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Lie-algebra methods in quantum optics: The Liouville-space formulation
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Lie-algebra methods for investigating quantum optical systems are presented within the framework of
the Liouville-space formulation. The generalized decomposition formulas for exponential functions of
the generators of su(2) and su(1, 1) Lie algebras are derived and their expectation values are calculated for
typical states in quantum optics. The general procedure for using Lie algebras in the Liouville space to
treat quantum optical processes is given in terms of generalized decomposition formulas and their use is
demonstrated by calculating the absorption line shape and photon echo signal in a localized electron-
phonon system. It is also shown that the photon-counting probability can be calculated by using the
su(1, 1) Lie algebra and that the electron-counting probability can be calculated by using the su(2) Lie
algebra. The su(1, 1) Lie algebra is also used to investigate a quantum-nondemolition measurement of
photon number in the four-wave-mixing model.

PACS number(s): 42.50.Hz, 03.65.Fd, 42.50.Dv

I. INTRODUCTION

Many kinds of phenomena in quantum optical systems
can be studied in terms of the su(2) and su(1, 1) Lie alge-
bras. The quantum correlation, phase coherence, and
squeezing of photons, for example, have been investigated
intensively by using the su(1, 1) and su(2) algebras and the
generalized coherent states associated with these algebras
[1]. The degenerate and nondegenerate parametric
amplifiers which generate the quadrature squeezed state
are typical systems described by the su(1, 1) Lie algebra
[2,3]. The time-evolution equations of various optical
systems have been solved by using the su(1, 1) algebra [4]
following the Wei-Norman method [5,6] and the Magnus
method [6,7]. The quantum coherence in the two-photon
Jaynes-Cummings model is also investigated by using the
su(1, 1) Lie algebra [8]. The SU(1, 1) generalized coherent
states, such as the pair coherent state by Barut and
Girardello [9] and the correlated two-photon coherent
state by Perelomov [10,11],are important in this kind of
analysis, and their phase properties have been studied by
several authors [12].

The beam splitter [13], and the Mach-Zehnder and
Fabry-Perot interferometers [14] which are key com-
ponents in interferometric experiments, have been de-
scribed in terms of the su(2) Lie algebra. The linear
directional coupler has also been investigated by using
the su(2) Lie algebra [15]. The nonclassical properties of
light in these devices are important in quantum commun-
ication and in high-precision measurement, such as the
detection of gravitational waves. The su(2) Lie algebra is
concerned with a rotational transformation [11,16], and
the functions of the beam splitter, interferometer, and
directional coupler are expressed as rotations in abstract
space.

The phase operators for the su(1, 1) and su(2) Lie alge-
bras, which are generalizations of the harmonic oscillator
phase [17], have been studied from mathematical
viewpoints [18]. The phase operator plays an important
role in investigating nonclassical properties of lights. Gp-
tical phenomena are also described by the Lie algebras

such as nilpotent Heisenberg-%'yle algebra and symplec-
tic algebra [19]. Digital or analog signal processing,
Fourier optics, and so on are successfully described by
the Lie algebras.

The Liouville-space formulation is a powerful method
for describing physical systems [20]. Thermofield dynam-
ics, which is a real-time quantum-field theory with finite
temperature, has been constructed within the framework
of the Liouville-space formulation [21]. Thermofield dy-
namics has recently been generalized to nonequilibrium
conditions, thus enabling us to treat nonequilibrium dissi-
pative processes [22]. When we investigate a dissipative
process caused by a thermal reservoir, nonequilibrium
thermofield dynamics (or the Liouville-space formulation)
makes the manipulation of time-evolution equations
much easier than it is with the usual methods such as the
damping theory [23]. The combination of the Lie algebra
and the Liouville-space methods is therefore useful to us.
I have recently shown that we can investigate a wider
class of physical systems by the su(2) or su(1, 1) Lie alge-
bras by describing them in the Liouville space [24]. Fur-
thermore, the dissipative dynamics of nonlinear optical
systems is also described by the Lie algebra within the
framework of the Liouville-space formulation (see below)
[24,25]. A photon echo phenomenon in a localized
electron-phonon system, for example, can be treated by
the su(1, 1) Lie algebra. The photon-counting processes in
the Srinivas and Davies model [26] are also investigated
by using the su(1, 1) Lie algebra. Furthermore, this paper
will show that the electron-counting probability can be
considered by modifying the Srinivas and Davies model
and using su(2) Lie algebra. These problems are the main
subject of this paper.

The paper is organized as follows: Section II briefly
summarizes the decomposition formulas (or Baker-
Campbell-Hausdorff formulas) for su(2) and su(1, 1) Lie
algebras. This section also explains the formulation of
the Liouville space based on the tilde conjugation of
operators [21]. Section III derives the generalized
normal-order and antinormal-order decomposition for-
mulas for exponential functions of the generators of su(2)
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and su(1, 1) Lie algebras. These formulas are useful when
we investigate nonlinear optical processes. The expecta-
tion values of the generalized formulas are calculated for
typical states in quantum optics. These include the vacu-
um state, the Glauber coherent state, and the SU(2) and
SU(l, 1) generalized coherent states. The canonical aver-
age is also calculated. Section IV uses the su(1, 1) Lie
algebra in the Liouville space to evaluate the optical pro-
cesses in a localized electron-phonon system. After
describing the general procedure, this section calculates
the absorption line shape and photon echo signal that
occur in a localized electron-phonon system. Section V
investigates quantum counting processes. The photon-
counting probability is calculated by using the su(1, 1) Lie
algebra, and the electron-counting probability by using
the su(2) Lie algebra. Using the Liouville formulation
simplifies calculation of the quantum counting probabili-
ty. This section also uses the su(1, 1) Lie algebra to inves-
tigate quantum-nondemolition (QND) measurement of
photon numbers in the four-wave-mixing model. Section
VI summarizes this paper.

ay
sinhP

ao
cosh/ — sinhP

2

a0
A p

= cosh/ — sinhP

2

(2.5)

(2.6)

and

a~
sinhP

a0
cosh/+ sinhP

2

(2.7)

a0
Bp

= cosh/+ sinhg (2.8)

Here, a+, a, and a0 are arbitrary c numbers, and A+,
A, and A0 as well as B+,B, and B0 are expressed in
terms of a+, a, and a0, as follows:

II. MATHEMATICAL BASIS

A. su(1,1) aud su(2) algebras

with

a0

2

2

—o.a+ a (2.9)

[K,K~ ] =2o.Kp,

[Kp, K~ ) =+K~,
(2.1)

(2.2)

with cr =+1. When o =1, [K+,K,Kp] are the genera-
tors of the su(1, 1) Lie algebra, and when o = —1, they are
the generators of the su(2) Lie algebra. In the following
sections, we will consider quantities expressed as

This subsection first briefly summarizes the decomposi-
tion formulas of exponential functions of the generators
of the su(1, 1) and su(2) Lie algebras. These formulas are
called Baker-Campbell-Hausdorff formulas, and they are
used to derive several useful relations of the su(1, 1) and
su(2) Lie algebras frequently used to investigate proper-
ties of quantum optical systems. Let us consider opera-
tors K+, K, and K0 satisfying the commutation rela-
tions

These formulas are proven by a parameter differentiation
method [6]. Here we define normal-order expansion of
F(Ki,K,Kp) by

F(Ki,K,Kp)=g g g fi „'K~KpK"
1 m n

(2.10)

B0

(1 oBiB Bp)— (2.12)

and antinormal-order expansion by

F(K~,K,Kp)=g g g fi'"„'K' KpKi, (2.11)
I m n

where fi „' and fi'"„' are expansion coefficients.
It is easily found from (2.5)—(2.8) that [ A+, A, Ap [

and [B+,B,Bp ] are related to each other by the follow-

ing relationships:

n

g exp[a+(k)K++a (k)K +ap(k)Kp],
k=1

B~B0
1 —crB ~B B0

(2.13)

=exp( A+K+ )exp[in( Ap)Kp]exp( A K )

=exp(B K )exp[in(Bp )Kp]exp(B+K+ ) .

(2.3)

(2.4)

where a+(k) and ap(k) are c-number functions. Such
quantities appear frequently when we investigate the dy-
namics of quantum optical systems, especially nonlinear
optical processes with dissipation. We also have to treat
such a quantity in the quantum counting theory.

According to the decomposition formulas for the gen-
erators of su(1, 1) and su(2) Lie algebras, we can get the
normal-order and antinormal-order decomposition for-
mulas, respectively, as follows:

exp(a+K+ +apKp+a K )

and

(Ap —o AiA )
B0=

0
(2.14)

(2.15)

It should be noted that we can use the formulas
(2.12)—(2.15) to rewrite the antinormal order into normal
order, and vice versa. We frequently need to do this
when we investigate the dynamics of quantum optical
systems.

The su(1, 1) Lie algebra can be represented in terms of
boson annihilation and creation operators. In the one-
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mode bosonic realization, the generators [ K+, K, KoI
are expressed as

K+ =
—,
' (a t) (2.16)

K =—a 2
2

Ko= —,'(a a+ —,') .

(2.17)

(2.18)

Here, a and a are boson annihilation and creation opera-
tors satisfying [a, a ]=1. In this realization, the Casimir
operator C, becomes

K+=d c

K =cd,
Ko =

—,
' (c c +d d —1),

(2.28)

(2.29)

(2.30)

where c (d) and c (d ) are fermionic annihilation and
creation operators that satisfy

The total boson number is conserved, and this realization
is nothing but Schwinger's realization of angular momen-
tum [27].

We also have the following fermionic realization:

C, =Ko —,'(K+K—+KK+ )= —
—,', . (2.19)

[c,c ]+=[d,d ]+=1 .

E =ab,
Ko= —,'(ata +btb +1),

(2.21)

(2.22)

with [a,a ]=[b, b ]=1. In this case, the Casimir opera-
tor C2 is given by

Thus the Bargmann index is k =
—,
' or —,'. For k =

—,', the
basis for the irreducible unitary representation space is a
set of states with an even boson number, and for k =—,', it
is a set of states with an odd boson number [10]. The
one-mode bosonic realization is used to describe the de-
generate parametric amplifier [2].

The two-mode bosonic realization gives us

%+=a b (2.20)

0 1 0

OO ~-= 1O ~o=
O

2

0 0

(2.31)

The realizations of the su(1, 1) and su(2) Lie algebras
described in this subsection appear frequently in quantum
optics and give us compact descriptions of various kinds
of phenomena.

This fermionic realization is used to describe electron-
counting processes (see Sec. V). Furthermore, the su(2)
algebra is also realized by the Pauli matrices as

C2= —,'(a a bb+1)(—a a bb —1—) . (2.23)
B. Liouville-space formulation

E+=a b, (2.24)

This realization conserves the boson-number difference
between the two modes. In quantum optics, the two-
mode bosonic realization is used to describe the nonde-
generate parametric amplifier [3]. When we describe
physical systems in the Liouville space, we can investi-
gate many kinds of phenomena in terms of the su(1, 1) Lie
algebra. For example, the linear dissipative process and
the photon-counting process are described by this algebra
(see Secs. IV and V).

The su(2) algebra, on the other hand, can be expressed
in terms of two boson operators a (a ) and b (b ), as fol-
lows:

(AiA2) =A, A2,

(At) =(A )

(a, A, +a2A~) =a*, A, +a2 A2,

(2.32)

(2.33)

(2.34)

This subsection briefly reviews the Liouville-space for-
mulation (or thermofield dynamics) [21,22]. The Liou-
ville space X can be constructed as a direct product of
the two independent Hilbert spaces, X=&&. Here, &
and & are the ordinary Hilbert spaces. We denote as A

an arbitrary operator acting on any vector in &. Then
any operator A defined on 4 is given by the tilde conju-
gation of A [21]. The tilde conjugation is defined by

K =ab (2.25)
(2.35)

Ko= —,'(a a btb) . — (2.26)

This realization is used in describing the beam splitter
[13], the interferometer [14], and the linear directional
coupler [15]. The Casimir operator becomes

a a+b b afa+b~b
2 2

where a] and a2 are arbitrary c numbers, and o. =1 for a
bosonic operator A and o.= —1 for a fermionic operator

Bosonic and fermionic tilde operators are, respective-
ly, assumed to commute and to anticommute with a
respective nontilde operator.

For simplicity, we consider a single-mode bosonic sys-
tem, so the Liouville space is spanned by vectors belong-
ing to a complete orthonormal set,

S=[Im, n&=Im)eIe&I Im&em, In)em, m, n=0, 1,2, . . . , ~] (2.36)

that satisfies
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(n„m, lm„n, &=5 8„„ (2.37) An arbitrary state
l
+ ) in the Liouville space X can be

expanded as follows:

g lm, n)(n, ml=l,
m=O n=O

(2.38)
g f „lm, n&.

m=O n=O
(2.52)

where
l
m ) and

l n ) are the number eigenstates,
Nl m ) = m

l
m ), and N

l
n ) = n l n ).

In the Liouville space, we introduce a state vector
defined by

Hence, for A = A (a, a ), using (2.39) and (2.52) gives us

(1 A(a, a )l%)= g g (nlrb(a, a )lm)f „.
m=O n=O

ll&= g ln, n& .
n=0

(2.39) (2.53)

This state vector satisfies

al»=a'l», a'li&=all&, (2.40)

aim, n ) =&m lm —l, n ),
atlm, n ) =&m + llm + l, n &

(2.41)

(2.42)

and

ulm, n &=&n lm, n —1),
anal m, n & =&n + 1 lm, n +1&,

(2.43)

(2.44)

with alo, n ) =a ln, o) =0 for all n It i.s easily seen
from (2.41)—(2.44) that [a, a ]=[a,a ]=1 and [a,a]= [a,a t] =0. Note that

l
1 ) is a tilde invariant state,

l
1 ) =

l
1 ) [22]. For fermion annihilation and creation

operators c and c and their tilde conjugates c and c~,
(2.39) and (2.40) should be modified to

where a and a are annihilation and creation operators
and where a and a are their tilde conjugates; these
operators are defined by

When there exists an operator I' acting on a vector in the
Hilbert space &, and its matrix element is given by
f „=(mlFln ), then we have

( ll 3 (a, a )l%') =Tr[A (a, a )F], (2.54)

where Tr indicates the trace operation on the Hilbert
space &. It should be noted that in the Liouville space
X, a scalar product with ( ll is equivalent to the trace
operation in the Hilbert space &. Thus, if we put F =p,
where p is a density operator of the system, we find that a
quantum statistical average of A is calculated as the ma-
trix element in the Liouville space X:

(A(a, a ))=(llA(a, a )lp), (2.55)

with

lp)= g g p „lm, n)= g g lm, n)(mlpln) .
m=O n=O m=O n=O

It is found that l p ) is a tilde invariant state, l p ) =
l p )

[22]. Note that the thermal average is obtained if we put
in (2.52) [or (2.54)],

and

l1) =lo, o)+ ll, » (2.45)

or

f „=5 „—exp( Ijcon)—1
(2.56)

cl1) =cl 1), c 1)= —cl1) . (2.46)

amn am n

atlm, n &
—atlm &(nl

(2.47)

(2.48)

and

ulm, n &
—lm &(nlat,

a mn m na.
(2.49)

(2.50)

The generalization of these relations to systems with
many fermions is straightforward.

Any state vector in the Liouville space L corresponds
to an operator in the usual Hilbert space &. For exam-
ple, a state vector

l m, n ) in X has the same meaning as
the operator

l
m ) ( n

l
in &. The correspondence between

a vector of the Liouville space and an operator of the Hil-
bert space is derived from the following rules:

F=—exp( —Pena a),z (2.57)

p(t) = i [H,p(t)] =——iLp(t), —a
at

(2.58)

where H is the Hamiltonian of the system and L is the
Liouvillian operator. In the Liouville space, the system is
described by the state vector lp(t) ) corresponding to p(t)
defined on the Hilbert space & and the time evolution of
lp(t) ) is determined by

where /3 is a reciprocal of temperature and Z =1+n with
n =(e~ —1)

A quantum-statistical-mechanical system is described
by a density matrix p(t) defined on &. The dynamics of
the system is governed by the Liouville —von Neumann
equation

Using this correspondence rule, we have in general
—lp(t) &

= —iHlp(t) &,at
(2.59)

lA)= y y A „lm n& A= y y lm&A „(n
m =0 n=0 m=O n=O

(2.51)

with H=H —H, where H is the tilde conjugate of H.
When H =H(a, a ), we have H=H*(a, at). The rela-
tionship between (2.58) and (2.59) is derived by using the
mapping rule (2.47) —(2.50). It is easily seen from the
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correspondence rules that H~p(t)) ~Hp(t) and
H~p(t)) ~p(t)H. In the Liouville space X, the
Liouville —von Neumann equation takes the same form as
the Schrodinger equation. This is true even if there is dis-
sipation. Section IV will use the description of dynamics
in the Liouville space to investigate nonlinear optical pro-
cesses.

III. GENERAL FORMULAS FOR LIE ALGEBRAS

A. Derivation of general formulas

In this section we derive general formulas for calculat-
ing an expectation value of the product of exponential
functions of the generators of the su(1, 1) and su(2) Lie
algebras. We would like to calculate the fo11owing quan-
tity:

(3.1)

with

and

V„=a+(k)K+ +ao(k)KO+a (k)K (3.3)

where {K+,K,KOI are generators of su(1, 1) or su(2)
algebras and {a+(k),a (k), ao(k)j are arbitrary c-
number functions. In (3.1), ~%') and ~@) are arbitrary
states in the Hilbert space & or in the Liouville space X.
This subsection will first derive the generalized normal-
and antinormal-order decomposition formulas (or the
generalized Baker-Campbell-Hausdorff' formulas) by us-
ing (2.3)—(2.9) and (2.12)—(2.15). Section III 8 will calcu-
late the average value of 2 for typical states in quantum
optics, such as the Glauber coherent state and the gen-
eralized SU(1,1) coherent states.

Now let us derive the generalized normal-order decom-
position formulas of V for the su(1, 1) and the su(2) Lie
algebras. First, decompose the last exponential in (3.2),
exp[ V, ], into the normal order and the other n —1 ex-
ponentials,

exp[ V„],exp[ V„,], . . . , exp[ V2],
V= exp[ V„]exp[V„,] . exp[ V, ], (3.2) into the antinormal order. Using (2.3)—(2.8), we obtain

9'= exp[a (n )K ]exp {ln[ao(n ) ]Ko]exp[a+ (n )K+ ] exp[a (2)K ]exp {ln[ap(2) ]Ko ) exp[a+ (2)K+ ]

Xexp[a+(1)K+ ]exp{in[ao(1)]Ko]exp[a (1)K ],
where a+ (k), a (k), and ao(k) are given by

a+(k)
sinhP(k)

(3.4)

a+(k) =
ao(k)

cosh/(k)+ sinhP(k)
2 k

(3.5)

ao(k)
ao(k) = cosh/(k)+ sinhP(k)

2P k

for k) 1, and

a+(1)
sinhg(1 )

(3.6)

a+(1)=
ao(1)

cosh/(1) — sinhg(1)
2 1

(3.7)

ao(1)
ao(1)= cosh/(1) — sinhg(1)

2$(1)

For all k, P(k) is defined by

(3.&)

ao(k)
2

—o a+ (k)a (k) (3.9)

with cr = 1 for the su(1, 1) Lie algebra and cr = —1 for the su(2) Lie algebra.
Consider the quantity

exp[x K ]exp[in(xo)KO]exp[x+K+ ]exp[y+K+ ]exp[in(yo)KO]exp[y K ] .

These exponentials can be rearranged as follows:

(3.10)
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exp[x K ]exp[in(xp)Kp]exp[x+K+ ]exp[y+K+ ]exp[in(yp)Kp]exp[y K ]

=exp[x K ]exp[in(xp )Kp ]exp[(x+ +y+ )K+ ]exp[in(yp )Kp ]exp[y K ]

=exp[x+ K+ ]exp[in(xp )Kp ]exp[x K ]exp[in(yp )Kp ]exp [y K ], (3.11)

where the formulas given by the relationships (2.12) and (2.13) have been used in the last equality to rewrite the antinor-
mal order into the normal order. In (3.11), the values of X+,x, and xp are given by

(x+ +y+ )xp

1 cr(x+—+y+ )x xp

X Xp

1 —~(x++y+ )x x, '

Xp
~o 2[1—o.(x++y+ )x xp]

(3.12)

(3.13)

(3.14)

Using such a rearrangement repeatedly, we can rewrite (3.4) such that the generator K+ appears only in the leftmost
exponential on the right-hand side. Hence, we obtain

%=exp[A+(n)K+]expIln[Ap(n)]KpIexp[A (n)K ]expIln[Ap(n —1)]KpIexp[A (n —1)K ]

X Xexpjln[Ap(1)]KpIexp[A (1)K ],
where A+(k), A (k), and Ap(k) are given by

ap(k) a+(k)
cosh/(k)+ sinhP(k) A+(k —1)+ sinhP(k)

ap(k) a (k)
cosh/(k) — sinhg(k) —cr sinh[P(k)] A+(k —1)

2$(k) P(k}
a (k)

sinhP(k)

ap(k) a (k)
cosh/(k) — sinhtI)(k) —o sinh[P(k)] A+(k —1)

(3.15)

(3.16)

(3.17)

Ap(k)=
ap(k) a (k)

cosh/(k) — sinhg(k) cr sinh[P(k—)]A+(k —1)
L

2 (3.18)

for n ~ k ) 1, and

A+(1)=

a+(1)
sinhg(1)

1

ap(1)
cosh/(1 ) — sinhg( 1)

2 1

(3.19)

ap(1)
Ap(1) = cosh/(1) — sinhg(1)

2 1

We can finally obtain the generalized normal-order decomposition formula as follows:

n n I —1

V=expI A+(n)K+ ]exp ln + Ap(k) K exp g A (I) g Ap(k)
k=1 1=1 k=1

(3.20)

(3.21)

In deriving this formula, we have repeatedly used the relation

exp(x K )exp[in(xp)Kp]=exp[in(xp)Kp]exp(x xpK ) . (3.22)

For n = 1, (3.21) reduces to the ordinary Baker-Hausdorff'formula.
Next, we will derive the generalized antinormal-order decomposition formula for X In this case, we decompose the

last exponential exp[ V& ] in (3.2) into the antinormal order and the other n —1 exponentials exp[ V„], . . . , exp[ V2] into
the normal order, and we make a rearrangement such that the generator E appears only in the leftmost exponential
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on the right-hand side of (3.2). Using the same procedure to derive the generalized normal-order decomposition formu-
la, we can obtain

9'= exp[8 (n)K ]exp [ln[Bp(n) ]Kp] exp[8+ (n)K+ ]exp [ln[Bp(n —1)]Kp I exp[8+ (n —1)K+ ]

X . . Xexp[ln[Bp(l)]Kp]exp[8+(1)K+],

where 8 (k), 8+ (k), and Bp(k) are defined by

(3.23)

8 (k)=

8+(k)=

ap(k} a (k)
cosh/(k) — sinhP(k) 8 (k —1)+ sinhP(k)

2 k

ap(k) a+ (k)
cosh/(k)+ sinhP(k) —cr sinh[P(k)]8 (k —1)

2 k 2 k

a+(k)
sinhP(k)

ap(k) a+(k)
cosh/( k ) + sinhP( k ) —o. sinh [P( k ) ]8 ( k —1 )

(3.24)

(3.25)

ap(k} a+(k)
Bp(k) = cosh/(k)+ sinhP(k) —o sinh[P(k)]B (k —1)

2 k 2 k

2

(3.26)

for n)k)1, and
I

and

8~(I)=
a+(1)

sinhP( 1)
1

ap(1)
cosh/(1)+ sinhg(1)

2 1

(3.27)
8+(n)= g 8+(&) Q Bp(I)

k=1
(3.34)

ap(1)
Bp(1)= cosh/(1)+ sinhg(1)

2 1

2

(3.28}
Bp(n) = Q Bp(k),

k=1
(3.35)

Using the relation

exp(x +K+ )exp[in(x p )Kp ]

X+
=exp[in(xp )Kp ]exp K+

Xp
(3.29)

8 (n)=Bp(n), (3.36)

where A+(n) and A (np) are given by (3.16)—(3.20) and

8+(n), Bp(n), are given by (3.24) —(3.28), then (3.21) and
(3.30) are expressed as

repeatedly, we can get the generalized antinormal-order
decomposition formula for V as follows:

n

V= expIB (n)K ]exp ~ ln Q Bp(k) Kp .
k=1

n
O'= Q exp[a+ (k)K+ +ap(k)Kp+a (k)K ]

k=1

=exp[A+(n)K+ ]e pxI1 [nA (pn)] K]pe x[pA (n)K

Xexp g 8+(I) g Bp(k)
k=1

(3.30) (3.37)

A+(n)= A+(n), (3.31)

Ap(n)= + Ap(k),
k=1

(3.32)

For n = 1, (3.30) reduces to the ordinary Baker-
Campbell-Hausdorff formula.

Finally, we will rewrite (3.21) and (3.30) into more
compact forms. When we define A + ( n ), A p( n ) and
8+(n), Bp(n) by

(3.38)

where we have introduced the ordered product as

n

f(k)=f(n)f(n —I) . f(2)f(1) .
k=1

(3.39)

=exp[8 (n)K ]exp [ln[Bp(n) ]Kp ] exp[ 8(+n ) K+],

(n)= g A (l) Q Ap(k)
k=1

(3.33)
We find from (3.16)—(3.20) and (3.24) —(3.28) that A+(n)
and Ap(n) as well as 8+(n) and Bp(n) satisfy the follow-

ing recurrence relations:
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A+(n)=

a+(n) ao(n)
sinhP(n)+ cosh/(n)+ sinhP(n) A+ (n —1)

n 2 n

ao(n) a (n)
cosh/(n) — sinhP(n) —a sinh[P(n)]A+(n —1)

2 n n

(3.40)

A (n)= A (n —1)+

a (n)
sinh[P(n) ] A o(n —1)

n

ao(n) a (n)
cosh/(n) — sinhP(n) —o sinh[P(n)] A+ (n —1)

2 ll n

(3.41)

and

Ao(n)=
Ao(n —1)

2
ao(n) a (n)

cosh/(n) — sinhP(n) —o sinh[P(n)]A+(n —1)
2$(n) P(n)

(3.42)

B+(n) =B+ (n —1)+

a+(n)
sinhP(n)

Bo(n —1) n

ao(n) a+(n)
cosh/(n)+ sinhP(n) —0 sinh[P(n)]B (n —1)

2 n

(3.43)

a (n) ao(n)
sinhP(n)+ cosh/(n)+ sinhP(n) B (n —1)

ll 2 n
B (n)=

ao(n) a (n)
cosh/(n)+ sinhP(n) —a sinh[P(n)]B (n —1)

2 n n

(3.44)

ao(n) a (n)
Bo(n) =Bo(n —1) coshti)(n)+ sinhP(n) —o sinh[P(n)]B (n —1)

2 ll n

2

(3.45)

with A+(0)=0, Ao(0)=1, B+(0)=0, Bo(0)=1, and
P(n) being given by (3.9).

The formulas (3.21) and (3.30) [or (3.37) and (3.38)] are
useful in calculating the average value of (3.2), and we
frequently treat such quantities when we investigate the
dynamics of quantum optical systems. In Secs. IV and V
we will use these formulas to calculate the absorption
spectrum and photon echo signal in a localized electron-
phonon system and to investigate quantum counting pro-
cesses.

B. Calculation of expectation values

Now we calculate the matrix element of V defined by
(3.2) in terms of the generalized decomposition formulas
(3.21) and (3.30) [or (3.37) and (3.38)], and we write
G =(+lVl&). First, we assume that l@) is a vacuum
state of the one-mode (or two-mode) bosonic realization
of the su(1, 1) Lie algebra. We denote both the one-mode
and two-mode vacuum states as lo) satisfying alo) =0 or
alo) =bio) =0. Since the one-mode and two-mode bo-
sonic realizations are given by (2.16)—(2.18) and
(2.20)—(2.22), we can easily see that K l 0) =0 and
&0 l O ) = c l 0 ), where c =

4
for the one-mode bosonic real-

ization and c =
—,
' for the two-mode realization. Thus

from (3.37), we have

le + (2k 1)!!
(2k)!!

1/2

A (n)"(Vl2k )

(3.46)

for the one-mode bosonic realization and

G=A, ( )'" y A ( )"&+Ik,k&
Jt =0

(3.47)

for the two-mode bosonic realization. Here, ln ) and
l n, n ) are number eigenstates defined by

ln ) = at"lo),
&n!

lm, n &= a™b"lo& .1

v'm! n!

(3.48)

(3.49)

And when l%) is also a vacuum state, (3.46) and (3.47)
reduce to

(3.50)

with c =
—,
' or —,'.

Next we consider the Glauber coherent state la) [28].
First assume the one-mode bosonic realization of the
su(1, 1) Lie algebra and calculate G = ( 4

l Vl a ). The
coherent state

l
a ) is defined by
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la& =D(a)lo&, (3.51) G =
& 13 a

I
&

I
a P &

where Io& is a vacuum state and D (a) =exp(aa —a*a)
is a displacernent operator. From (2.16)—(2.18) and
(3.51), we have

=Ao(n)' expI —( al +IPI )[1—Ao(n)' ]

+aP A ( n ) +a*@*A +( n ) ] . (3.60)

exp[A K ]Ia&=exp[ —,'a A ]Ia&,

exp[in( A 0 )Ko ] I a &

= A,'"exp[ —
—,'lal'(1 —

I A, l)]l A,'"a&,
with

IA' a&=D(A' a)IO& .

(3.52)

(3.53)

Zy P1
Izl

I (2lzf)

1/2
oo k

I, —o &k!(k+m)!, lk+m, k &,

(3.61)

We will consider the two kinds of the generalized
SU(1,1) coherent states. One, introduced first by Barut
and Girardello [9], is defined as an eigenstate of K =ab
and is given by

Using the normal-order decomposition formula of V
given by (3.37), we can obtain

6 =Ao(n)' exp[ —
—,'Ial [1—IAO(n)l]+ —,'a A (n)[

with

a Pm+nb ™
Im+n, m &= lo, o&,

&(m +n)!m!
(3.62)

X &(Ijlexp[A+(n)K+ ]Ifc(a) & (3.54) where I„(x) is the nth-order modified Bessel function
defined by

where
I fc(a) & is defined by

I fc(a) & =exp[fc(a)a —fc(a)a]lo&,
with fc(a) being given by

fc(a) =aAO(n)'

Note that

(3.55)

(3.56)

V

X 1I (x)=
2 „0n!I (n +v+ )I

We can see from the definition that

K Iz, m &Bo=zlz, m &sG .

2n

(3.63)

c~ = c~ c
When I!Il & is also a coherent state a &, (3.54) is

G=&alVla&

= Ao(n)' exp+a* A+(n)+ —,'a A (n)

—lal [1—A (n)' ]] . (3.57)

with

la, p& =D~(a)D2!(p)Io& = a&(NIp&, (3.58)

and

D„(a)=exp(aa —a'a)

Dii(P) =exp(Pbt P*b) . —

Using the same procedure we used to obtain (3.54), we
can get

G=&~I~I, I3&

= Ao(n)'"exp[ —
—,'(lal'+ IPI')[I —

I AO«) I]

+aPA (n)]

X &%'lexp[ A+ (n)K+ ] I fc(a),fc(P) &, (3.59)

where fc(x) is given by (3.56). And when IV& = la, P&,
(3.59) becomes

When we consider the two-mode bosonic realization
for the su(1, 1) Lie algebra, we have the two-mode
Glauber coherent state given by

This state is also called the charged boson coherent state
or the pair coherent state [9,12]. The other generalized
SU(1, 1) coherent state, introduced by Perelomov [10], is
constructed by means of the generalized displacement
operator D (z) =exp [zK+ —z "K ]:

lp, m & =exp[zK —z "K ]Im, o&

=(1—Ipl')"+ '~'exp(pK+ )Im, o&

1/2
(m +k)!

m!k?
2 )( i + m )/2

k=0

Xp, "lm +k, k &, (3.64)

I (2lzl Ao(n)'")
X I (2 lzl )

(3.66)

for the Barut-Girardello coherent state, and we obtain

with p=(z/lzl)tanhlzl. Using the same procedure we
used to calculate G =

& Vl VI& & with the Glauber
coherent states, we obtain

G, =&+I&lz, m &.

Ao(n) 'I (2lzAO(n)l )

IA, (n)l I (2lzl)

X exp[A (n)z]& (I( exp[ A+(n)K+ ]IfBo(z), m &BG,

(3.65)

G2=BG&m, zlvlz, m &Bo

= Ao(n)' exp[A+(n)z*+ A (n)z]



5102 MASASHI BAN

G, =&elglp, m &p

(I —Ip I')Bo(n )

1 —
I [p+B+ (n ) ]Bo(n ) I

(m +1)/2

X&%'Iexp[B (n)K ]lfp(p), m )p,
G4=p& m, pl &lp, m &p

(I —
I pl')Bo(n)'"

1 —[p*+B (n)][p+B+(n)]BO(n)

(3.67)

m+1

fp(p)=[p+B+(n)]BO(n) . (3.70)

In deriving (3.65) and (3.66), we have used the generalized
normal-order and antinormal-order decomposition for-
rnulas, (3.37) and (3.38), and we have assumed
(2.20) —(2.22).

Next let us consider the su(2) Lie algebra. Using the
same method we used to derive (3.68), we can obtain G
for the Bloch state lp; k ) B [16] as

G=s&k;pIPIp;k &B

fBo(z) =zAO(n), (3.69)

(3.68)

for the Perelomov coherent state. Here, I%') is an arbi-
trary state, and fao(z) and fp(p, ) are defined by

1+[p+B+(n)][p*+B (n)]Bo(n)

(1+ lp, l
)Bo(n)'

(3.71)

where we have assumed (2.24) —(2.26) and the Bloch state
I p; k )B is defined by

lp;k)B=exp[zK+ —z*K ] O, k)

exp [pK+ ] IO, k )
1

( 1+ 2)k/2

1 ~ k!
( I+ l pl

2)k/2 m t(k m)!

1/2

p lmk —m&, (3.72)

with p=(z llzl )tanlzl and with lm, n ) being given by (3.62).
Next we consider the —,-spin realization for the su(2) algebra. We calculate the matrix element of V with respect to

the eigenstates of o„ I+) and
I

—), that satisfy o., l+ ) =
—,'I+ ) and o, l

—) = —
—,'I —). The matrix elements

G;~
= &i

I Vl j ) become

&+IG(n)l+) &+IG(n)l —
&

&
—G(n)l+ ) &

—IG(n)l —
&

Ao(n)'/ + A+(n)A (n)AO(n) '/ A+(n)AO(n)

(n) A, (n)-'" )
—1/2 (3.73)

(n )1/2 B+(n)BO(n)'/

B (n)Bo(n)'/ Bo(n) '/ +B+(n)B (n)BO(n)'/ (3.74)

We can calculate G =
& 4

I
VI@ ) in another realization for

the su(2) algebra by using the same procedure we used for
the su(1, 1) algebra.

Before closing this section, we calculate the thermal
average of X This average is calculated by & 1

I
VIO(p) )

in the Liouville space (see Sec. II), where IO(p) ) is the
thermal vacuum state with a=1 in thermofield dynamics
[22] and is defined by

K =a~a~+

Ko= —,'(ata +a a+1),
(3.77)

(3.78)

where a and a are boson annihilation and creation
operators and a and a are their tilde conjugates. The
thermal vacuum state is proportional to the Perelomov
coherent state:

lo(p) &
=

n+1 „=o n+1

n

ln, n &, (3.75)
IO(p) &

= ",0
&2n+1 n+1

Thus, by using (3.67) with

(3.79)

with n being a boson distribution function and with
I m, n ) =

I
m ) I

r7 ). Then the generators of the su(1, 1)
Lie algebra are expressed as

&@I=&II=y &n, nl,
n=0

E =aa, (3.76) we can obtain the thermal average as
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G, = & Ilu 0(13) &

1 9
&2n+1 n+1 p

T7,(n)'"
1+n —[n+(n+1)B+(n)][1+8 (n)]B 0( n)

(3.80)

formulas obtained in Sec. III to investigate linear and
nonlinear optical processes. To see how the generalized
decomposition formulas are used to investigate quantum
optical processes, we will consider a system made up of
an electronic subsystem and a bosonic subsystem, and we
will treat an external field classically. In the Liouville
space, the time evolution of a state I'II(t) & of the system
interacting with an external field is governed by

Such a calculation of G& will appear frequently in the fol-
lowing sections.

%(t) = —il&+V(t)] %(t)&,
at

(4.1)

IV. APPLICATION TO OPTICAL PROCESSES

A. General treatment

Within the framework of the Liouville-space formula-
tion, this section will use the generalized decomposition

where & is the time-evolution generator of a matter sys-
tem (electronic and bosonic systems) and V(t) is defined
as V(t) —V(t), in which V(t) is an interaction Hamil-
tonian between the matter and the external field and V(t)
is the tilde conjugate of V(t) [29]. When we solve (4.1)

by the perturbative method, we obtain

I
II(t)&= g (

—i)"f dt„ f dt„, f dt, exp[ i&A, t„+,—„]V(t„)
n=0 0 0 0

X exp[ —i&At„„&]V(t„&) exp[ i&ht2
&

—]V(t& )

Xexp[ —i&At, 0]I%'(0) &, (4.2)

Ie, & =pa„lk&, (4.3)

with

where we have put At, =t,- —t, with t„+&=t and t0=0.
We assume that the initial state of the system can be

expressed as a direct product of the states of two subsys-
tems, I'II(0) &

= I%'z &s I%'z &, where I%'E & represents the
state of the electronic system and where I%'~ & represents
the state of the bosonic system. Furthermore, the initial,
electronic state is assumed to be expanded as follows:

We assume that the external field changes only the elec-
tronic state, according to the following relation:

V(t)lk&=pa„, „(t)lk &.
k'

Hence we have

V(t„)V(t„,) . V(t, )l+~&

g a„+~„(t„)a„„~(t„,)

k„+) k„k)
k=(k, , k2, . . . , k,„), k =1,2, . . . , n

X . . aq q (to)lk„+, &, (4.6)

Let us assume, for example, the two-level electronic sys-
tern. Since in the Liouville space an arbitrary state of this
system can be expressed as a linear combination of

[ I

——
&, I

—+ &, I+ —
&, I++ &],

we have k=(k„k2) and k =+. Note that in the usual
Hilbert space the density matrix of the system is ex-
pressed in terms of

Il —
&&

—I, I

—&&+I, I+ &&
—I, I+ &&+II .

exp[ i&At; J. ]Ik& = lk&exp[ —iAzht—; ] .

Therefore, from (4.2) and (4.6) we obtain

(4.7)

with a„j, (to)=a& .
We denote as &z the time-evolution generator in the

kth subspace, which is the time-evolution generator of
the bosonic system (or the reservoir) under the condition
that the electronic system is in the kth state lk &. Thus
we assume that

I+(t)&= g ( i)"f" d—t„f "dt„, . f dt, g g . g lk„+, &ak k (t„)ak z (t„,)

n+1 n 1

X . ak k (t, )ak z (to)exp[ i%'t h—t„+, „]
Xexp[ i&k ht„„,]—
X . exp[ —i&k dt's, o]l+~ & . (4.g)
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Since we are interested in information only about the state of the electronic system, we take the partial average over the
bosonic subspace. Thus, we obtain

oo
n

le&(t)) = p (
—i)"f dt„ f dt„, . f dt, p p ' ' ' p lk„+, )ak k (t„)ak k (t„,)

n=0 k +) k„kl
X ak k (tl) ak k (to)Q(t„+l, t„, . . . , tl), (4.9)

where Q(t„+„t„,. . . , t, ) is given by

~(t +i t tt)='(exP[ '~k ~t +I, ]exP[ i~k ~t, —ll 'e P[ '~k ~tl 0])B (4.10)

and ( )s indicates the average over the bosonic subsystem.
We assume that the time-evolution generator &k of the kth bosonic subsystem is expressed in terms of the generators

of the su(1, 1) Lie algebra. Hence we can write down &k as

btj) i=z(j)C+a+(j)K++ao(j)Ko+a —(j)K—

where C is an operator commuting with K; (i =+,0). This means that Q(t„+„t„,. . . , t, ) can be written as

n

Gtt„t„e, . . . , t )=t(exp X z(m+1, mtt: 9
m=0 B

(4.12)

Here, 7 is the same form as that given by (3.2), so the quantity 0( t„+„t„,. . . , t, ) can be calculated by using the gen-
eralized decomposition formulas derived in the previous sections. When the initial state of the bosonic subsystem is the
vacuum state, for example, we can get

l%~(t))= g ( i)"f— dt„ f "dt„, . f dt, g g. g lk„+,)a„„(t„)a„„(t„,)
n=0 n+1 n 1

X . ak k (t&)ak k ( t)o[A (on +1)A (on)A (on
—1)

X . Ao(2) Ao(1)]'

X (exp[ZC+ 2+(n + l)K+ ])s, (4.13)

with Z =g" +'oz(m) and s being a certain constant. The
average value can be calculated once C and K+ are
specified explicitly. The generalized decomposition for-
mulas in Sec. III can be used to calculate all quantities
appearing in (4.13): s, Ao(k), and A+ (k)
(k =1,2, . . . , n+1). We can use this procedure to ob-
tain an explicit form of

l 4z ) similar to (4.13) even when
the bosonic subsystem is in the one-mode (or two-mode)
coherent state, the SU(1,1) generalized coherent state, or
the thermal equilibrium state.

We can use this result to investigate various kinds of
optical processes. In Secs. IVB and IVC, we will calcu-
late the absorption line shape and photon echo signal in a
localized electron-phonon system interacting with an in-
tense coherent field.

B. Absorption line shape

This subsection first presents a model to be considered
here and in Sec. IVC. The localized electron-phonon
system considered here consists of four subsystems: a
photon system (an external field), a localized electron sys-
tem assumed to be a two-level system, an interaction
mode, and a thermal reservoir. The interaction mode
corresponds to the adiabatic potential for the localized
electron [30]. The thermal reservoir, which is assumed to

include all phonon modes except the interaction mode,
ensures that the interaction mode is in thermal equilibri-
um. The Hamiltonian of the system is therefore written
as

HT HF +Hp +Hrtt +H~p +Htz~ + V( t) (4.14)

The Hamiltonian HE of the localized electron system
and the Hamiltonian H~ of the interaction mode are
given by

and

HE =c+c+c++c c c (4.15)

Hz=coa a, (4.16)

HEP gc+c+ a a (4.17)

where c+ (c ) and c+ (c ) are annihilation and
creation operators of the electron in the upper (lower)
electronic state whose energy is s+ (E ), where a and a
are the boson annihilation and creation operators of the
interaction mode, and where co is the frequency of the in-
teraction mode.

The interaction HE~ between the localized electron and
the interaction mode is assumed to be a mutual phase
modulation [31]:
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The coupling constant g in (4.17) represents the change in
the curvature of the adiabatic potential due to the transi-
tion of the electron between the upper and lower states.
This interaction Hamiltonian usually includes the linear
terms with respect to the interaction mode, such as
g, c+c+ (a+a ), which indicates the shift of center of the
adiabatic potential. This linear term, however, can be re-
moved by a unitary transformation. Although this trans-
formation causes the operator c~+c+ to appear in other
terms, there is no technical problem because c+c+ com-
mutes with all terms in the Hamiltonian [31]. We can
therefore neglect the linear term for the purpose of this
paper, although this term is physically important in some
cases.

The interaction H~~ between the interaction mode and
the thermal reservoir is assumed to be linear dissipative
coupling [31,32], and the Hamiltonian Mz of the thermal
reservoir need not be specified explicitly.

The interaction between the localized electron and the
external field is assumed to be

Bt
IV(t)) = —i[&+V(t)] W(&)) .

Here, V(t)= V(t) V—(t) and & is defined by

&=H H+—ift,

(4.19)

(4.20)

with H =HE+HEp+Hp and H being the tilde conjugate
of H. The damping operator ft is expressed as

A= —a[(2n+1)(a a+a a) —2(n+1)aa
—2na a +2n ], (4.21)

II W(t) =~( (n + 1)[ [a W(t},a ]+[a, W(t)a ]]
+n [[a,W(t)a]+[a W(t), a]I }, (4.22)

where n =(e~ —1) ' and ~ is a damping constant deter-
mined by the correlation function of reservoir variables.
This constant characterizes the linear dissipative process
of the system. In the usual Hilbert space, (4.21) takes the
well-known form as

V(t) = pE*(t)c c—+ p, 'E(t)c—+c (4.18)
where W(t) is the density matrix of the relevant system.
When we define the generators of su(1, 1) Lie algebra by
(3.76)—(3.78), (4.21) can be written as

where p is the off-diagonal element of the electric dipole
moment operator and E(t) is the positive frequency part
of the c-number field. We have used the rotating-wave
approximation in (4.18).

Next we write the equation of motion for a state vector
of the system in the Liouville space. When we eliminate
the information about the thermal reservoir by using the
projection operator under the van Hove limit (or the
Markovian approximation), we can obtain the equation
of motion for a state vector

~
W(t) ) of the relevant sys-

tem (the electronic system and the interaction mode):

A =2m[(n + 1)K +nK+ —(2n + 1)Kp+ —,
' ] . (4.23)

In the Liouville space the complete orthonormal basis
for the electronic system is given by

~ =[I——
&, I+ —&, I+ —

&, I++&],
with fij)=]i)g fj). Here, fi)=/+) is the upper or
lower electronic state and ~i ) is the tilde conjugate of ~i ).
In this case, the term a& z, appearing in (4.5) is in the ma-
trix form

with

[a~ ~, (t)]=

0pE*(t)—
p*E (t)

0

pE(t) pE—*(t)
0 0

0
pE'(t)

—p*E (t)
0

0 0

p "E(t ) pE '(t)— (4.24}

k=(i,j)=(——),(+ —), ( —+),(++) .

From (4.5), we have

g a;,, (t)l& i) .
k=+ I=+

Using (4.9), we obtain the electronic state
~ %z(t) ) at the nontrivial lowest order:

1%' (t))=(1
i
W(t))

= f «2 f «, Ipl'I i++&[E*(t,)E(t, )U, (t3ytp, t„tp)+E(t~)E'(t, }U,(t3 t2&ti tp)]
0 0

& [E'(t, }E(t,) U3(t3pt3y tip tp)+E(t2)E (ti ) U4(t3yt3y tip tp)]],
where U~ (t3, t2, t &, tp ) is given by

Ui(t3, t„t„tp)=(exp[ i&~~At„]exp[ i—gf~ bt„]exp[ i&— At—,p])~,
U2 ( t3 & t2, t i, tp ) = ( exp [ t~+ + At 32 ]exp [ i —& +6 t2 i ]e—xp [ —i & b t i p ] ) ii

(4.25)

(4.26)

(4.27)

(4.28)
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U3 ( t3 t2, t„t0 ) = ( exP[ i—& At» ]exP[ i—A+ At» ]exP[ —1& ht, 0 ] ) B

U4(t3 t2 tl to) (exp[ '~——~t32]exp[ '~—+~t21]exp[ '~——i5tlo])B

with &; 's defined by

=iic+coN+2iic[(n + 1)K +nK+ —(2n + 1)K0],

&++=iic+(co+g)N+2ia[(n+1)K +nK+ —(2n+1)K0],

(4.29)

(4.30)

(4.31)

(4.32)

&+ =DE —
—,'g +i ic+(co+ ,'g)A—'+2iic (n + 1)K +nK+ — 2n + 1+i K0

2K
(4.33)

jf + = —bE+ —,'g +iic+(co+ ,'g)N—+2iic (n+1)K +nK+ — 2n+1 i —K0
2K

(4.34)

Here, Jv =a a —a a and bc, =a+ —E . Note that the average over the interaction mode, ( )B, means the matrix ele-
ment ( 1B ~ ~ %B ), where ( 1B ~

=g „" 0 ( n, n
~

= ( 0,0
~
exp [aa ] [see (2.39)], and that the state ~%'B ) is an initial state of the

interaction mode. Since using (2.40) gives us ( lB ~A++ = ( 1B ~% =0, (4.26) becomes

~iIiE(t) ) = f dt2 f dt, 2~@~ ( ~++ ) —
~

——) )ReIE*(t2)E(t, )G(t3, t2, t, )exp[ i (t2—t, )(AE—,'g)+—ic—t2]],

(4.35)

with

G(t3, t2, t, )

=(exp[ —i%+ bt21]exp[ —i%' I3t10])B . (4.36)

have

6= exp 2K t, —t, 1 — A
ig n(n+1)
2K 2n+ 1

We assume that at an initial time (t =0), the interac-
tion mode is in a thermal equilibrium state. Hence we
have

ig n(n+1)—21c t2 —t1
2ic 2n+ 1

g e ~ "~n, n & .
1

n+1 „
(4.37)

ig (n+1) +n—2ic t, t, 1+—
2n+ 1

It is therefore convenient to introduce new operators by
the Bogoliubov transformation as follows:

Xe pIx2 t ic(A1—A0)]
B

(4.43)

n+1y= a-
+2n+ 1 +2n+ 1

a (4.38) where A+, A0, and A are the su(1, 1) generators defined

by

and

n+1
y = a

&2n+1 +2n+ 1

(4.39)

&-=yy
A0= —,'(y y+y y+1) .

(4 44)

(4.45)

(4.46)
n+1 ny= a-

+2n+ I +2n+ 1

a (4.40)

n+1 y ny= a — a.
+2n+ I +2n+ I

(4.41)

It is easily seen from (2.41)—(2.44) that [y, y ]= [y, y ]= l. It is important to note that

In deriving (4.43), we have used ( 1B ~

8' =0 and
[N, K, ] =0 (i =+,0).

We find that (4.43) is equivalent to (3.1) with n =2 in
(3.2) and ~4&) is a vacuum state and (%~ = ( lB ~. In this
case,

[a+(k),ao(k)Ik =1,2]

y/e, &=y/e, &=0. (4.42) are given by

This means that y and y are the annihilation operators
for the thermal equilibrium state. Thus if we express all
quantities appearing in (4.36) in terms of y, y, y, and y,
the thermal average ( )B is equivalent to the vacuum
average.

We rewrite (4.36) in terms of (4.33) and (4.31), and we

a+ (1)=2ict, ,

a (1)=0,

a0(1)= —2ict,

and

(4.47)

(4.48)

(4.49)
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a (2) =2@(tz t,—) 1—ig n(n+1)
2n+ }

a+ (2)= —2~(t~ t—, )
ig n(n+1)
2v 2n+1

(4.50)

(4.51)

Thus from (3.16)—(3.20), we obtain

(1)=1—e

3+(1)=0,
(4.53)

(4.54)

ig (n+1) +n
2K 2n+ 1

(4.52)
and

Ao(1)=e (4.55)

A+(2)=
—2 sinh[vp(tz ti )—]ig n(n+1)

2~ 2n+1

p cosh[trp (t& —ti )]+ I+ sinh[Kp (t~ —
ti )]ig (n+1) +n

2n+1

(4.56)

(2)=
2 1 — sinh[~p (tz —t, )]ig n(n+1)

2K 2n+1

p cosh[~p (tz t, )]—+ 1+ sinh[~p (tz t,)]-ig (n+1) +n
2~ 2n+ 1

(4.57)

Ao(2)= p

p cosh[~p (tz t, )]—+ 1+ ig (n+1) +n
2n+ }

sinh[vp (tz —t
&

) ]

(4.58)

with

1+ 'g
2K

+4n 'g
2K

(4.59)

Since y ~Vs ) =y ~Vs ) =0, we have A ~%s ) =0 and Ao %z ) =
—,
' ~%~ ). We find from (3.21) that

exp[ —~p(tz t, )]-6=e
1 —r [ 1 —exp[ —2ap (tz t, ) ]]—

with

r =— 1 ——1+(2n+1)} 1 ig
2 p 2K

(4.60)

(4.61)

Finally, when we substitute (4.60) into (4.35), the electronic state at the second order with respect to the external field
E(t) becomes

(4.62)
2 exp[2~ns(tz t,)]-

~%~(t)) =f dt~ f dt, 2~@~ (~++ ) —
~

——) )Re E*(t~)E(t, )e
0 0 1 r[1—exp[ —2~p(tz —t,)]]—

where we put I(Q)= I0 i (A —Ac)t

7T 0

exp[2~nst]
1 r[1—exp( 2~pt) ]— —

s =(1/2n )( I+ig/2~ —p) .

For a monochromatic external field E(t)=Eoe ' ', the
absorption line shape is given by

I0
Im

oo
y

tl

1)n+i

x
Q —b.e+ —,'g +i~[(2n +1)p —1]

I(Q)= lim &++~% (t)) .d
t~~ dt

Therefore, we obtain

(4.63) (4.64)

where Io is an unimportant numerical factor and Re(Im)
indicates taking the real (imaginary) part.
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At the weak coupling limit (g /Ir « 1 ), (4.64) is
simplified as

IoI (Q) = f dt cos[(Q, b—, E g—n )t]
77 0

ably assume that

E, (t) =8,5(t),

E,(t) =8,5(t t—, ),
(4.69)

(4.70)

Xexp n(n+1)
2K

2

X[1 2xt ——e "'] ' . (4.65)

This result is equivalent to that obtained for the model in
which the upper level in the two-level electronic system is
modulated by fIuctuation subject to the Gauss-Markov
stochastic process. In the fast modulation limit (~t ))1),
I(Q) becomes the Lorentzian line shape:

I(Q)= (4.66)
(n sE —gn) —+r

with I =2an(n+ 1)(g/2~) . In the slow modulation lim-
it (vt « 1), on the other hand, I(Q) is the Gaussian line
shape:

where t, is the pulse separation and 8 (j =1,2) is the
area of the pulse. This means that the first pulse is im-
posed at t =0 and the second at t = t, . The photon echo
signal is expected to appear at t =2t, .

Since the lowest-order terms that contribute to the
photon echo are the third-order terms with a phase factor
of

exp[+(2k~ —k, ) x],
we consider only these terms. Therefore, by using the
same procedure we used to calculate the absorption line
shape, from (4.9) we can get the electronic state of the
two-level system:

~e~(t) & =G(t, t, }~+—&+G'(t, t, )~
—+ &, (4.71)

with

G(t, t, )=(exp[ i (t ——t, )&+ ]exp[ —it,& +]&s,
Io (Q he —gn )—I(Q)= exp

&2~5'
(4.67) (4.72)

with 5=g+n(n+ I). These results are well known in
the Anderson-Kubo model of the motional narrowing
[33].

where &+ and & + are defined by

&+ =2i Ir (n + 1)K +nK+ — 2n + 1+ Ko+ —,
'

2K

C. Photon echo

We will now use the generalized decomposition formu-
las to investigate the photon echo signal [34] from the lo-
calized electron-phonon system. The model Hamiltonian
of the system is given by (4.14) with (4.15)—(4.18). In this
case, the external field in (4.18) is assumed to be a pulse
signal as follows:

E(t)=E, (t)exp(ik, x —iQt)+Ez(t)exp(ikz x —iQt),

(4.68)

where E, (t) and Ez(t) are the envelope functions of the
pulse. Furthermore, we assume that in comparison with
the characteristic time of dynamics of the system, the
pulse width is extremely short. We can therefore reason-

I

and

(4.73)

+=2ilr (n+1)K +nK+ — 2n+1 — Ko+ —,
'

2K

(4.74)

In deriving (4.71), we have ignored an unimportant nu-
merical factor and we have integrated with respect to the
intermediate times. The slowly varying amplitude of the
polarization of the localized electron is given by
I(t)= iG(t, t, )i.

Since the interaction mode is in the thermal equilibri-
um state, we express I(t) in terms of y, y, y, and y
defined by (4.38)—(4.41). Thus we have

I(t)=e"' exp 2'(t t,)—ig n(n+1) ig n(n+1) ig (n+1} +n
2)c 2n+1 2' 2n+1 + 2K 2n+ 1

Xexp 2&et,
ig n(n+1)

A ig n(n+1) ig (n+1) +n
2K 2n+1 2K 2n+1 2K 2n+1

This is the same form as (3.1) with (3.2) and the terms [a+(k),ao(k), a (k)~k =1,2I in (3.2) are expressed as

(4.75)

ig n(n+1)
2K 2n+ 1

(4.76)

ig n(n+1)a+ 1 =2lrt,
2n+ 1

(4.77)
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ancl

(1) 2 1
ig (n+1) +n
2K 2n+ 1

a (2)=2 K(t —t, ) 1—ig n(n+1)
2n+1

a+ (2)= 2K(—t —t, )
ig n(n+1)
2K 2n+1

(2) 2 ( ) 1
ig (n+1) +n
2K 2n+ 1

(4.78)

(4.79)

(4.80)

(4.81)

When we substitute (4.76)—(4.81) into (3.16)—(3.20), we have

Ao(1)=
2

p* ig (n+1) +n
sinh( Kp*t, ) 2K 2n+1

—2

ig n(n+1) ig (n+1) +n
2K 2n+1 2K 2n+1

(4.82)

(4.83)

and

+ ig n(n+1)
2K 2n+ 1

Ao(2) =:-(t,t, )
Sltlh Kp

2
ig (n+1) +n +
2K 2n+ 1

2

(4.84)

2 ig n(n+1)
:-(t t, ) 2K

(4.85)

2 ig n(n+1) 1

2K 2n+ 1 =(t, t, )

+ ig (n+1) +n

ig (n+1) +n
2K 2n+1

—p coth[Kp (t —t, )]

4
sinh( Kp "t, )

ig n(n+1) ig n(n+1)
2K 2n+1 2K 2n+1

ig (n+1) +n, h(, )
2K 2n+ 1

(4.86)

where =(t, t, ) is defined by

:-(t,t, ) = I+ +p coth[Kp (t —t, ) )
ig (n+1)2+n

2n+ 1

with

s(1 s*n ) 1—+ 1 — 1 ——
s "(1 sn )—

X iri'f (t t, )f"(t, )—,

s =( I/2n )(1+ig /2K —p)

and Z(t, t, ) is defined by

Z(t, t, )= 1 rf(t t, ) r*f*(—t,)— —

(4.88)

and p is given by (4.59). After some calculations, we can
obtain

I(t)=e ' [Ao(2)AO(1)]'
1

1 —A+(2)

f (t)=1—e (4.89)

Let us consider the physical meaning of (4.87) [31].
When we take a short-time limit (Kt, (Kt (( I ), (4.87) is
simplified to

I(t)=exp[ ,'g n(n+1)(t 2t, —) ]—. — (4.90)

where

1
exp[2Kns (t —t, )+2Kns*t, ]Z t, t~

(4.87) This clearly shows that the photon echo signal with the
Gaussian profile appears at t =2t, Note tha.t (4.90) is in-
dependent of the dissipative coefFicient K. This indicates
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I (t) =exp[ —
—,
' ((bh)') s(t 2t, —)'], (4.91)

that the effect of the thermal reservoir on the photon
echo signal can be neglected at the short-time limit.
When we put II =ga a, we can rewrite (4.90) as

obtained for the two-level model with a stochastic fre-
quency modulation where the upper level is modulated by
the Gauss-Markov fiuctuation [35]. When we express the
frequency modulation as co(t) subject to the Gauss-
Markov process, we can get (4.94) if co(t) satisfies

with b,Q = fI —( 0 )s. The Heisenberg equations of
motion for the localized electron then become

(~(t)), =0,
2

(4.95)

d
c+ = i ( E+—+Q)c +,dt

(4.92) ( co(t)co(s) ), =
2K

n (n+ 1)exp( —2~~ t —s
~ ), (4.96)

C = lE C
dt

(4.93)

I(t) =exp n(n+1)
2K

x[ 21rt—+f,(t t, )+f,(—t, )

+f,(t t, )f,(t, )]— (4.94)

where fo(t) = 1 —e ". This result is equivalent to that

From these equations, we find that A is the frequency
modulation for the localized electron in the excited state.
Thus from (4.92) the width of the echo signal in the
short-time region is equal to a reciprocal of the magni-
tude of fluctuation of the modulation frequency.

At the weak coupling limit (g/x ((1),if we take up to
the second-order cumulant with respect to g/a. , (4.87) be-
comes

where ( ), is the stochastic average. Note that (4.94)
shows the photon echo at t =2t, if the dissipative effect
of the thermal reservoir is not large.

In a previous paper [31]we derived (4.87) and (4.88) by
using the boson coherent-state representation of the an-
tinormal ordering [36] for bosonic operators of the in-
teraction mode, and we used the numerical calculation of
(4.87) to analyze the photon echo signal. The analytical
calculation, however, is more complicated than that
given in this section. This shows that the Lie-algebra
method with the generalized decomposition formulas
makes the calculation simple and systematic.

By calculating the absorption line shape and the pho-
ton echo signal in the localized electron-phonon system,
we have seen usefulness of the generalized decomposition
formulas derived in Sec. III. Using the procedure de-
scribed above, we can also apply them to the investiga-
tion of the higher-order optical processes. When we in-
vestigate the resonant Raman scattering, for example, we
have to calculate the following quantity:

)%~) =
~p~ (~

——) —~++ ) )f dt4 f dt3 f dt2 f dt, t(E'(t~)E(t3)E'(t2)E(t, )[6(+—,——,+ —)
0

+G(+ —,++,+ —)]

+E'(t, )E(t, )E(t, )E'(t, )[6(+—,——,—+)
+6(+—,++, —+ )]

+E(t~)E*(t3)E*(t2)E(t&)[G(—+, ——,+ —
)

+G( —+, ++,+ —)]

+E(t4)E*(t3)E(t2)E"(t, )[6(—+, ——,—+ )

+G( —+, ++,—+)]j,
(4.97)

with

G(ij, kl, mn)=( exp[ —i&; ht43]exp[ —i&k&bt32]

Xexp[ i% „b.tz& ])s . — (4.98)

The generalized decomposition formulas can be used to
calculate (4.97) and (4.98).

V. QUANTUM COUNTING PROCESSES

A. General treatment

Section IV, using the Lie-algebra method in the Liou-
ville space, considered quantum-statistical properties of

matter (a localized electron-phonon system) and treated
light as a classical system. In this section we will see that
the Lie-algebra method in the Liouville space is also a
powerful tool for dealing with nonclassical properties of
light. We will consider the photon-counting model pro-
posed by Srinivas and Davies [26], which is based on the
theory of the quantum Markov processes [37]. In their
model, the counting process and the time evolution of a
state under the influence of the photon counter are de-
scribed by superoperators in the usual Hilbert space. It is
therefore convenient to describe the model in the Liou-
ville space X. This subsection presents the general treat-
ment of photon-counting processes in terms of the Lie-
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algebra method, and Sec. V 8 uses the method to investi-
gate the quantum-nondemolition measurement of a pho-
ton number in the four-wave-mixing model. Section V C
considers the electron-counting process [38]. The
photon-counting process is described by the su(1, 1) Lie
algebra and the electron-counting process by the su(2) Lie
algebra.

According to Srinivas and Davies [26], a photon-
counting measurement in which m photons are counted
during time t is characterized by the operation JV, (m),

I

which is a linear positive transformation. Thus in the
Liouville space, the state of the system after m photons
were counted can be expressed as

JV, (m) g)
lq. (t)) = (5.1)

1 JV, (m) 1(t

where lg) is the state of the system before the counting.
The linear positive transformation JV, (m) in the Liouville
space is given by

~,(m)= f « f «, . f dt, S(t t —)JS(t t—, ) S(t2 —t])JS(t]),
0 O

(5.2)

where J represents the one-count process and means that one photon is taken out of the cavity when the counter regis-
ters a photon, and where S(t; tj )

—describes the time evolution of the system with no count in the interval between t.
and t~. . It has been shown [26] that S (t) is a nonunitary operator, satisfying

S(t, +t, )=S(t, )S(t, ),
S(0)=1 .

Using (5.2) —(5.4), we find that JV, (m) can be expressed as

(5.3)

(5.4)

~,(m)= (S(t)f dt f dt, f dt, T[J(t )J(t, ) . J(t, )],m~ O O
'

0
(5.5)

where J(t) =S(t) 'JS(t) and T is the time-ordered prod-
uct. Hence, we can easily see from (5.5) that

gm
A;(m)= JV(t;p)I!(jp

with

t)(t))=l&tt)&tt) '+&]I itt]t)) .
at

If S(t) is expressed as exp[t Y], we obtain

a
')ttt)) = t Y +J) ')ttt)) .

at

(5.12)

(5.13)

JV(t;p)=S(t)T exp ]M f dr J(r)
0

=Texp f drS(~)S(r) '+ptJ (5.7)

This exponential function can be calculated by using the
Lie algebra. Thus from (5.1), (5.2), (5.6), and (5.7), the
state of the system after the counting measurement is
given by

This equation describes the relaxation process of the sys-
tem. The relaxation is caused by continuous measure-
ment with the photon counter. In this case, since the
photon counter absorbs photons but cannot emit, it is
equivalent to a thermal reservoir with a temperature of
T =0. For free photons, (5.13) becomes the master equa-
tion for a damped harmonic oscillator.

The probability P (t) that the counter registers m
counts during time t is given by

with

lfm( )& (il@ ( )) (5.&) gm
W(t;I ) q

Bp p=o

(5.14)

(5 9) We rewrite this equation as

and

I

'tp( t;/L ) ) =Jv'( t;p ) I lp ) . (5.10)

gm
P (t) = P(t;9)m! gp

(5.15)

When we do not read the result shown by the photon
counter, the state of the system becomes

with P(t;p)=(1I%'(t;p)). The kth moment of the pho-
ton number registered by the counter during time t is cal-
culated as

lq(t)&= y I+ (t)&=I+(t;I)),
m=0

(5.1 1)

where we have used (5.7) and (5.10). The time evolution
of (5.11) is determined by

n = g n "P„(t) .
n=o

Then from (5.15) and (5.16), we obtain

(5.16)
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n = P(t;p+1)-= a
Bp

—2- a'
n =n+ P(t—;p+1)

Bp

(5.17)

(5.18)

where. we have used the normal-order decomposition of
the su(1, 1) Lie algebra. Thus from (5.8), we obtain

( 1
—A.t)m

(t)) = exp[ At(—KO —
—,')]K Ig) .

m!
(5.25)

Thus according to the relations
2

P(t;p+1)
Bp

P(t;p+1)
Bp

(5.19)

the statistics of the photon number recorded by the
counter is characterized by a sub-Poisson, Poisson, or
super-Poisson distribution [39].

Next, we obtain the elementary probability density

Pm(t, tm, tm I, . . . , t2, tl )

that the counter registers photons at

7 t~ j 7 ~ ~ 0

and none in the rest of the interval [O, t) [26]. By using
the functional derivative, we can write this probability
density as

p (t, t, t „.. . , t„t, )

1 QP2

m! 5p(t )6p(t, ) 6p(t, )

The probability P(t, m) that m photons are registered by
the photon counter during time t becomes

n
P(t, m)= g p(t)" [1—p(t)] (n, n Ig), (5.26)

where p(t) =1—e ' is the effective quantum efficiency of
the counter [26]. Note that g" OP(t, m)=1 is satisfied.
When kt (&1, this reduces to the quantum Mandel for-
mula [40].

Note that (5.12) becomes

a %(t) =
—,'y[2aa —ata —a a]l'P(t)), (5.27)

which is a master equation of the damped harmonic oscil-
lator in contact with the thermal reservoir of T =0 in the
Liouville space.

When the initial state (the premeasurement state) of
the photon is a coherent state which in the Liouville
space is given by

m en

IP& = Ia &a) Ia & =e ' g g Im, n &, (5.28)
—0 —0 &m!n!

XP (t; [p(t)])
C p(~)] =0

(5.20)

(5.24) becomes

I+(t;p)) =exp[p(1 —e ')lal ]la(t), a(t) ), (5.29)

where P(t;[p(r)])=(1IJV(t;[p(r)])I1!) and JV(t;[p(r)])
is defined by

JV(t;[p(r))) =S(t)T exp j dr p(r)J(r)
0

=Texp j dr[S(r)S(r) '+p(r)J] . ,
0

(5.21)

with a(t)=ae "~ ' '. Thus, from (5.9) we obtain

2m

IP (t))=, (1—e ") Ia(t), a(t)),

and the normalized photon state is given by

l~. (t) )
g (t))= =la(t), a(t)) .

14m t

(5.30)

(5.31)

where p(t) is a c-number function.
When we consider a single-mode free photon as an ex-

ample, S(t) and J are given by

This shows that except for decreasing the amplitude, the
coherent state does not change in the photon-counting
measurement. On the other hand, when the initial state
is a thermal state (or a chaotic state) given by

S (t) =exp[ —At(KO —
—,
' )],

J =AX

(5.22)

(5.23) lk, k&,
1+IT k =0 1+Pl

(5.32)

where Ko= —,'(a a +a a+1), K =aa, and K+ =a a
are the generators of the su(1, 1) Lie algebra. The param-
eter A, characterizes the measurement performed by the
photon counter, and its inverse is a measure of the aver-
age time that elapses before the counter registers the
presence of the photon. Using (5.7) and (5.10), we can get

IV(t;p) ) =exp[ At (K ,' )+pAK ]If)———

we obtain from (5.8) —(5.10),

lq. (t)) =
(1+n )P(t, m)

k
m

k

=exp[ —At(KO —
—,
' )]exp[p(1 —e ')IC ]If),

(5.24) and

X [1—p(t)]" lk —m, k —m ) (5.33)
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P(t, m)= 1 p(t)n
I+@(t)n I+@(t)n

(5.34)
X= igA (a +a ) —igA(a+a )

+ —,
'

A, ( a ta +a a ) —pl,aa, (5.44)

These results show that the combination of the Lie-
algebra method and the Liou ville-space formulation
greatly simplify the calculations required for analysis of
photon-counting processes.

where we have put 3 =c c.
To eliminate the linear term with respect to the device

variables, we perform a nonunitary transformation as fol-
lows:

B. Quantum-nondemolition measurement

This subsection uses the Lie-algebra method in the
Liouville space to analyze nondemolition (QND) mea-
surement of a photon number. In particular, we will in-
vestigate the state reduction by the QND measurement.
Consider two coupled harmonic oscillators whose Hamil-
tonian is given by

and

. 2ga=a —i

a =a+ i —(A —2pA )
2g

. 2ga=a +i

(5.45)

(5.46)

(5.47)

with

&s +MD +&jDi

s=a~sc c

(5.35)

(5.36)

at=a++i (A —2@A) .. 2g

Note that

(5.48)

JVD —coD a a

&;„,=gc c(ae'"'+a e '"')
(5.37)

(5.38)

[a,a+ ]=[a,a+ ]=1 .

Hence we have

where c (c ) and a (a ) are annihilation (creation) opera-
tors of photons with frequencies co& and coo, and co is the
frequency of a classical external field for which it is as-
sumed that co=~D. This model describes the four-wave
mixing in which one mode is a highly excited field to be
treated classically [41]. We refer to the (c,c ) oscillator
as the relevant system and to the (a, a ) oscillator as the
measurement device. The variables of the measurement
device are measured by using some apparatus such as a
photon counter and balanced homodyne detector in order
to get information about the relevant system.

From (5.36)—(5.38) we can easily see that

(A —2pAA+ A )

+ —,'(a+a +a+a ) —pea a (5.49)

Ao= —,'(a+a +a+a +1),
A+ =a+a+

=a a

(5.50)

(5.51)

(5.52)

(5.49) is expressed as

When we define the generators of the su(1, 1) Lie algebra
as

[&s,c c]= [&;„„etc]=0,
[&;„„ata]%0.

(5.39)

(5.40)

2 2

( A —2p A A + A )+A, (Ao —
—,
'

)
—p~

(5.53)

S(t)=exp[ it(&;„,—&—,„„)——,'At(a a+a a)],
J =ncaa .

(5.41)

(5.42)

Then the positive linear transformation described by (5.7)
becomes

with

JV(t;p) =exp[ tX], — (5.43)

Thus, c c satisfies the condition for the QND variable,
and a a is the readout variable that gives us information
about the QCD variable c c and that is measured by pho-
ton counting [42].

Let us consider the photon counting for the device sys-
tem. In this model, the nonunitary time-evolution gen-
erator with no count, S(t), and the one-count operation J
for the readout variables in the interaction representation
in the Liouville space are given by

Thus we obtain the expression for JV(t;p):

2 2t
A'(t; p ) = exp — ( A —2p A A + A )

Xexp[ A, t(%'o ,')+pA, tA' —
] . ——(5.54)

The second exponential in (5.54) has the same form that
it does in the corresponding equation for free photons,
and we can solve it in the same way.

We assume that the device system is in the vacuum
state at the initial time (t =0). Then we have

le&=les&lo&, (5.55)

where l%s) is the initial state of the relevant system.
Note that from alO) =a l0) =0, we have a l0)
=i (2g/A, )AlO) and a l0) = i (2g/X)A —l0). Since we
would like to know information only about the relevant
system, we eliminate the device variables from
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I p(t;]M)&=~(t;p)lp &elO& .

By tracing out the device variables, we obtain

I~,(t;p)) =(1~le-' lq, )e IO)
2

=exp. — (A +A ) t ——(1—e '
) + AJ(1 —e '

)

2' — 2 2

4g2 ( 1 e ](t /2 )( 3 e kt /2
)+p — AA t— (5.56)

where (1D I

= (Olexp[aa ] corresponds to the trace operation over the device variables in the usual Hilbert space. Thus
the state of the relevant system after the photon counter for the device variable a a has registered m photons during
time t is given by

lg, (t) &
= G, ( t; m)lq, &

2m
1 2g

m!F (t)

with

2

(AA ) f (t) exp —— [(A +A )f(t)+(A —A ) (( —e '
) ] t(te),

J

(5.57)

2 F71 2

F (t)= f (t) exp — f (t) (n, nlgz) (5.58)

and

f (t) gt (1 e kt/2)(3 e
—kt/2)— (5.59)

where ( n, n
I Ps ) is identical with the diagonal element of

the density matrix (nip+In ) in the usual Hilbert space
Note that (5.58) satisfies g OF (t) =1. The func-

tion F (t) is the probability that m photons of the device
system are registered during time t. Note that this proba-
bility is expressed as X(A —A) (5.62)

If, although the counter interacts with the device, we
do not read the photon counter for the device variables,
the state of the relevant system reduces to

Igs(t)) =exp —— [Xt —2(1 —e ' )]

1 2gf (t)'/
m!

2m and the equation of motion becomes

f~(t) = — (1 e~'/'—)(A —/I )'Ig~(t)) .

X exp — A (5.60)
(5.63)

Ps(t, n) = 1

m !F (t)
2g7Z

where ( )z=( lzl I|j/z) is the average with the premea-
surement state of the relevant system.

From (5.57) the probability Pz(t, n) that the relevant
system is in the n-photon state is found to be

2m

Since A =c c, (5.62) and (5.63) describe the pure phase-
relaxation process of the relevant system [43]. Note that
the photon number of the relevant system, c c, is con-
served in this relaxation process: This is consistent with
the QND measurement of a photon number. Now we ex-
pand fz ) in terms of the phase eigenstates I I P, m )) ]
[44] as follows:

X exp

2

f (t) Ps(O, n), (5.61) lit+) = g f dp f (t;p, m)Ip, m »,
m=O

(5.64)

where Pz ( 0, n ) is the initial photon-number distribution
in the relevant system. This result (5.61) is identical with
that obtained by Milburn and Walls [41],who derived the
probability distribution (5.61) directly without obtaining
the reduced state vector of the relevant system (5.57). It
should be noted that (5.57) has more information than
does (5.61): this Lie-algebra method gives us the reduced
time-evolution generator Gz(t; m) of the relevant system.

where the phase eigenstate
I
t)[, m )) is defined by

lp, m))= g In m))e~2' „=
(5.65)

In, m )) =8(n)lm +n m )+8( n —l)lm m n),— —

(5.66)



47 LIE-ALGEBRA METHODS IN QUANTUM OPTICS: THE. . . 5115

with 8(n)=1 for n +0 and g(n)=0 for n (0. In (5.64),
$0 is an arbitrary real number that determines the 2~-
phase window. The details of I I n, m » ] and I I P, m » ]
are given in Ref. [44]. Using (5.64), from (5.63) we can
obtain

J' '= —'(akak+aka —1), (5.73)

I
J'"',J'+', Jo'"~] are the generators of the su(2) Lie alge-

bras. Then J and S(t) are expressed in terms of su(2)
generators as

8 f(t;P, m)=D(t), f(t;P, m},
Bt

with the diffusion coefficient

(5.67)
S(t) =exp —t g AI, (JO"'+ —,')

k

k

(5.74)

(5.75)

(5.68)

This equation determines the phase diffusion (or the de-
cay of coherence) due to the QND measurement of a pho-
ton number.

In this discussion, we have considered the vacuum
state for the measurement device. If we express (a,a+ )

and (a,a+ ) in terms of the annihilation and creation
operators for the thermal state [see (4.38)—(4.41)], we can
also treat the thermal state of the device.

C. Electron counting probability

The quantum counting probability and intensity corre-
lation function are useful for investigating the properties
of an electron beam. Saito et al. have recently obtained
the electron-counting probability by using a method simi-
lar to that used for deriving the Mandel formula in quan-
tum optics, and they have shown that the probability dis-
tribution is sub-Poissonian and that there is antibunching
correlation of electrons [38]. In this subsection we will
use the Lie-algebra method to investigate the electron-
counting process by modifying Srinivas and Davies mod-
el for the photon-counting process [45]. When we con-
sider an electron, we have to treat it as a quantum field P.
Here we assume P(x) =gk f (x;k)ak, where f (x;k) is
an expansion coefficient satisfying the wave equation and
where ak, the annihilation operator of an electron with
momentum k, satisfies [ak, ai ]+=6kl. We have omitted
electron spin because we will consider only free electrons.
It is easy to include a spin freedom.

As Srinivas and Davies did for photon counting, we as-
sume the following two operations J and S(t) for the
electron-counting process in the Liouville space as fol-
lows:

We note that the photon-counting process is described by
the su(1, 1) Lie algebra and the electron-counting process
by the su(2) Lie algebra.

Using the same procedure as that used to obtain the
photon-counting probability, we obtain the following
probability P (t) that m electrons are registered by the
counter during time t:

gm
P (t)= P(t;p)

m t ()pm

with

(5.76)

P(t;p) =
& 1l~(t;p) lg&,

JV(t;p)=exp t g Ak(JO'"'+—pJ'"'+ —,')
k

=exp t g A, k (J—o'"'+ —,
'

)
k

(5.77)

Xexp —pg(1 —e ")J"'
k

(5.78)

(where Io, o&k is the vacuum state of an electron with
momentum k and where 1,0&k=akI0, 0&k, Io, l&„
=ak Io, o&k, and I 1, 1 &k =aka J Io, o&k ), (5.77) is calculat-
ed to be

P (t;p) =~ I „(o,ol+ [1—g„(t)+pg„(t)]„&1, 1I ] I y&,

Here, I g& is the initial state of electrons and p is an ordi-
nary real number but not a Gaussmann number. In
deriving (5.78) we have used the normal-order decompo-
sition formula for the su(2) Lie algebra.

Since for electrons, the state ( 1
I

is given by

(5.79)

S (t) =exp —,' t g A~ (akak +a kak )—
k

(5.69)
(5.80)

k

(5.70)

J =akQk( It) (5.71)

where I A, k ] characterizes the measurement performed by
the electron counter and the minus sign in J is due to the
anticommutation relation of electrons. The meaning of J
is that one electron is taken out of the system when the
counter registers an electron. In specifying these opera-
tions, we have used the interaction representation. When
we define J+'and Jo 'as

+a, (k)I1,0&+a„(k)I1,1&„], (5.81)

where a,. (k) is an expansion coefficient. The normaliza-
tion condition ( 1

I $ &
= 1 gives us the relationship

where gk(t)=1 —e is the eff'ective quantum efficiency
of the counter for the electron with momentum k. In the
Liouville space, we assume that an initial state

I f & for
electrons is expressed as

Ig&=&[a (k)I0, 0& +a„(k)lo, l&
k

J(k)+ (5.72) aoo(k }+a„(k)= 1 . (5.82)
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For the chaotic state of electrons, we have aoo(k)
=1—nk, a»(k)=nk, and a,o(k)=ao, (k)=0, where nk is
the Fermion distribution function. The chaotic state is
determined by maximizing an entropy of the system.
Thus (5.80) becomes

P(t;p)=Q [1—(1—p)g„(t)a„(k)] .
k

(5.83)

This result shows that the electron-counting process in
the modified Srinivas-Davies model is characterized by
the effective quantum efficiency [gk(t)] and the occupa-
tion probability of electrons [a ) i (k) ].

Let us calculate the average number of electrons regis-
tered by the counter and its fluctuation. It is easily found
from (5.76) and (5.83) that n and n are given by

n =g gk(t)a„(k) (5.84)

and

=n+X X k, ( C((t)
k l

(1&k j

(5.85)

An =n —n

From these equations we obtain the fluctuation An of
the electron number registered by the counter:

P(t;p) = [1—
—,'(p —1) (n bn—)]e'" (5.87)

Thus the probability P (t) that the counter registers m
electrons during time t is given by

P (t) = n™e "I 1 —
—,))~[n —2nm +m (m —1)]]

(5.88)

with )r = (n —An ) /n )0. The factor in braces
represents the deviation from the Poisson distribution,
ensuring the sub-Poisson distribution. This approximate
distribution was first derived by Saito et al. [38], who de-
rived it only for the chaotic initial state.

Next we consider electron counting by two electron
counters that register the electrons arriving at different
times. In this setup, we can directly observe the second-
order coherence proposed by Hanbury-Brown and Twiss
[48]. The one-count process for the two counters is
specified by two operations:

tion of electrons seems to be a consequence of the Pauli
exclusion principle [47], but our result does not exclude
the possibility of a Poisson or super-Poisson distribution
of the electron number when there is a certain correlation
of electrons.

When the effective quantum efficiency of the counter is
extremely low [gk(t) « 1], (5.83) can be approximate as

=n —g [gk(t)a„(k)] &n .
k

(5.86) y g(l)J(k)
k

(5.89)

Note that

0&+ [g (tk)a„(k)] &n
k

because

0&/k(t)&1 (0&t& ~)
and 0&a„(k)&1 for all k. This result shows that the
statistics of the electron number recorded by the counter
is described by a sub-Poisson distribution. The sub-
Poissonian distribution often indicates the antibunching
correlation of electrons, and Silverman also showed the
antibunching correlation by calculating the intensity
correlation function [46]. The sub-Poissonian distribu-

y g(2)J(k)
k

(5.90)

S(t)=exp —t g [A,"'+k' '](J("'+—')
k

(5.91)

Using the same procedure we used to derive
(5.76)—(5.78), we obtain the probability distribution
P„„(t)that n i electrons are registered by counter 1 and

1 2

n z electrons are registered by the counter 2:

where IA, (k"
I and IA, (k )] characterize the measurements

performed by the two electron counters, 1 and 2. The
nonunitary time evolution with no count is given by

n1+n2
1P„„(t)= P(t;p), pq)

n&!n2! ~ '1~ "2
P1 P2

(5.92)

P(t;pi p )=( i~1( pti p )lg) (5.93)

~(t.p p )
—exp t g [g(1)+g(2)](j(k)+ )

) t g [p g(1)+p g(2)]J(k)
k k

(5.94)

—(Ak +kk )t
with g'k(t)=1 —e " " . From (5.79) and (5.81) we
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obtain

P(t;p„p2)

Pi~k +P2~k

k

(5.95)

Since the moment n &n 2 recorded by the two counters
is given by

g( & )g(2)

(X'"+A,' ')(A, "'+A, ' ')

Xgk(t)g&(t)a»(k)a»(1) .

When we define the 2 X 2 symmetric matrix K j as

1
[gk (t)a „(k)]

n, n, „(X(„')+X(„'))'

from (5.100)—(5.102) we have

(5.102)

(5.103)

n& =0 n2=0
(5.96) n —n.J J =1—v "n (5.104)

n, n (j =1,2), and n) nz are n)n2 = 1 —
K)2

n&n2
(5.105)

n = P(t;p)+ l, tj2+1)-= a

Bpj

8
nq =n~+ P(t; ))u+ l, p +2I)J J

a'
n, n2= P(t;p)+ l, @~+I)

()P )BP2

JMl =P2 =0

P 1
—P2 =0

(5.97)

(5.98)

(5.99)

We find from (5.104) that the statistics of the electron
number recorded by each counter is characterized by the
sub-Poisson probability distribution. We can also see
from (5.105) that since )~; is positive definite, the
electron-number correlation n, n2 in the two-counter
measurement is smaller than the noncorrelated value

n, n2. This difference rejects the antibunching correla-
tion of electrons.

When the quantum efficiency is extremely low

[gk(t) (( I ], (5.95) becomes

Substituting (5.95) into (5.97)—(5.99), we obtain

~knj=X ()) (2) 4(t)a))(k)
~k +~k

k
n =n+T-„,(~„) (x(„"+x(„")(x(,"+x(,")

(5.100)

(1) (2) 2
P&~k +P2~k

()) (2)
k ~k +~k

X [gk (t)a „(k)]

—(1—p))n )
—(1—p~)n2 (5.106)

X gk(t)g((t)a „(k)a„(l), (5.101) and the probability P (t) is given by
I 2

1 — 2m m
—n, —nP (t)= e ' '[ 1 —

—,)~»[n, —2m)n, +m, (m, —1)]m)!I2!
—a)2(n) —m) )(n2 —m2) ——'v2z[nz —2m2nz+m2(mz —1)]] (5.107)

This result is identical to that obtained by Saito et a/. for
the chaotic initial state of electrons [38].

We have derived the electron-counting probability and
have seen that the statistics of the electron number are
described by a sub-Poisson distribution. We have also
seen that the coincidence probability for two counters
shows the antibunching correlation of electrons. The
analysis in this section shows that the combination of the
Lie-algebra method and the Liouville space formulation
gives us a systematic way to treat quantum counting pro-
cesses.

VI. SUMMARY

This paper has presented the Lie-algebra formulation
for investigating properties of quantum optical processes

in the Liouville space. It has derived generalized decom-
position formulas that enable us to calculate the expecta-
tion values of quantities such as

n

G(n)= + exp[a+(k)K++ao(k)KO+a (k)K ],
k=1

where K+ and Ko are the generators of the su(1, 1) or
su(2) Lie algebras. We have calculated the average value
( 6 ( n ) ) for typical states in quantum optics, such as the
vacuum state, the Glauber coherent state, and the
SU(1,1) generalized coherent states.

This paper has shown how the generalized decomposi-
tion formulas are used to investigate quantum optical
processes, and it has shown that describing the quantum
optical systems in the Liouville space enables us to use
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the Lie-algebra method to investigate a wider class of
physical phenomena. Using the generalized decomposi-
tion formulas, we have investigated the absorption line
shape and the photon echo phenomenon in the localized
electron-phonon system. Although these are usually
solved by transforming the operator equation into a corn-
plex c-number di6'erential equation based on the
coherent-state representation, the Lie-algebra approach
make it possible to solve operator-value equations direct-
ly.

We have also seen here that photon-counting processes
can be well described by the su(1, 1) Lie algebra, and we
have investigated the quantum-nondemolition measure-
ment of a photon number in the four-wave-mixing model.
When we use the Srinivas and Davies model of the
photon-counting processes, in the Liouville space the
one-count process and the nonunitary time-evolution
operator with no count are expressed in terms of the gen-
erators of the su(1, 1) Lie algebra. Thus the photon-
counting processes can be handled by the Lie-algebra
method. This paper has also used the su(2) Lie algebra to
derive the electron-counting probability for the modified
Srinivas and navies model. The result shows that the
statistics of the electron number counted by the detector
is described by a sub-Poisson distribution.

This paper has considered the relaxation processes for
boson systems, but is is also possible to treat relaxation
processes for fermion systems by using Lie algebra in the
Liouville space. The relaxation process for a fermion sys-
tem can be described by the following operator [22]:

AF= —tc[ (1—2f~)(c c+c c)—2(1 fF—)cc

+2fFc c +2fF], (6.1)

where c and c are fermion annihilation and creation
operators, where c and c are their tilde conjugates,
where tc is a damping constant, and fF is a fermion distri-
bution function. For simplicity, we have omitted the
momentum suffix. When we define the generators of the
su(2) Lie algebra as follows:

K =cc,
K+=c c
Ko= —,'(c c+c c —1),

(6.1) is expressed as

(6.2)

(6.3)

(6.4)

AF = —2tc[(1 2fF)K—O+(1 fF)K +—fFK++ —,'] .

(6.5)

Thus the relaxation process for a fermion system is de-
scribed by the su(2) Lie algebra, whereas the relaxation
process for a boson system is described by the su(1, 1) Lie
algebra.

Finally, we should note that the su(1, 1) and su(2) Lie
algebras appear in models of quantum optics other than
those kinds of models treated in this paper. The general-
ized decomposition formulas for the su(1, 1) and su(2) Lie
algebras derived here, and their combination with the
Liouville-space formulation, are therefore very useful and
convenient for investigating quantum optical processes.
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