or-
derings. Thus, the total number of independent diagrams
that represents the nonlinear optical scattering of interest
is 8 (number of system pathways) X 3 (number of time or-
derings of the fields).

Inspection of these diagrams enables one to reduce the
number of significant contributions from 24 to 4. The
reason is that 20 of the diagrams contain one or more
antirotating interactions. In such interactions a transi-
tion from the ground state of the system to the excited
state is accompanied by the emission of a photon, or a
transition from the excited state to the ground state by
the absorption of a photon. Since these types of terms
will be highly oscillatory, the time integrations of Eq. (3)
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cause their contribution to the signal to be very small. In
the rotating wave approximation they are simply neglect-
ed so that only four independent contributions remain.
The relevant diagrams are depicted in Fig. 3, where the
following convention is used: the co branches with a posi-
tive inclination toward and from the system propagators

ik . .r
correspond to E;(t)e ' working, respectively, on the

bra and ket sides of the density matrix, and similarly the
branches with a negative slope correspond to

E,'(t )e
To write down the mathematical expression for the

nonlinear polarization that is symbolized by these dia-
grams, Eqs. (4)—(6) have to be inserted in Eq. (3) with
the fields acting in the right time ordering. The result is

P(r, t, r)=(2iA) Ip,,I, I
e

~ f «, f dt, f dt, [[R,(t»t2, t, )+R«(t, , t2, t, )]E2(t r t, )—E2(—t ~ t3 —t2—)E, (t —t3 —t2 —t&)
0 0 0

+[Rt«(t3, t2, t))+Rtv(t3, t2, t))]E)(t—r t3)E—) (t —t3 —t2)E2(t —7 73 tp t))]

C. The stochastic model of optical dynamics

In the intervals between the interactions of the system
with the optical fields, the dynamics is governed by the
energies c., and c.b of the two-level system. Both of these
energies are not completely defined due to population re-
laxation processes and fluctuations in the interactions be-
tween the system and its environment (the "bath" ). It is

la& &al la& &al la& &al la& &al

Here, ~ is the delay time that is introduced between
beams 1 and 2, as depicted in Fig. 1, and Rt tv(t3 t2 t ] )

are the time evolution functions that result from propa-
gating the ensemble of systems during times t„t2, and t3
according to diagrams I—IV. These functions are deter-
mined by the propagators G(t; ) of Eq. (3), which in turn
depend on the model that is adopted for the system-bath
interaction.

often assumed that the time scales of system and bath dy-
namics are completely different, leading to homogeneous
or inhomogeneous broadening of the transition frequency
in the limits of much faster and more slower bath dynam-
ics, respectively. In more general treatments of optical
dynamics (non-Markovian approaches) this assumption is
not made, which leads to memory effects in the propaga-
tion of the system under the inAuence of the bath. The
future of the system then depends not only on the present
but also on the evolution in the past. In this way any sit-
uation in between the limits of homogeneous and inho-
mogeneous broadening can be described.

A model that applies to system-bath dynamics on arbi-
trary time scales is the stochastic approach of frequency
fluctuations [22, 33—37]. In this model the energy levels

c, & of the system are assumed to fluctuate randomly in
time with excursion 5E, I, (t). So, all bath coordinates
that are relevant to the dynamics of the two-level system
are contained in 5c., b ( t). The basic ensemble-averaged
propagator for a density-matrix element

I
a ) ( b

I
then has

the following form:

a~ ('/' 'Isa+~~ I ~'

t3 lb& Ib& X exp —i dt'6co, b I,
"

0

t2
lb&

&bl

Ib& &bl la&
Cd

Ib&

la& &al la& &al la& &al la& &al

(IV)

FIG. 3. Double-sided Feyn man diagrams for resonance
four-wave mixing in a two-level system. The two lines of each
diagram represent the bra and ket sides of the density matrix.
Time increases from bottom to top. The interactions between
system and radiation field are represented by vertices. The sig-
nal is generated with wave vector k =2k2 k, and frequency
co, =co2+~2 —co&. With phase-modulated pulses the instantane-
ous frequency is a function of time, so that frequency co& is not
necessarily identical to frequency co2. In diagrams (a) a superpo-
sition state of the system is inverted; in diagrams (b) the same
superposition state occurs twice.

(5'(t')5'(t") ) =4 e (9)

Here, 6 is the root-mean-square amplitude of the Auctua-

where co,&
=

I s, —
Et, ] /A, y, and yb describe the decay of

states
I
a ) and

I
b ), respectively, and

5',&(t') = [5E,(t') —5Et, (t') J
/A'. The population decay

processes leading to the rates y, and y& are assumed to
be Markovian here.

When the noise force, denoted by 5', (tt'), is a station-
ary process with a Gaussian distribution and a zero mean
value, the ensemble average of Eq. (8) can be calculated
exactly [35,38]. In more general situations, the evalua-
tion of the average can be accomplished by a second-
order cumulant expansion [35,39]. The relevant physics
of the system-bath coupling is described by the two-time
correlation function of the frequency Auctuations, which
for a Gauss-Markov process has the following form
[40-42]:
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(G (t)) — ( ab () a ) b)) —g(t) (10)

where the stochastic damping function g(t) has the fol-
lowing form:

tions and A = T, is the correlation time of the interac-
tion between the two-level system and the most impor-
tant bath degrees of freedom. With this correlation func-
tion the averaging of Eq. (8) yields

To calculate the nonlinear response of the diagrams of
Fig. 3, the factorization of the ensemble-averaged propa-
gator of Eq. (3) into a product of three ensemble-averaged
Green's functions of the form of Eq. (10) is not allowed.
As discussed above, the reason is of course that the finite
correlation time induces a memory in the time evolution
of the system [43]. Instead, the ensemble average should
be calculated on the product of propagators itself. For
diagrams I and II this leads to an identical expression for
the stochastic part of the relaxation function, with only
population relaxation during time t2 giving a difference:

R A
—itaba(t3 —t) ) —(1/2)('Y +) b 3+ 1 )'b, a t2t3t2t, =e ' e

f I +1~+f3
&& exp —i f d bico, tt')+i f dt'bm, (t )) .' (12a)

t) +f2 0

Here R refers to part (a) of Fig. 3 (diagrams I and II) and y&, means y& (diagram I) or y, (diagram II). Similarly, the
relaxation functions for diagrams III and IV also differ only in population relaxation- the stochastic part is identical.

(t3+t) ) —() t2)()i +)ib)(t3+t
t3, t2, t) =e ' e

11+t~+f3
X exp —i dt'5coI„ t' —i dt'Rob, t' (12b)

EI +f2 0

The stochastic parts of Eqs. (12a) and (12b) dift'er only in a + sign. This is due to the fact that an inversion of a super-
position state occurs in diagrams I and II and not in diagrams III and IV. The finite correlation time between system
and bath therefore allows for rephasing of macroscopic coherence in diagrams I and II, while this does not happen in
the case of diagrams III and IV. The ensemble averaging of Eqs. (12) can again be performed by using a cumulant ex-
pansion [33,37,39]. For Cxaussian-Markovian frequency fluctuations [Eq. (9)], the result of this procedure is

R,(t„t„t,)=exp[ t~„,(t—3 t, ) ——,'(y, +yb—)(t3+t) ) 1$t3 tI) (t3 t2, t) )],
R„(t„t„t,)=exp[ i~b, (t3 t—

, ) ——,
'—(y, +yb)(t3+t) ) p t2 dI (t3 t3, t) )],

R&&&(t3, t2, t) )=exp[ —ice&, (t3+t) ) ——,'(y, +yb)(t3+t) ) —ybt2 —@ (t3, t2, t) )],
Rtv(t3, t2, t) )=exp[ —icob, (t3+t) ) ——,'(y, +yb)(t3+t, ) —y, t2 &0 (t3 t2 t)—)] .

(13a)

(13b)

(13c)

(13d)

Here, the relaxation functions N"' (t3, t2, t, ) can be written in terms of the stochastic damping function g(t) of Eq.
(11):

(t3&tempt() g(t3)+g(t) ) [g(tP) g(t3+tP) g(t2+t) ) g+(t +3tP +)t)]

Q2
(14a)

At2At3 At] A(f3 +t&)
2( 3+ ) 3 ) 1)]

(t3&t2tt) ) g(t3)+g(t) )+ [g(t3) g(t3+t2 ) g(tP+t) )+g(t3+t3+t) )]
Q2

[e '+e '+A(t3+ t, ) —2 —e (14b)

A well-known limit of optical dynamics is obtained
when the inverse correlation time A is much larger than
the mean-square amplitude 4. In that case the dynamics
of the system due to the coupling with the bath occurs on
times t that are much larger than the correlation time
(A) '. This is the fast modulation limit (or Markovian
limit) of optical dynamics. The damping function Eq.
(11) can then be approximated by a linear function of
time: g (t) = I *t, where I *=

tb), /A. This gives exponen-—
tial relaxation behavior for the basic propagator Eq. (10):

(G (t)) e
' ab ab

(15)

where the damping parameter I,b
=

—,'(y, +y& )+ I *.
Taking the inverse of these parameters gives the familiar
relation ( Tz )

' = (2T) ) '+ ( T2 ) '. Since the correla-
tion time is very short on the time scale of the dynamics,
memory effects are now unimportant. The nonlinear
response functions R, —R,v can thus be obtained by sim-

ply multiplying three ensemble-averaged propagators of
the form of Eq. (15), or by taking the proper limit for the
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damping functions g(t) in Eqs. (13) and (14). The result
is a perturbative form of the optical Bloch equations
[44,45]:

R](t3 tz, t] )=exp[ —i~b. (t3 —t])—~.b(t3+t] ) ) bt2]

(16a)

linear scattering will turn out to be the sensitivity to the
time scale(s) of memory in the system propagation, we
will use here the simplest approach that can take care of
memory effects, i.e., the stochastic model.

III. CHIRPED FOUR-WAVE MIXING

R„(t3,tz, t, )=exp[ —i~b, (t3 t] I b(t3+t])

(16b)

R]]](t3 tz t] )=exp[ ]~b—(t3+tl ) ~ b(t3+tl ) 7 btz l

(16c)

R]v( 3 2 1) exp[ ]'~b, (—t3+t] ) —r.b(t3+t, ) —y. tz] .

(16d)

So, in the fast modulation (Markovian, Bloch) limit, the
propagation in all diagrams I—IV due to the system-bath
coupling is the same; the response functions differ only in
population relaxation and a time-dependent phase factor.
In the more general stochastic modulation model of Eqs.
(13) and (14), diagrams I and II describe different
behavior than diagrams III and IV, due to the presence
or absence of rephasing processes. In even more general
approaches, such as the Brownian oscillator model, the
propagation due to the system-bath coupling differs for
all four diagrams. This is brieAy discussed in the Appen-
dix. Since the most important feature of chirped non-

A. General expressions

E (t)=a (t)exp i f c—o (t')dt'

—i fcP. +(,b. /2))t jt=a.(t)eJ (17)

Here a (t) is the pulse amplitude envelope, co is some
offset frequency, and 6 is the chirp rate. It now suffices
to insert Eqs. (13) and (17) in Eq. (7) to obtain the central
expression for chirped nonlinear scattering. Thus, the
nonlinear polarization that applies to the beam geometry
of Fig. 1 and the stochastic model for system frequency
fluctuations is

With the results of the previous chapter it is straight-
forward to evaluate expressions for four-wave mixing un-
der general excitation conditions, including the use of
chirped optical pulses. The central formula is the non-
linear polarization equation (7) with the stochastic relaxa-
tion functions given by Eqs. (13). For a linearly chirped
pulse, with instantaneous frequency to(t) =co +bt, the
time-dependent fields E (t) have the following form:

—1]&2]]],+rb]]&&+ ]1 r, tz+-
e ' +e

+]22(t —r —t3)a]*(t—t3 tz)az(t r t3 —tz —t, )—exp[——N(t3, tz, t,—) i%' (t, r, t3—, tz, t] )]] .

I'(r, t, r)=(2ifi) ~p, b~
e' ' ' 'f dt3 f dtz f dt, e

0 0 0

x [a (t2—r —t3)az(t —r —t3 —tz)a] (t —t3 —tz —t] )exp[ —@"(t3,tz, t])—i]p (t, r, t3, tz, t])]

(18)

The contributions of diagrams I and II of Fig. 3 are grouped together to give the first part of Eq. (18) with functions 4"
and +, while diagrams III and IV give rise to the second part with functions 4 and 4 . The damping functions N
and C] [given by Eqs. (14)] result from the coupling of the system with the bath. The oscillatory parts ]I' and ]II con-
tain the system and field frequencies and describe the resonance that occurs when the carrier frequency of the field
sweeps through the system transition frequency. Their explicit form is

0 "(t,r, t„t„t,) =cob. (t, —t, )+coz(2t —2r —2t, —t, ) cu](t —t, ——t, —t, )

+ [(t r t, ) +(t r t, —t, )
—]———(t t, t,—t, )— —— (19a)

0 (t, r, t„t„t]) =~b. (t3+t] )+coz(2t —2r —2t, t, t, ) co](t t, —t, )————

+ [(t r t, ) +(t r t,—t,—t, ) —]—— (—t t, t, )— —— (19b)

In an experiment such as that of Fig. 1, in which two
beams are delayed with respect to each other, the signal
itself is usually not time resolved. Instead, the cycle-
averaged field energy density is integrated by the detector
over all times t, and a signal trace is recorded as a func-
tion of delay time ~. The signal that is sampled at a given
delay time therefore is proportional to the integral of the

polarization of Eq. (18) squared:

I„,„„(r,r)~ f dt~&(r, t, r)~z. (20)
0

Thus, all relevant physics of chirped nonlinear optical
interactions is contained in Eqs. (18)—(20). Unfortunate-
ly, these equations are not very transparent, and numeri-
cal calculations of the integrals will generally be neces-
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sary to evaluate the nonlinear response under specific ex-
perimental situations. It is useful to discuss first the lim-
its of very fast and very slow chirp rate, since these can
be evaluated analytically. The results provide qualitative
insight in the chirp-rate dependence of the nonlinear sig-
nals, and establish a connection between the physics of
Eqs. (18)—(20) and more conventional forms of optical
nonlinear interactions.

layed experiment of Fig. 1 should yield results that
resemble those of a conventional photon-echo experi-
ment, in which ultrashort transform-limited pulses are
delayed with respect to each other. The limit of very fast
chirp can be calculated by applying a well-known analyti-
cal form of the 5 function [46] to the optical field of Eq.
(17):

lim E (t)=.a, 5(t),b~ oo
(21)

B. The impulsive limit

In the limit of very fast chirp the envelope of the pulses
approaches a 5-function shape. A11 frequency com-
ponents of the field are then present within the relevant
relaxation times of the system. In such a situation the de-

where a. is a measure of the pulse area.
When Eq. (21) instead of Eq. (17) is used in Eq. (7), the

threefold time integrations of the nonlinear polarization
are readily performed. The nonlinear polarization that
applies to very fast chirp rates then is

i~ ~ ~i —3I 4 I(2 2
—k~).r p ~ p e '~ba(t —2r) —(1/2)(y +pb~(r, t, r)=(2in) ~p, b e (a2) (a] )*e ' e

X [2e " ' 'H(t —r)H(0)H(r)+(e ' +e )e " " 'H(t —r)H(r)H( —r)] . (22)

The Heaviside functions H(t) result from the integra-
tions over the 6 functions with delay times t„t2, and t3
defined to be positive. The first term of Eq. (22) contains
the contributions from diagrams I and II of Fig. 3 to the
polarization. The Heaviside functions of this part stipu-
late that ~~0 and t &~, so the signal in the direction
2k2 k ] is induced only when beam k2 interacts after
beam k, , and the signal appears only after both pulses
have interacted with the sample. The second part of Eq.
(22) results from diagrams III and IV. It follows that
there is no contribution from these terms to the signal at
any delay, except for a 6-function contribution at ~=0.

In the impulsive limit, at very high chirp rates, the
nonlinear response is completely determined by the
quantum-mechanical pathways I and II depicted in Fig.
3.

The function 4& ( t —r, 0,r ) that describes the non-
Markovian, stochastic damping of the signal due to
system-bath interactions, follows from Eq. (14a):

0& "(t—r, O, r) = [2e " '+2e '—e '+At —3] .
Q2

A

(23)

This expression is well known and was published in many
forms in connection with two-pulse photon-echo genera-
tion in the impulsive limit [22, 27, 39,47—49]. The signal

I

In the limit of very slow chirp, the instantaneous fre-
quency of the pulses does not change within the relevant
relaxation times of the system. The integrations of the
nonlinear polarization Eq. (7) may then be performed as
if the frequencies and the amplitudes of both beams do
not change at all. This means that for every time t we
can assume that Eq. (17) can be replaced by

l COE (t)=a(e.J (24)

where a'- and co' are constant. In this limit the experi-
ment of Fig. 1 resembles a frequency domain experiment
with steady-state fields.

When Eq. (24) instead of Eq. (17) is used in Eq. (7), the
nonlinear polarization that applies to very slow chirp
rates can be written as

is called a photon echo because rephasing of a macro-
scopic coherence causes the signal to peak at a certain de-
lay relative to the interaction with the second beam. This
is possible due to the inversion of a superposition state in
diagrams I and II, and the memory which results from
the non-Markovian character of propagation. In the sto-
chastic model the inhuence of memory is restricted to
times that are within the correlation time (A) ' of the
system-bath interaction.

C. The steady-state limit

X [Q](S3qS2qS] )+O]](S3,S2qS] )+A]]]($3)S3,$] )+Q]v(S3tSQ, S] )] (25)

Here the four functions Q, ,v apply to the four diagrams I—IV of Fig. 3, respectively. They are Fourier-Laplace trans-
forms that are defined as
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—sb'I —s+t —4 "(t t t )

n«i($3, $b2', S+I)=f "dt3 f dt2 f "dt, e ""e " "e ""e
0 0 0

ha — 8
b, a oo

3 3 2 2 I I 3* 2' IAiii Iv($3 S2', s, )= dt3 dt2 dt, e e e e
0 0 0

(26a)

(26b)

with the functions @" (t3, t2, t, ) given by Eqs. (14) and
the frequency domain variable s defined by

Jo(s) =

s 3
= I ( 2co—2 co; —

cob,
—
) + —,

'
( y, + y b ),

s2 = i(co—2 co'I)—+y, „,
(27a)

(27b)
3hs+2A+ s+3A+ (30)

s, =+i(co'I —cob, )+—,'(y, +yb),
s, = i(co2—cob, —)+—,'(y, +yb) .

(27c)

(27d)

QI II($3,S2', S I
)= g J„(s3) J„(sI ), =0 ntA" s2'+nA

(28)

These Fourier-Laplace transforms of the stochastic re-
laxation functions can be calculated as expansions of con-
tinued fractions [35,50,51]. The expressions for diagrams
I and II can be denoted as

This rather complicated result for the frequency
domain nonlinear response function in the stochastic
model is not very well known. In the Markovian (Bloch)
limit the expressions simplify considerably. As discussed
in Sec. II, this limit is reached when the inverse correla-
tion time A is much larger than the root-mean-square
amplitude 6 of the fiuctuations. It follows that
(b, /A) ((1, and hence all terms with n )0 can be
neglected in Eq. (28). The transforms in the Bloch limit
can thus be written as

For diagrams III and IV the expression is identical ex-
cept for an additional multiplication factor of (

—1) and
a replacement of s,+ by s

&
. The functions J„are generat-

ed by the recursion relation [50]:

1
Qi, ii($3~$2', s I+ ) =Jo(s3) Jo(s I+ ),

2

b, a 1
+III, IV( 3~ 2 ~ I ) Jo( 3) b g o( I

S2

(31a)

(31b)

Q2
J, (s)=1—sJo(s),

Q2
J„+i(s) = n AJ„ i(s) —(s+ n A)J„(s) .

This gives for the first term J0:

(29a)

(29b)

In the Markovian limit it also follows that
Jo(s)=(s+I *) ' with I *=6, /A (see Sec. II). Using
this form, the frequency domain nonlinear response func-
tions can be written as a product of Lorentzian line
shapes:

II'"($„$2',s I+ ) = [ —i(2co2 —co'I —cob, )+ —,'(y, + yb )+ I *]

X [ —i(co2 —co'I)+y, b ] '[+i(co; cob, )+ —,'(y—, +yb )+ I *]
II'"' (s3,s2', s, )=[ i(2co2 co'I c—ob, )+ —,

'—(y, +—y„)+I"*]

X [ i(co2 —co;—)+y, b ] '[ i (co2 cob—, )+—,'(—y, +y„)+I *]

(32a)

(32b)

When all functions Q, iv are added to calculate the full
response, the result of Eqs. (32) is identical to the one
that was derived before by Yajima and Souma [52].

The most important result for the purpose of this pa-
per is that in the slow chirp limit a11 quantum-mechanical
pathways I—IV of Fig. 3 contribute to the nonlinear po-
larization equation (25). In general, the relative magni-
tudes of these contributions will depend on the values for
the relaxation parameters. This will be discussed more
extensively in Sec. IV where numerical calculations are
presented. In some circumstances all pathways contrib-
ute equally, for other values of the dynamic parameters
one or several diagrams dominates the nonlinear

response. In principle, however, all diagrams have to be
taken into account.

In the steady-state limit, at very low chirp rates, the
nonlinear response is determined by all quantum-
mechanical pathways (I—IV of Fig. 3) that are relevant to
the experimental configuration.

D. Synopsis

The following is what makes chirped nonlinear scatter-
ing special for studies of optical dynamics: when the
chirp rate is such that the optical frequency sweeps
through a material resonance fast compared to the sys-
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tern dynamics, two quantum-mechanical pathways (I and
II of Fig. 3) determine the signals that are generated.
When the chirp rate is adjusted such that the field sweeps
through the resonance slow compared to the system dy-
namics, these two pathways still contribute with some-
what changed values for the interaction parameters. The
crucial point, however, is that now two new quantum-
mechanical pathways (III and IV of Fig. 3) contribute as
well, which gives rise to interferences with the original di-
agrams.

Since the character of both kinds of diagrams is com-
pletely diFerent, the nonlinear optical signals that are
generated are a clear signature of the limit in which the
polarization is induced. Experimentally, the chirp rate
can be adjusted over orders of magnitude, so the tech-
nique can be exploited to study dynamics over a very
large time range. It is impossible to give analytical ex-
pressions for the transition from fast to slow chirp, so the
details of this change will have to be evaluated numerical-
ly.

of these integrals had to be chosen carefully. Subsequent-
ly, the integral over time of Eq. (20) was performed by
the Romberg integration method [54], in which a func-
tion is sampled at equidistant points and the sampling
density is increased until (after extrapolation) the chosen
precision (2.5%) is met. The integration range con-
sidered in this procedure was limited to times where

IV. CALCULATIONS

A. The integration procedure

When the chirp rate of the optical fields is not much
faster or slower than the relevant system dynamics, Eqs.
(18)—(20) have to be used without simplification to de-
scribe the nonlinear experiments. This means that a
four-dimensional time integral has to be evaluated. The
results thus obtained are exact within the limits of the
perturbative approach and the rotating wave approxima-
tion (Sec. II). As an example, chirped four-wave mixing
will be analyzed with the room-temperature dynamical
parameters of resorufin dissolved in dimethylsulfoxide
(see Fig. 2). These parameters are known from a previous
study in which ultrashort, transform-limited pulses were
used [22]. For the stochastic model it was found that the
inverse correlation time between system and bath is
A=27 THz (T, =37 fs) and the root-mean-square ampli-
tude of the Iluctuation is b, =41 THz (except for A all
numbers cited in the text are angular frequencies). The
width of the (linear) absorption line shape, which is given
by the Fourier-Laplace transform of Eq. (10), is 50 THz
half width at half maximum (HWHM). Population relax-
ation can be neglected on the time scale of the system-
bath dynamics and the time scale of relevant experi-
ments.

The calculation of the chirped nonlinear polarization
and the resulting signal was performed using two
separate integration routines. The threefold integrals of
Eq. (18) are best handled by Monte Carlo integration,
since the nonlinear response function oscillates rapidly
according to the functions ip"' (r, r, t3, t2, t, ) of Eqs. (19).
The advantage of this type of numerical integration is
that it can handle wild functions in many dimensions
very efhciently [53,54]. The real and imaginary parts of
Eq. (18) were calculated separately using an adaptive
multidimensional Monte Carlo integration routine from
the NAG library [55]. The precision was set at an es-
timated 2% of the total value. In order to reduce the cal-
culation time as much as possible, the upper boundaries

IZQO

FIG. 4. Nonlinear cycle-averaged polarization as a function
of normalized time for di6'erent chirp rates of the inducing
fields. At time 1.0 the instantaneous frequency of beam k, is at
the maximum of the frequency response of the system. The de-
lay between beams k& and kz is taken to be ~=0 fs; the max-
imum of the polarization is normalized. (a) and (b) are the same
plots viewed from two diA'erent angles. The system dynamics
was modeled by a stochastic modulation of the transition fre-
quency with parameters A=27 THz and 5=41 THz. When
positive delay ~) 0 is introduced, the polarization maximum for
very fast chirp rates shifts to larger normalized times.
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~P(r, t, w)~ was at least 2% of the maximum value. The
most extensive calculations, such as those required to
construct the two-dimensional polarizations of Fig. 4,
took about 16 h cpu time on a Convex C240 minisuper-
computer.

Beams k j and k2 of Fig. 1 usually derive from the same
laser by means of beam splitters in the optical setup. Ex-
perimentally, it is quite feasible to manipulate the phases
of the beams separately, giving rise to different chirp
rates in both beams. This may lead to, for instance, non-
linear signals that are compressed in time compared to
the original chirped pulses [56]. We will not consider this
situation here, and limit ourselves to the case where the
chirp rates of beams k& and k2 are identical: b& =b2=—b.
Also, we will take the frequency spectrum of the light
fields to be much wider than the width of the optical
resonance(s) of the system. This means that for the nu-
merical evaluation the exact value of the offset frequency
co, =co2 —=co is not very important. It may be the lowest
frequency that the pulses carry, but any frequency away
from the material resonances will do. In addition, when
the spectral distribution of the pulses is reasonably Aat,
we can take the amplitudes of the fields to be constant:
a, 2(t)—:a, 2. The rise and fall of the pulse amplitude
when the instantaneous optical frequency is well outside
the material resonances are of no consequence to the non-
linear response.

B. The nonlinear polarization

In Fig. 4 the absolute square of the third-order non-
linear polarization equation (18) is shown as a function of
the chirp rate of the pulses. The time axis is normalized
such that the instantaneous frequency sweeps in unit time
from its starting value outside of the system resonance to
the frequency of the absorption maximum. In the calcu-
lation the lowest frequency of the positively chirped pulse
was taken to be co =2900 THz (650 nm) while the reso-
nance frequency was at co&, =3165 THz (596 nm). This is
the absorption maximum of the pure electronic transition
of resorufin dissolved in dim ethylsulfoxide. For the
slowest chirp rate shown (b =0.05 THz/fs), the instan-
taneous frequency sweeps in real time from its ofFset
value to the system transition frequency in 5.3 ps; for the
fastest chirp rate (b =20 THz/fs) this occurs in 13.3 fs.

The excitation conditions of Fig. 4 range from the
steady state to the impulsive limit. On the slow chirp
side, the field frequency sweeps through the material res-
onance in a time that is long compared to the system dy-
namics. The cycle-averaged nonlinear polarization then
has a smooth profile and peaks at unity of normalized
time, i.e., when the instantaneous optical frequency is
equal to the absorption maximum. When the chirp rate
is increased, the material response cannot follow the in-
stantaneous frequency of the field anymore. As a result,
the nonlinear polarization lags behind and shows a max-
imum in time only when the field frequency is already
past the absorption maximum. In addition, pronounced
oscillations begin to occur. At the fastest chirp rates
shown the field frequency sweeps through the resonance
very rapidly compared to the material dynamics. Conse-

quently, the polarization induced at a certain time will
continue to precess while the optical fields change their
frequency. This leads to destructive or constructive in-
terferences between contributions to the polarization that
are induced at different times.

It should be mentioned that somewhat different oscilla-
tions have been described for chirped excitation condi-
tions before. These occur in the transmitted intensity of
a chirped beam when a linear polarization is induced in a
material with a very-narrow-band material resonance
[57,58]. The oscillations are caused by the interference
between the free induction decay of the material and the
inducing chirped field. This feature can be employed to
fully characterize the phases of the chirped pulses at all
times [57,58]. In the nonlinear case discussed here the
situation is a completely different one: the oscillations
occur in the nonlinear polarization itself due to interfer-
ing contributions that are induced at different times by
phase-shifted optical fields.

When a relative delay is introduced between beams k,
and k2, the general picture for the nonlinear polarization
remains the same. For slow chirp rates the traces are in-
distinguishable from those at zero delay. Since the in-
stantaneous frequency of both beams is not the same
anymore, the overall amplitude of the polarization will be
different. This aspect will be treated below. For fast
chirp rates the polarization is delayed even more com-
pared to the time at which the instantaneous optical fre-
quency is at the maximum of the material resonance.
This is due to the fact that rephasing processes begin to
dominate the nonlinear response (Sec. III). The nonlinear
polarization then becomes "photon-echo-like" and hence
experiences an extra delay with respect to the times at
which interactions between system and fields occur. For
delays large compared to the ratio of system dynamics to
chirp rate, the pulses sweep through the resonance one
after the other, and a true photon echo is induced.

C. Belayed nonlinear signals

Shown in Fig. 5 is how, for a few optical chirp rates,
the signal varies as a function of relative pulse delay ~.
The signal is the polarization equation (18) squared and
integrated over time t [Eq. (20)]. When the optical field
sweeps through the system resonance in a time long com-
pared to the system dynamics, the signal is fairly sym-
metric around delay time v=0 fs (dotted and dashed
curves). For a chirp rate b=1.35 THz/fs, the fields
sweep through the 50-THz-wide resonance (HWHM) of
the system in a time that is equal to the correlation time
T, =A '=37 fs of the system-bath dynamics. It is clear
from Fig. 5 that for larger values of b the signal max-
imum shifts away from zero and now occurs at a finite
delay (dot-dashed curve).

For even faster chirp rates (solid curve), the signal
trace becomes very asymmetric around the maximum
value, with the gentler slope extending for positive delays
(beam k2 after k, ). This is reminiscent of standard
photon-echo experiments on systems with memory in the
dynamics, such as inhomogeneous broadening or a finite
correlation time between the system and the bath (Sec.
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pulse delay time (fs)

FIG. 5. Delay dependence of the time-integrated signal in-
tensity for four different chirp rates of the optical fields. The
chirp rates b are 0.02 THz/fs (dotted curve), 0.2 THz/fs (dashed
curve), 2 THz/fs (dot-dashed curve), and 20 THz/fs (solid
curve). The system dynamics is as in Fig. 4.

II). Rephasing processes apparently begin to dominate
the signal. In fact, the signal calculated for such fast
chirped excitation can be directly compared to the
analytical result that is known for 6 pulse excitation.
This was treated in Sec. III. In the stochastic model the
nonlinear polarization for excitation of infinitely short
duration is given by the first term of Eq. (22), with a
damping function given by Eq. (23). The signal is the
usual integral over the polarization squared [Eq. (20)j.

The comparison between the numerical evaluation for
optical fields with a chirp rate b =20 THz/fs and the
analytical result for 5 pulse excitation is shown in Fig. 6.
From the resemblance between both curves it can be con-
cluded that in this 1imit chirped excitation indeed occurs
impulsively. The asymmetric behavior is apparently
caused by a photon-echo type of emission. The major

difference between both traces is of course the structure
that is present for delays ~ ~ 10 fs in the chirped excita-
tion case. Both this structure and the finite positive slope
of the chirped trace are due to the fact that a fast chirp is
not yet an infinite chirp.

In diagrams III and IV of Fig. 3 the time ordering of
the light fields is E2, then E&, then E2 again. When two
5-shaped pulses are applied, it is impossible to realize this
time ordering at finite delays, and only diagrams I and II
are of importance then. For infinitely fast chirped pulses
the situation is the same: diagrams I and II dominate the
signal. This is discussed in Sec. III. Diagrams III and IV
of Fig. 3 in principle only contribute when the required
time ordering of the field interactions can be accom-
plished, i.e., in circumstances where the interactions be-
tween system and fields hold on for a certain duration.
For instance, in time-resolved experiments with
transform-limited fields they only contribute when pulses
of finite duration overlap in time and then they give rise
to features that may be called coherent artifacts.

For chirped pulses a similar behavior is expected:
when the chirp rate is fast compared to the system dy-
namics and the excitation occurs impulsively the impor-
tance of these diagrams for the overall signal is small, but
remains significant at (or near) delay time &=0 fs. This
causes the bump at small delay in the solid trace of Fig.
6. When the signal is calculated for even faster chirp
rates, the peak that is due to diagrams III and IV be-
comes narrower and moves further to delay ~=0. Final-
ly, for infinitely fast chirp rates the 5-function contribu-
tion is obtained that was calcu1ated analytically as the
second term of Eq. (22).

The behavior of the various diagrams of Fig. 3 in
chirped pulse scattering can be elucidated further if we
look at their relative importance when the chirp rates are
slower. In Fig. 7 the calculated signal is shown for a
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FIG. 6. Nonlinear signal expected for 6-shaped optical pulses
(dashed line) and for chirped excitation (solid line). The chirp
rate is fast compared to the system dynamics: b =20 THz/fs.
The system dynamics is as in Fig. 4.

pulse delay time (fs)

FIG. 7. Nonlinear chirped signal for pulses with a chirp rate
b =0.5 THz/fs (solid line). When only diagrams I and II of Fig.
3 are used in the calculation, the dotted line results. Diagrams
III and IV of Fig. 3 lead to a signal trace given by the dashed
line. The infinities at delay ~=0 fs cancel when the contribu-
tions from all diagrams are included in the calculation. The sys-
tern dynamics is as in Fig. 4.
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chirp rate of b =0.5 THz/fs. This is the same chirp rate
that was used in the nonlinear experiment on solvated
resorufin that is depicted in Fig. 2. The dotted and
dashed curves are the amplitudes squared of diagrams I

. and II, and of diagrams III and IV, respectively. The
shapes of these curves are typical for the dynamical
response of the material when propagated according to
both kinds of quantum-mechanical pathways. Even for
this relatively low chirp rate (it takes the fields 100 fs to
sweep across the HWHM line breadth), the contribution
from diagrams I and II is distinctly asymmetric. The tail
that stretches out on the positive delay side is somewhat
longer than for fast chirped excitation (see Fig. 6). Due
to the relatively slow chirp, diagrams III and IV now
contribute for finite delays as well. Since this occurs
mainly on the negative delay side of the trace, they tend
to symmetrize the signal. As discussed above, for chirp
rates fast compared to the system dynamics their contri-
bution becomes strongly peaked around delay time ~=0
fs and the asymmetric curve of Fig. 6 is obtained. The
presence or absence of asymmetry with a certain chirp
rate of the fields therefore is a clear indication of the time
scale(s) on which system dynamics takes place.

Around &=0 fs the integrals of Eq. (18) for the non-
linear polarization diverge if the contributions from both
kinds of diagrams are calculated separately. As can be
seen in Fig. 7 their respective amplitudes interfere in such
a way that these integrals do converge when the non-
linear polarization is calculated properly, taking all am-
plitudes of all pathways into account. The fact that the
divergences are removed when all terms are calculated is
very fundamental [59]. When the time ordering of in-
teractions with different fields is changed, there has to be
a point where all diagrams must be taken into account.
This is also the significance of the 6-function contribution
in the second part of Eq. (22) which was calculated for 6
pulse excitation.

D. Experiment versus calculation

The calculated curve for delayed nonlinear chirped
scattering in a two-level system with non-Markovian sto-
chastic frequency fluctuations is compared in Fig. 8 with
the experimental result on resorufin in dimethylsulfoxide.
Considering that no fitting was involved at all, the agree-
ment between both curves is excellent. As discussed
above, the rather symmetric shape indicates that dia-
grams III and IV of Fig. 3 contribute substantially, and
hence it can be concluded that the chirp rate is relatively
slow compared to the system dynamics. Apparently
there is not much memory in the electronic two-level sys-
tem of resorufin on a time scale of 100 fs (i.e., the time it
takes the field to sweep across the system resonance).

In more sophisticated dynamical models, such as those
based on Brownian oscillators, the result of the calcula-
tion is almost identical to that of the stochastic model.
This is also shown in Fig. 8. Such models also incorpo-
rate next to femtosecond fluctuations an ultrafast shift of
the system energy levels. These occur in liquids due to
the rearrangement of the bath upon excitation of the sys-
tem [60—63]. The physics of Brownian oscillators is
briefly discussed in the Appendix. For an overdamped
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Markovian Brownian oscillator the energy shifts are
directly related to the fluctuations, and in the calcula-
tions for Fig. 8 again no fitting was involved at all. Al-
though the agreement with the experiment seems to be
somewhat better in the trailing part of the delayed signal
trace, the improvement is hardly significant. Apparently,
the experiment is in this case not very sensitive to details
in the interaction between system and bath; the time scale
of the dynamics compared to the chirp rate governs the
experiment and determines the shape of the generated
signals.

Suppose now that there exists a separation of time
scales in the system dynamics. This is a common situa-
tion in solid- and gas-phase systems, where often some
kind of inhomogeneous broadening is present. In such a
case, the nonlinear polarization equation (18) has to be la-
beled by the transition frequency ~b„and a summation
has to be performed over the distribution g(cob, ) of tran-
sition frequencies that is present during a relevant time
span:

(3)
inhomogeneo us (

= f dtoh, P(coh„r, t, r)g(cob, ) . (33)

If the inhomogeneous width is substantial, it readily
follows that only the first part of Eq. (18) (diagrams I and
II) contributes to the nonlinear signal [64]. The argu-
ment is the same as before: when the chirp rate is fast
compared to the system dynamics (which in this case
gives rise to inhomogeneous broadening), the infiuence of
diagrams III and IV is negligible for finite delay times ~
due to their lack of rephasing capability. Diagrams I and

pulse delay time (fs)

FIG. 8. Comparison of calculated nonlinear delayed signals
(dots) with the experimental result on resorufin dissolved in
dimethylsulfoxide (solid traces). The experimental traces are
identical to the chirped pulse result of Fig. 2. In the upper part
(a) the system dynamics is modeled by stochastic fluctuations of
the transition frequency with the parameter values 4 =27 THz
and 6=41 THz. In the lower trace (b) an overdamped Browni-
an oscillator is used to simulate the dynamics. The variance of
displacement 6 and the correlation time A ' where taken to be
identical to those of the stochastic model; in addition, a rapid
shift of the energy levels is incorporated which occurs on a time
scale of (A) ' over a range of Ah /2kT=23 THz.
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II dominate the signal then, and give rise to the typical
asymmetric decay traces such as depicted in Fig. 7, with
the infinity at ~=0 fs removed by diagrams III and IV.
This was experimentally observed in a low-temperature,
inhomogeneously broadened solid by Tokizaki, Ishida,
and Yajima [18]. Since this asymmetry is not observed
here, it can be concluded that there is no inhomogeneous
broadening in the system at the time scale that is relevant
to the experiment (100 fs). This contradicts with usual
assumptions in treatments of optical dynamics in liquid-
phase systems [21,25, 65 —68].

V. CHIRPED COHERENT RAMAN SCATTERING

A. Three-level systems

In real molecules chirped four-wave mixing produces
not only signals related to electronic transitions, but also
to the vibrational level structure. A dye molecule like
resorufin, which consists of 22 atoms, has 60 vibrational
modes. However, due to the symmetry of the molecule
most of the vibronic transitions carry negligible oscillator
strength. We have shown that the absorption spectrum
of resorufin can be adequately described by ca. 10 optical
transitions [22]. For nonlinear response even fewer
modes need to be considered. The four-wave-mixing po-
larization equation (7) is fourth order in the transition di-
pole moment, so in general only the strongest transitions
contribute significantly to a nonlinear signal. In the case
of resorufin only one vibration has to be taken into ac-
count [22]. The associated vibrational energy is about
100 THz (radians per second) in both the electronic
ground and excited states. The most simple level scheme
for nonlinear optical experiments on resorufin therefore
consists of four levels. However, we will first discuss
chirped four-wave mixing in a three-level system, since
the most salient features appear there as well, and are
simpler to describe.

Figure 9 shows what kind of situations are possible for

(a)

chirped four-wave mixing in a three-level system. At
small delays [Fig. 9(a)], both beams interact with the
same transition at the same time. Hence, for chirp rates
small compared to the energy difference between the
transitions, the field frequencies sweep through the opti-
cal resonances one at a time. The nonlinear signals that
are generated by the two successive two-level interactions
arrive at the detector independently and add up to yield a
total signal intensity. In this limit of chirp rate the treat-
ment of previous sections (e.g. , Figs. 4—8) remains valid,
only the overall intensity is influenced by the presence of
the additional system resonance.

When the chirp rate is fast compared to the energy
difference between the two optical transitions, both will
be excited simultaneously. This leads to the formation of
a vibrational wave packet, which in turn gives rise to
beats in the decay profiles. These interferences in the
nonlinear polarization are well known from impulsive
nonlinear scattering experiments [21,22] and will also
occur when chirped pulses are used with chirp rates that
are fast compared to the inverse frequency difference of
the two transitions.

A completely new situation, compared to the two-level
results, is encountered when the delay is increased to
large values. The instantaneous frequency difference then
increases to large values as well (see Fig. 1) and reso-
nances occur on difference frequencies of the optical tran-
sitions. Depicted in Fig. 9(b) is how in that case both
beams interact with different system transitions at the
same time. Thus, the nonlinear signal in the direction
2k2 —

k& should be classified as chirped coherent Raman
scattering. When the delay is positive the instantaneous
frequency of kz is smaller than that of k, so the signal at
2k2 —k&, enhanced by the multiple resonances, can be
classified as coherent Stokes Raman scattering (CSRS).
With negative delays the corresponding chirped coherent
anti-Stokes Raman signal (CARS) should be generated.

The experimental result that was obtained for resorufin
dissolved in dimethylsulfoxide is shown in Fig. 10. The

ic&

Ib& „

ic&

Ib& „

(a)
(b)

(c)

k„k k) k2

ia&
time

system e.m. fie$gsresonances

time

system e m fceggsresonances

FIG. 9. Chirped optical fields in a three-level system. (a) The
instantaneous frequency difference between beams kl and k2 is
small compared to the difference frequency of the system. Both
beams interact with the same transition at the same time. (b)
The delay between both beams is so large that the instantaneous
frequencies sweep through two different system resonances at
the same time. When, as depicted, co,(t) &col(t) the nonlinear
signal in the direction 2k~-k& is chirped-resonance-enhanced
coherent Stokes Raman scattering (CSRS).

—100 0 100 200 300 400
pul se de I ay t irne (fsI

FIG. 10. Two-pulse delayed scattering signal at room tem-
perature for the dye molecule resorufin dissolved in dirnethyl-
sulfoxide. The results are shown for three different chirp rates
of the pulses: (a) b =0.5 THz/fs, (b) b =0.39 THz/fs, and (c)
b =0.31 THz/fs. The Raman features at delays ~) 200 fs shift
linearly with the chirp rate.
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trace obtained with a chirp rate of b=0.5. THz/fs is
identical to that of Fig. 2, only the window on the range
of delay times is increased now. The feature at ~=200 fs
indicates a system resonance at b~=100 THz, which
agrees well with the difference between the vibronic tran-
sition and the pure electronic transition of resorufin [22].
When the chirp rate is decreased, the delay at which this
resonance occurs should increase. Also depicted in Fig.
10 is how the chirped Raman feature indeed shifts with
the chirp rate, while the shape of the signal at small de-
lays does not change much at all. This last observation is
in accordance with the theory of the previous section.
The chirp rate was changed experimentally by placing
quartz blocks of various thicknesses in the laser beams to
increase the dispersion, and by that the pulse length in
the nonlinear experiment. The chirped CARS signal
which in principle should be generated at negative delays
is not visible, so apparently the amplitude is much less
than that of the corresponding CSRS signal.

The Feynman diagrams and system resonances for
three-level coherent Raman scattering are depicted in
Fig. 11. Excited-state resonances in four-wave mixing
were studied extensively in connection with dephasing
processes. For steady-state excitation, the resonance on
the difference frequency only occurs when dephasing de-
stroys the destructive quantum interference between dia-
grams I and III. The resonances therefore were called
"pressure-induced extra resonance" (PIER-4) in gas-
phase experiments [69], and "dephasing-induced coherent
emission" (DICE) in condensed-matter four-wave mixing
[70,71]. It is also known that in the impulsive limit the
resonance at the difference frequency occurs even in the
absence of optical dephasing [33,72]. Therefore, with
chirped excitation the destructive interference between
these two quantum-mechanical pathways will depend on
the chirp rate compared to the system dynamics, since
this determines to what extent the excitation occurs im-
pulsively. The various resonances at the electronic tran-
sitions of the system will be present in any case, so multi-
ple enhancements of the chirped coherent Raman signals
will always occur. All these effects, including possible de-
phasing induced ones, are incorporated in the nonlinear
formalism of Sec. II.

The shape of the Raman-type resonances in chirped ex-
periments will in principle be determined by both vibra-
tional and electronic dephasing parameters of the system.
However, vibrational dynamics in liquids generally is
much slower than electronic dynamics. This can, for in-
stance, be deduced from the fact that optical spectra in
liquids generally are rather broad and structureless com-
pared to Raman spectra of the same substance. When we
neglect vibrational damping altogether on the time scale
relevant to the experiment (100 fs; see previous section),
the evaluation of the nonlinear polarization according to
the formalism of Sec. II gives expressions that are almost
identical to the two-level results. The nonlinear polariza-
tion is still given by Eq. (18), only the system frequency
co&, in the oscillating functions 4 and 4 of Eqs. (19)
has to be modified.

The role of dephasing and/or rephasing processes is
also identical to that in two-level systems. The apparent

insignificance of vibrational dephasing on the time scales
of interest amounts to a perfect correlation in the elec-
tronic Auctuations that occur on the optical transitions
cob, and ~„. This is not unexpected. For instance, in
gases and solids vibronic transitions generally have a
correlated inhomogeneous width. This can be exploited
in studies of dynamic behavior, since dephasing on one
optical transition can be counteracted by rephasing on
another one if memory is present in the dynamics
[73—75]. The same is true here. Thus, in diagram I of
Figs. 11(a) and 11(b) electronic dephasing and/or rephas-

la& &al la& &al

Ic&

Ib&

&cl

lb& &cl

fa& &al la& &al

la& &al la& &al

I c& /4 /4

Ic&

&bl

Ic& &bl

Ib&

V 'I/

I a& &al la& &al

FIG. 11. Feynman diagrams and level scheme for three-level
coherent Raman scattering. (a) The situation for coherent
Stokes Raman scattering (CSRS) ~ For positively chirped pulses
(co& co2) a resonance occurs at positive delays (col )~2). (b)
The corresponding situation for coherent anti-Stokes Raman
scattering (CARS), which occurs at negative delays (co2) col).
The diagrams are labeled I and III to allow for a direct compar-
ison with the two-level diagrams of Fig. 3. With positive chirp
the CSRS process can become fully resonant; for the CARS pro-
cess this is only possible when the sign of the chirp is reversed
(co2 co2). For details see text.
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ing processes are important, just as in diagrams I and II
of Fig. 3, while in diagram III of Figs. 11(a) and 11(b) and
diagrams III and IV of Fig. 3 rephasing cannot take
place.

To calculate the system response for CSRS (positive
delay) in the stochastic model, the terms cob, (t3 r, ) —and

co&, ( r 3 + t, ) in the two-level oscillating functions
4"' (t, r, t3, t2, t, ) of Eqs. (19) have to be replaced, re-
spectively, by cob, t3 co,bt—2 co„t,—in 'P" (diagram I) and
by cor„t3 co—,~t2+cob, t, in p (diagram III). Similarly,
these frequencies are in the case of CARS (negative delay)
Ico r 3 +co~b tp cl)ba t, in q " (diagram I) and
co„t3+co,bt2+co„t, in 4 (diagram III). The numerical
evaluation of Eqs. (18)—(20) then proceeds along the same
lines as described in Sec. IV for the two-level system.

Figure 12 shows how the calculated signal compares to
the experimental trace. The dots in the upper curve re-
late to the three-level system. It is clear that the experi-
mental trace is not as broad as the calculated one. We re-
turn to this point in the following section. The dynamic
parameters used are identical to those of the previous cal-
culations. The shape of the CARS signal that should be
present at a delay of ~= —200 fs is similar, but the calcu-
lated intensity is about a factor of 25 lower. This agrees
with the experiment where no CARS signal is detectable
above the noise level of the traces shown. Although it
might be expected from Fig. 11 that the enhancement due
to the difference frequency is symmetric for positive and
negative delays, it is the direction of the chirp that causes
the CARS signals to be much weaker than the CSRS sig-
nals.

The third interaction in the nonlinear process is for
both CARS and CSRS induced by the field frequency co&,

as depicted in the level structure of Fig. 11. Since the
chirp is positive, frequency co2 is always larger than fre-

100 150 250 300

pulse delay time (fs)

FICz. 12. Comparison of calculated and experimental chirped
CSRS signals of resorufin in dimethylsulfoxide. The calcula-
tions (dots) are for stochastic frequency Auctuations with the pa-
rameter values of Fig. 4 in a three-level system (a), and in a
four-level system with identical vibrational frequencies in elec-
tronic ground and excited states (b). The experimental result is
identical to that of Fig. 10(a).

quency co2. This means that in case of CSRS the finite
chirp rate sweeps this interaction towards the resonance
at co„. An important point is that the state of the system
before the third interaction is a vibrational coherence
that shows dynamics on much longer time scales than is
relevant to the experiment. Thus, the time t2 in the
Feynman diagrams of Fig. 11 can reach large values
without damping playing any role. If t2 increases sub-
stantially, co& becomes much larger than co&„and therefore
the enhancement of this part of the nonlinear process is
considerable, due to resonance at co„. However, this is
only the case when the chirp of the pulses is positive.

From Fig. 11(b) it is clear that the frequency co& is
swept further from resonance when CARS instead of
CSRS is generated with positively chirped pulses. As a
result the CARS signals are considerably weaker than the
corresponding CSRS signals. When the direction of the
chirp is reversed, the opposite happens: CARS signals
are then much stronger than CSRS signals, since now
they are the ones that are swept into multiple enhance-
ment by the chirped character of the optical fields.

B. Four-level systems

As stated before, resorufin is better described by a
four-level system than by a three-level system. The intro-
duction of a fourth level, in the electronic ground state,
leads to a number of new resonances. Additional Feyn-
man diagrams are therefore required to fully describe
chirped four-wave mixing in such a system. For positive-
ly chirped pulses the number of independent, fully reso-
nant contributions in the case of CSRS is eight; four of
these involve an excited-state vibrational resonance and
four a ground-state one. In the case of CARS there is
only one fully resonant Feynman diagram, which is pro-
pagated through the ground-state vibrational resonance.

The calculated response is given in the form of dots in
the lower curve of Fig. 12. Due to the much larger num-
ber of quantum-mechanical pathways, the CSRS signal is
much stronger for positively chirped pulses than the cor-
responding CARS signal. For negatively chirped pulses
the situation is again reversed: CARS (eight fully reso-
nant diagrams) is substantially stronger than CSRS (three
fully resonant diagrams). Details on these more compli-
cated chirped coherent Raman signals will be published
elsewhere [76]. The general picture of Raman resonances
that occur when the difference between the instantaneous
frequencies of the fields match a system frequency
remains the same, though.

Finally, we wish to comment on the discrepancy be-
tween the calculated and observed width of the CSRS sig-
nal. In the calculation we assumed that the ground- and
excited-state vibrational frequencies are identical. This is
not necessarily the case. Of course, it is possible to take
the frequency difference as a parameter, which can be
fitted by comparison with the experiment. The calculated
curve will be broader then [76]. From the fact that the
width in the three-level calculation is too large, we can
conclude that such a level scheme is too simple to de-
scribe the relevant vibrational dynamics of resorufin.

The theoretical treatment of chirped coherent Raman
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scattering given here is easily extended to deal with sys-
tems with more vibrational levels. Thus, the chirped
coherent Raman signals provide direct and unequivocal
information on the vibrational energies and vibronic in-
tensities in electronic ground and excited states of com-
plicated multilevel systems.

VI. CONCLUSIONS

We have shown that the grating-scattering type of ex-
periment using linearly chirped excitation pulses can
yield unique information on the dynamics of a system.
Especially the question of whether or not the bath dy-
namics is determined by slow and fast fluctuations can be
answered by simple inspection of the symmetry of the sig-
nal near zero delay time. Quantitative information from
these four-wave-mixing experiments can only be obtained
from numerical evaluation of third-order expressions for
the induced polarization, and by assuming a specific mod-
el for the system dynamics.

As an example results of chirped scattering experi-
ments and simulations of the signal, based on a stochastic
model for the system dynamics, were presented on the
system resorufin dissolved in dimethylsulfoxide. Excel-
lent agreement is obtained between the calculations and
the experiment when the bath parameters are used that
were determined from impulsive photon-echo experi-
ments on the same system. Apparently optical memory is
already insignificant in this system on a 100-fs time scale.

It was further shown that in chirped four-wave mixing
also coherent Raman signals are generated, which can be
used to determine vibrational frequencies in the ground
and excited states of molecules. For resorufin in
dimethylsulfoxide the coherent Stokes Raman signal is
shown to dominate the response. This is in agreement
with numerical calculations of this effect. However, the
calculations also show that for pulses with a reversed
direction of the chirp the corresponding coherent anti-
Stokes signals are much stronger. With the rapid ad-
vancements in femtosecond technology, the use of
chirped four-wave mixing may become an important tool
to probe vibrational dynamics of molecules in condensed
phases.
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APPENDIX: BROWNIAN OSCILLATORS

The assumption that dynamics due to the coupling of a
system with a bath can be described by the stochastic
model of frequency Auctuations basically amounts to a
high-temperature limit: upon excitation of the system
the bath does not notice any difference in the interaction
with the system. In a strict sense, this assumption is only
warranted when the thermal energy of the bath is much
larger than the excitation energy of the system. Of
course, for optical excitations at room temperature such

a high-temperature limit does not apply. The bath may
react then to a change of state of the system, for instance
by relaxing to an average configuration that is energeti-
cally more favorable.

A model that can take account of energy relaxation
within an electronic state is that of the (multimode-)
Brownian oscillator [63,77—79]. In this model the elec-
tronic two-level system is dressed with one (or more) har-
monic mode(s) of the bath. The potential in which such
an oscillator moves is assumed to be identical in both
electronic states, but its equilibrium position is shifted.
Therefore, upon a transition from one electronic state to
another, according to the Condon principle the new equi-
librium cannot be reached directly. This leads to a time
dependence of the average energy of a state, so the propa-
gators (G„{t))and (Gbb{t)) of the Feynman diagrams
of Fig. 3 differ now in more than just the population de-
cay rates y, and yb.

Of special interest here is the case of an overdamped
mode, which displays diffusive motion, and which can be
characterized by an exponential correlation function
[such as Eq. (9) for the stochastic model]. Such an over-
damped mode does not necessarily represent a real exci-
tation, but can also be considered as an abstract degree of
freedom on which the non-Markovian characteristics of
the bath are projected [63,78]. The basic propagator has
the same form as in the stochastic model [Eq. (10)], but
the damping function g(t) is not given now by Eq. (11).
Next to the real part an imaginary term appears:

g(t)=(A /A )(e '+At —I )+i(A, /A)(1 —e ') .

(A 1)

(t3lt2tt] ) g (t3)+g (t] ) g(t2)+g(t3+t2)

+g (t2+t] ) g (t3+tP+t, ) (A2a)

@"(t,, t„t, ) =g(t, )+g *(t, )
—g*(t, )+g*(t,+ t, )

+g (tP+t] ) g (t3 +t2+t, ) (A2b)

The reorganization parameter k is related to the vari-
ance of the displacement A. In the high-temperature lim-
it for the oscillator (kT))]]le@0) this relation is given by
A, =]]]b, /2kT, which means that Eq. (Al) at a given tem-
perature is determined by two parameters: 5 and A. Al-
though the starting points are completely different, the
result thus obtained in the Brownian oscillator model
reads like a straightforward extension of the stochastic
model. If the imaginary part of Eq. (Al) is negligible, the
damping function is identical to that of the stochastic
model.

When the imaginary part of the line-broadening func-
tion cannot be ignored, the propagation in ground
( a)(a~) and excited (~b)(b~) states is di8'erent. The
system-bath dynamical functions @"(t3,t2, t, ) and
@ (t3, tz, t] ) of Eqs. (14) then split to yield four difFerent
expressions for all diagrams I—IV of Fig. 3. In terms of
the damping function g (t) of Eq. (Al) the result is
[63,77-79]
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0&"'(t, , t„t, ) =g*(t, )+g(t, )+g*(t, ) —g*(t, +t, )

g(t2 + t] )+g(t3 +t2+ t] )

(t3itgit] ) g(t3)+g(tt )+g(t2) g(t3+t2)

g(tp+tt )+g(t3+tp+t) )

(A2c)

(A2d)

When 4& [Eqs. (A2a) —(A2d)] are used instead of @"'
[Eqs. (14)] for the nonlinear relaxation functions R, ,v of
Eqs. (13), the chirped nonlinear polarization equation (18)
is modified as well. The calculation is straightforward.
The numerical result that was presented in Fig. 8 for the
Brownian oscillator model is calculated in this way.

[1]P. K. McGregor, Biol. Rev. Cambridge Philos. Soc. 66, 57
(1991).

[2] N. Suga, Sci. Am. 262 (June), 34 (1990).
[3] J. R. Klauder, A. C. Price, S. Darlington, and W. J. Al-

bersheim, Bell. Syst. Tech. J. 39, 745 (1960).
[4] J.-C. Diels, W. Dietel, J. J. Fontaine, W. Rudolph, and B.

Wilhelmi, J. Opt. Soc. B 2, 680 (1985).
[5] M. A. Duguay and J. W. Hansen, Appl. Phys. Lett. 14, 14

(1969).
[6] H. Nakatsuka, D. Grischkowsky, and A. C. Balant, Phys.

Rev. Lett. 47, 910 (1981).
[7] E. B. Treacy, IEEE J. Quantum Electron. QE-5, 454

(1969).
[8] R. L. Fork, O. E. Martinez, and J. P. Gordon, Opt. Lett.

9, 150 (1984).
[9] D. Grischkowsky and A. C. Balant, Appl. Phys. Lett. 41, 1

(1982)~

[10]W. J. Tomlinson, R. H. Stolen, and C. V. Shank, J. Opt.
Soc. Am. B 1, 139 (1984).

[11]R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V.
Shank, Opt. Lett. 12, 483 (1987)~

[12] L. F. Mollenauer, J. P. Gordon, and M. N. Islam, IEEE J.
Quantum Electron. QE-22, 157 (1986).

[13]P. Maine, D. Strickland, P. Bado, M. Pessot, and G.
Mourou, IEEE J. Quantum Electron. QE-24, 398 (1988).

[14] S. Chelkowski, A. D. Bandrauk, and P. B. Corkum, Phys.
Rev. Lett. 65, 2355 (1990).

[15]B. Just, J. Manz, and I. Trisca, Chem. Phys. Lett. 193, 423
(1992).

[16]J. S. Melinger, S. R. Gandhi, A. Hariharan, J. X. Tull, and
W. S. Warren, Phys. Rev. Lett. 68, 2000 (1992).

[17]B. Broers, H. B. van Linden van den Heuvel, and L. D.
Noordam, Phys. Rev. Lett. 69, 2062 (1992).

[18]T. Tokizaki, Y. Ishida, and T. Yajima, Opt. Commun. 71,
355 (1989).

[19]E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, Phys.
Rev. Lett. 68, 514 (1992).

[20] I. Burghardt, J.-M. Bohlen, and G. Bodenhausen, J.
Chem. Phys. 93, 7687 (1990).

[21]P. C. Becker, H. L. Fragnito, J.-Y. Bigot, C. H. Brito
Cruz, R. L. Fork, and C. V. Shank, Phys. Rev. Lett. 63,
505 (1989).

[22] E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, Phys.
Rev. Lett. 66, 2464 (1991).

[23] J.-Y. Bigot, M. T. Portella, R. W. Schoenlein, J. E. Cun-
ningham, and C. V. Shank, Phys. Rev. Lett. 67, 636 (1991).

[24] S. Weiss, M. A. Mycek, J.-Y. Bigot, S. Schmitt-Rink, and
D. S. Chemla, Phys. Rev. Lett. 69, 2685 (1992).

[25] T. Yajima and H. Souma, Phys. Rev. A 17, 309 (1978).
[26] R. Trebino, C. E. Barker, and A. E. Siegman, IEEE J.

Quantum Electron. QE-22, 1413 (1986).
[27] S. Asaka, H. Nakatsuka, M. Fujiwara, and M. Matsuoka,

Phys. Rev. A 29, 2286 (1984).
[28] N. Morita and T. Yajima, Phys. Rev. A 30, 2525 (1984).
[29] W. H. Knox, Opt. Photonics News 3 (May), 10 (1992).

[30] T. K. Yee and T. K. CJustafson, Phys. Rev. A 18, 1597
(1978).

[31]P. Ye and Y. R. Shen, Phys. Rev. A 25, 2183 (1982).
[32] J. G. Fujimoto and T. K. Yee, IEEE J. Quantum Electron.

QE-19, 861 (1983).
[33] S. Mukamel and R. F. Loring, J. Opt. Soc. Am. B 3, 595

(1986).
[34] P. W. Anderson and P. R. Weiss, Rev. Mod. Phys. 25, 269

(1953).
[35] R. Kubo, Adv. Chem. Phys. 15, 101 (1969).
[36] T. Takagahara, E. Hanamura, and R. Kubo, J. Phys. Soc.

Jpn. 43, 802 (1977);43, 811 (1977);43, 1522 (1977).
[37] M. Aihara, Phys. Rev. B 25, 53 (1982).
[38] H. Risken, The Fokker Planck Eq-uation (Springer-Verlag,

Berlin, 1984).
[39] E. T. J. Nibbering, D. A. Wiersma, and K. Duppen, in

Coherence in Atoms and Molecules in Laser Fields, Vol.
287 of NATO Advanced Study Institute, Series 8: Physics,
edited by A. D. Bandrauk and S. C. Wallace (Plenum,
New York, 1992), p. 377.

[40] M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17,
323 (1945).

[41]J. R. Klauder and P. W. Anderson, Phys. Rev. 125, 912
(1962).

[42] R. Kubo, in Fluctuation, Relaxation and Resonance in
Magnetic Systems, edited by D. ter Haar (Oliver and Boyd,
London, 1962), p. 23.

[43] S. Mukamel, Phys. Rev. A 28, 3480 (1983).
[44] F. Bloch, Phys. Rev. 70, 460 (1946).
[45] L. Allen and J. H. Eberly, Optical Resonance and Ttoo

Level Atoms (Wiley, New York, 1975).
[46] A limiting form of the delta function is

6(t) =limb &b/2me
[47] B. D. Fainberg, Opt. Spektrosk. 55, 1098 (1983) [Opt.

Spectrosc. (USSR) 55, 669 (1983)].
[48] R. F. Loring and S. Mukamel, Chem. Phys. Lett. 114, 426

(1985).
[49] K.-E. Siisse, W. Vogel, and D.-G. Welsch, Chem. Phys.

Lett. 162, 287 (1989).
[50] S. Mukamel, J. Chem. Phys. 82, 5398 (1985).
[51]Y. Tanimura, and R. Kubo, J. Phys. Soc. Jpn. 58, 101

(1989).
[52] Equation {9) in Ref. [25]; note that the signal is calculated

for the direction 2k& —k, in that case.
[53] P. J. Davis and P. Rabinowitz, Methods of Numerical In

tegration (Academic, New York, 1975).
[54] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.

Vetterling, Numerical Recipes (Cambridge Univ. Press,
Cambridge, 1986).

[55] Routine DOlgbf, NAG Fortran Library Manual (mark
14), Numerical Algorithms Group, 1989.

[56] Y. S. Bai and T. W. Mossberg, Appl. Phys. Lett. 45, 1269
(1984).

[57] J. E. Rothenberg and D. Grischkowsky, J. Opt. Soc. Am.
B 2, 626 (1985}.



CHIRPED FOUR-WAVE MIXING 5137

[58] J. E. Rothenberg, IEEE J. Quantum Electron. QE-22, 174
(1986).

[59] When population relaxation is taken into account, the in-

tegrals do converge, but at unrealistically high values.
The argument of interference between diagrams remains
valid.

[60] P. F. Barbara and W. Jarzeba, Adv. Photochem. 15, 1

(1990).
[61]S. J. Rosenthal, X. Xie, M. Du, and G. R. Fleming, J.

Chem. Phys. 95, 4715 (1991).
[62] E. T. J. Nibbering, K. Duppen, and D. A. Wiersma, J.

Photochem. Photobiol. A: Chem. 62, 347 (1992).
[63] D.A. Wiersma, E. T. J. Nibbering, and K. Duppen, in Ul-

trafast Phenomena VIII, edited by J. L. Martin, A. Migus,
G. A. Mourou, and A. H. Zewail, Springer Series in
Chemical Physics (Springer-Verlag, Berlin, in press).

[64] This follows from limi „f,e' 'dro=5(t) in Eq. (33)
with the polarization given by Eq. (18) and with the vari-
ables tl 2 & defined to be positive.

[65] T. Yajima, H. Souma, and Y. Ishida, Phys. Rev. A 17, 324
(1978).

[66] H. Souma, E. J. Heilweil, and R. M. Hochstrasser, J.
Chem. Phys. 76, 5693 (1982).

[67] J.-Y. Bigot, M. T. Portella, R. W. Schoenlein, C. J. Bar-

deen, A. Migus, and C. V. Shank, Phys. Rev. Lett. 66,
1138 (1991).

[68] M. Cho, S. J. Rosenthal, N. F. Scherer, L. D. Ziegler, and
G. R. Fleming, J. Chem. Phys. 96, 5033 (1992).

[69] Y. Prior, A. R. Bogdan, M. Dagenais, and N. Bloember-
gen, Phys. Rev. Lett. 46, 111 (1981).

[70] J. R. Andrews and R. M. Hochstrasser, Chem. Phys. Lett.
83, 427 (1981).

[71]J. R. Andrews, R. M. Hochstrasser, and H. P.
Trommsdorff, Chem. Phys. 62, 87 (1981).

[72] D. P. Weitekamp, K. Duppen, and D. A. Wiersma, Phys.
Rev. A 27, 3089 (1983).

[73] T. W. Mossberg, A. M. Flusberg, R. Kachru, and S. R.
Hartmann, Phys. Rev. Lett. 42, 1665 (1979).

[74] K. Duppen, D. P. Weitekamp, and D. A. Wiersma, Chem.
Phys. Lett. 106, 147 (1984).

[75] K. Duppen, D. P. Weitekamp, and D. A. Wiersma, Chem.
Phys. Lett. 108, 551 (1984).

[76] E. T. J. Nibbering, F. de Haan, D. A. Wiersma, and K.
Duppen (unpublished).

[77] Y. J. Yan and S. Mukamel, J. Chem. Phys. 89, 5160 (1988).
[78] Y. J. Yan and S. Mukamel, Phys. Rev. A 41, 6485 (1990).
[79] Y. J. Yan and S. Mukamel, J. Chem. Phys. 93, 3863 (1991).


