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Optimal squeezing of molecular wave packets
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We present a practical method of designing laser fields for generation of spatially squeezed molecular
wave packets. Our approach, based on optimal control theory, generalizes and improves previous, more
intuitive suggestions for the optical generation of squeezed wave packets. Spatial-temporal evolution of
the squeezing is studied and several underlying physical mechanisms of the effect are explored. Possible
applications to laser femtosecond chemistry and experiments on laser modification of molecular adiabat-
ic potentials are discussed.

PACS number(s): 42.50.Dv, 33.80.—b

I. INTRODUCTION

Recently, much interest has been devoted to the pro-
duction of squeezed quantum states, i.e., states in which
the noise in one observable is less than that of the vacu-
um state. The majority of these studies have focused on
the production of squeezed radiation states [1]. A lesser
amount of work was devoted to the squeezing of other
(e.g. , material) quantum systems [2—4].

In molecular physics, it was pointed out in the past
[5,6] that squeezed wave packets may be generated by ul-
trashort laser pulses resonant to electronic transitions
which are accompanied by a large change in the oscilla-
tor frequencies of the molecule. In addition, even pulses
of fi'nite duration (transform limited [7] and chirped [8])
have been shown to give rise to squeezed molecular wave
packets. In contrast to 5(t)-type pulses, which excite a
replica of the ground-state wave function, realistic pulses
generate (coherent) superpositions of such replicas. This
superposition may result in a more extended or more
squeezed state [7,9,10]. The mechanism underlying the
production of squeezed states, in preference to extended
ones, is one of the main topics to be investigated here.

Squeezing of molecular wave packets has some impor-
tant applications. New developments in the technology
of producing short laser pulses has made it possible to use
wave packets for investigating intra-atomic and in-
tramolecular processes in "real time" (see, e.g. , [11—13]).
Most of such time-resolved experiments utilize a "pump-
probe" scheme, where one ("pump") laser pulse creates a
wave packet on an excited electronic state and the other
("probe") pulse is used for dissociation or further excita-
tion of the packet after an appropriate delay. In this way
the hope is that excited-state dynamics can be followed in
"real time" and the underlying potential "mapped. "

The ability to map potential surfaces using such tech-
niques depends, however, on the generation of highly lo-
calized wave packets by the pump source. Otherwise, the
one-to-one correspondence between the delay time be-
tween pulses and the extension in coordinate space is lost
[14]. Naturally, our ability to localize wave packets is
limited by quantum-mechanical constraints. In addition,
practical limitations restrict the type and duration of

pulses used. Even if 5(t) pulses could be used, it is not
clear that the shorter the pulse, the better. In fact, as
noted above, the localization resulting from the use of a
5(t)-type pulse is at most that of the initial (ground) state.
It is of interest, therefore, to see which pulses of finite
duration can in fact do better than a 6(t) pulse, and pro-
duce localization exceeding that of the ground ("vacu-
um") state.

This work presents a systematic study of the type of
pulses capable of spatial squeezing. In order to achieve
this objective, we make use of optimal control theory
(OCT), an approach used in the past to design laser fields
for manipulation of vibrational populations and reaction
product yields [15—21]. In this first application of OCT
technology to the squeezing problem, we indeed find a
much greater degree of (theoretical) squeezing than that
of previous studies [7—10].

The organization of this paper is as follows: Section II
contains the detailed description of the optimization pro-
cedure. An illustrative example of a model, consisting of
two shifted harmonic potentials, is presented in Sec. III.
The results of application of the control formalism to the
model are given in Sec. IV and Sec. V contains a brief dis-
cussion.

II. OPTIMIZATION PROCEDURE

We consider the excitation of a molecule, being in its
ground state ~g ) at t =0, to a set of vibrational levels

~
n )

of an excited electronic state by means of a weak laser
pulse:

6(t) =f (t)exp( —iQt)+c. c. ,

where c.c. stands for complex conjugate. Here, 0 is a
carrier frequency of the pulse and f (t) is the pulse en-
velope which we allow to be a complex function of time.
The dynamics of the system will be analyzed over a finite
time interval 0 & t & T, where T is a free parameter of our
theory.

The wave function of the excited state may be expand-
ed as

~
4( t ) ) =g C„(t )

~

n )exp( iF.„t ), —
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where E„ is the energy of the nth state and A= 1

throughout. The weak-field assumption enables us to ex-
press the C„(t) coefficients, using first-order perturbation
theory, as

count also the normalization condition Eq. (4), we intro-
duce two Lagrange multipliers A, , A, j that lift both the con-
straints, and look for the extremal functions of another
functional:

C„(t)= —ip( n ~g & f dt'f (t')exp( i A—„t'),
b,„=II+E E„,—(3) +w f dtif (t)i (10)

where ( n~g ) is an overlap ("Franck-Condon" or "form")
factor and p is an average transition dipole moment.

Our objective is to find a pulse which produces, at the
end of the optimization interval T, as high a localization
in coordinate space as possible. Since the shape of the
final wave packet does not depend on its normalization,
we fix the latter to be

and seek to minimize 2), the mean-square deviation of the
wave packet about an average value x ( T), given as

Having found that one extremal function of
J[f(t),f (t)], which minimizes Jo for a given A, i param-
eter, we next look for ki yields for the desired x ( T) value.
While doing so, we obtain minimal values of
Jo[f (t),f*(t)] corresponding to a wide range of x(T).
As a byproduct, we obtain the average value of the coor-
dinate which yields the global minimum of Jo. The ad-
vantage of the two-step procedure is that in contrast to
Jo, the J[f(t),f*(t)] functional is quadratic and can be
optimized by linear matrix methods.

Taking a functional derivative of J with respect to
f*(t) and using Eqs. (3), (6), and (7), we obtain that

2)=x ( T) x( T ) . — (5)

Using Eqs. (2) and (4), we have that

and

x ( T)= g S„*( T)(x )„„S„(T)
n', n

x(T)= g S„'(T)(x)„„S„(T),

n', n

Xe xp( iE„.T) ( n' x —A ix A I
~
n—)

Xexp( iE„T)C—„(T)+wf(t),
, n

where x is the position operator and

S„(T)= C„(T)exp( —iE„T) . — (8)

The minimization of 2) is constrained by our desire to
limit the pulse bandwidth and obtain as simple a pulse as
possible. We therefore introduce the following objective
functional:

Jo[f (t),f*(t))=x (T) x(T)+w f dt~f —(t)i (9)

which is to be minimized. The last term in Eq. (9) is a
cost functional that has to restrict the bandwidth off (t)
The value of the positive weight factor w determines the
relative importance of this restriction. This is not, of
course, the only possible form for the cost functional (see,
e.g. , the discussion in [17—21]). The heuristic back-
ground for the chosen one is the following: The more lo-
calized wave packet we are going to create, the more vi-
brational states lying at the wings of the absorbtion band
have to be excited. This leads to the increase of the cost
functional in Eq. (9), which is proportional to the energy
fluence of the field. We expect that for w~O, an arbi-
trary small value of 2) may be achieved at the expense of
obtaining a very complex looking pulse. In the opposite
limit, w ~ oo, only very smooth pulses, producing a much
smaller degree of squeezing, will result.

Due to the x (T) term in Eq. (9), the Jo[f (t),f*(t)]
functional is highly nonlinear. To simplify the problem,
we solve it in two stages. We first minimize
Jo [f ( t),f*(t) ] while keeping x ( T) fixed. Taking into ac-

where I is the unit operator. As a result, the local op-
timal field [i.e., the field for a certain x ( T) ] is given as

f ( t) = — g (g t n
' )exp(i h„.t)M„,„C„(T),

n', n

where

M„„=exp( iE„T)M„„exp( iE„T), —

M„„=(x )„„—A, , (x )„„—A,5„.„.
By inserting Eq. (12) into Eq. (3), we obtain that

Ck(T)= ——g Pi,„M„.„C„(T),1

W n, n

(12)

(13)

(14)

(15)

(16)

Equation (15) may be presented in the form of an eigen-
value problem:

g Q„„S„(T)=XSI,(T), (17)

where the Q matrix is defined as

Qk„=(x )„„—A, , (x )i,„+ (Pw')I, „
and P as

(18)

PI,„=exp( iEk T)Pk„exp(iE„T) —. (19)

where the Pkn matrix is determined by the properties of
the molecular absorption band
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Of all of the eigenvalues of Q (they all render J station-
ary), there is one that minimizes the Jo functional. This
A. value, and the S„vector corresponding to it, are func-
tions of A, „which, as explained above, is to be determined
in the second stage of optimization.

Using Eq. (12), it is possible to simplify the expression
for the locally optimal J0 functional. For the locally op-
timal field, we can rewrite the cost functional of Eq. (9) as

w I dt f*(t)f(t)
0

C01
$ —,cx —xs

C02

m C02

2A
(25)

Here, x, is the shift between the equilibrium positions of
the two oscillators, m is the reduced mass, and H„(z) are
the Hermite polynomials. We note that in the equal fre-
quencies case (co&=co2=co), the wave function of the
ground state is a coherent state

~
a ) of the upper harmon-

ic potential. The Franck-Condon factors are then re-
duced to

2 I (6,—A~ ))T

n', n, k, l n' k

X (k~g )M„„C„(T)Mt(Ct*(T) . (20)

(n~a)=e
&n!

For a ~ 1, the Gaussian approximation for (26),

(26)

It follows from Eq. (15) that
(n~a) = exp

1 (n n)—
&2~n 2n

n =o. (27)

w f dt f*(t)f(t)= QCg(—T)MftC(*(T)
0 k, l

= —g S,*(™tt,S„(T),
k, l

and by substituting Eq. (14) for the M matrix into Eq.
(21), we obtain that

P„„=p'(k~g )'To„„, (28)

and the pulse shape (12) is given by the simple expression

may be used very well. Considerable simplifications en-
sue if T (the time at which maximal squeezing is to occur)
is chosen to be a multiple of the vibration period
( T =2vrl /co&', l is an integer). In this case the P matrix of
Eq. (16) takes the diagonal form

Jo~'(2, ) =A, ,X(A. , )+A(A, , ) —[x(A, , )] (22)

x(A, , )=g S„*(T,A, , )(x)„„S„(T,X))=x .
n', n

(23)

In the final stage of optimization, we adjust the A, 1 pa-
rameter to satisfy the requirement that

i &„~C (T)f (t)= e
pT „(n~g)

In deriving Eq. (29), we have used the relationship

g M„„C„(T)= —w g (P ')„„C„(T),

(29)

(30)

Alternatively, if we lift the constraint that the wave pack-
et is to be centered at x =x, we can vary A. 1 to find the
global minimum of J0. This yields the highest degree of
squeezing possible for the given molecular mode1. Both
of these nonlinear [but one-dimensional (1D) problems]
may be solved by means of simple iterative procedures. (31)

which follows from Eq. (15). Finally, the necessary ma-
trix elements for the coordinate operator are obtained by
the usual expressions for a harmonic oscillator [24]:

1/2 1/2
n n +1

nk 2 n —1k ~n +1,k

III. APPLICATION TO PARABOLIC
POTENTIALS

s —1

s+1
4s

i
(s+1)(n~g) =

1 &2s
2 1/22"n! (s —1)

2sX exp — as+1 (24)

where

To test the proposed procedure, we have investigated
the excitation of a model molecular system composed of
two displaced harmonic potentials. The Franck-Condon
factors for transitions from the ground level of the lower
state whose frequency is co, to the nth vibrational level of
the upper state (with frequency co2) are given by the well-
known expression [22,23]

1/4 n/2

x„I,= —,
' n (n —1)5„2I, +(n + —,

' )5„1,

+ —,'&(n + 1)(n +2)5„+2 t, . (32)

Here and below, the coordinate is measured in the units
of Qfi/m co2.

IV. RESULTS

Calculations were done for several values of the shift
parameter u and frequency ratio s that control the shape
of the molecular absorption band. In each case the car-
rier frequency of the pulse 0 was chosen to be in reso-
nance with the "vertical" transition frequency (from the
ground state to the n =a level). The oscillator basis set
was truncated at some n =X „,depending on the pa-
rameters of the model and optimization procedure. At
each step of the optimization process, convergence to
within 1% in the values of the expansion coeKcients

~
C„! was attained.

We present results obtained for the case of
~
a

~

= 3 and
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=co =co). Below, all the vari-for equal frequencies (co, =co2=co .
ables are re uce od d to dimensionless form. The unit o

Q7 is mea-ual to the vibrational period 2m/co, f is me-time is equa o
the unit of w issured in the units of Ace/(2vrp), and e

2m)M /(i)imago ).
laser ulseb nonoptimized ultrashort aser pExcitation y n

' ninthecreates a rep ica o e1' f the ground-state wave function
ve ack-'

1 hich results in a Gaussian wave pac-excited potentia, w ic
et with a coordinate mean-square eviation o

the x =+4.2 classi-This wave packet oscillates between t e x =
cal turning points.

n o timiza-Figure 1 presen s1 ts the numerical results when op im'
J'I" valuef ed. Shown is the locally optimal o vation is per orme

L)see Eq. (22)] as a function of A, , for w =0. an
h t J' 'is an even function of A,

&
inIFig. 1(a)]. It is clear t a 0

' '
in

Fi ure 1(b) displays the relationship betweenthis case. Figure
Thus the lobal ex-d f the same optimal solution. T us, e

f J'~' achieved at A, i
=0 corresponds to x =tremum o 0 ac ie

alternativeFigure 1(b) also allows us to consider the alte
constraint in which the final squeezed wave packet has to

e centered at some xe ce cent fi d oordinate position x. Using
the k arameter corre-this graph, we simply locate t e

& pa
s onding to the desired x value. Figures 2, , —

'

p(a) —2(c) dis lay

x =2. The power spectrum of the electromagnetic e
6"(t) is shown in t e ig.h F' 2(d). It consists of a number of
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harmonics corresponding to the transitions to the vibra-
tional levels of the excited state. Although our input car-
rier frequency was chosen to be in resonance with the
transition to the n =a =9 level, it is clear from Fig. 2(d)
that the optimal "carrier frequency" (the central frequen-
cy of the optimal field) is shifted to the red with respect
to the "vertical" transition.

The time evolution of the modulus squared of the cor-
responding wave function in the upper electronic term is
shown in Figs. 3(a)—3(c). At the initial time a consider-
able probability density is generated near the left turning
point (x = —4.2). This is a result of the "vertical"

pumping from the ground state. As time progresses, por-
tions of the wave function are seen to move to the right
under the action of the restoring force [see Fig. 3(a)]. As
a result of a cooperative effect between the wave-packet
motion and the pulse (which is still present), the wave
function splits into two wavelets at about T/2 [Fig. 3(b)].
At a latter time the wavelet in the front is rejected from
the right turning point and two wavelets begin to ap-
proach each other and merge [curves 6, 7, and 8 in Fig.
3(c)]. We see the emergence of a sharp squeezed wave
packet centered near x =2 [curve 8 in Fig. 3(c)]. At this
instant, the mean-square deviation 2) of the wave-packet
coordinate is just 0.12, i.e., considerably less the corre-
sponding value 2)=0.50 for the ground-state wave func-
tion. The mechanism of squeezing presented here (i.e.,
the creation of a linear superposition of several wave
packets) is similar to that investigated in several papers
[7,9,10].

Figure 4 shows pulses analogous to that presented in
Fig. 2, for larger values of the w parameter. Because of
the discriminative role of the last term in the functional
of Eq. (9), the Fourier components of the field, lying at
the wings of the absorption band, become suppressed.
The larger the w value, the simpler and smoother the op-
timal pulse. Nevertheless, the squeezing mechanism
remains the same; it results from two wave packets which
interfere in a given space point. Naturally, the simpler
looking pulses produce broader wave packets (2)=0.3,
0.7, and 1.8 for w =0.1, 1, and 10, respectively).

According to Fig. 1(a), the global minimum of jo ' for
w =0.01 (and T= 1) is achieved at k, =+6.8, corre-
sponding to x =+3.4. This means that under the im-
posed restrictions, the greatest degree of squeezing
(2)=0.07) is possible near the classical turning points. In
Figs. 5(a) and 5(b) we present the pulse shape and the
power spectrum of the field for A, , =6.8 (x =3.4). Note
that the pulse vanishes at the ends of the optimization in-
terval, although it has not been imposed directly. The
structure of the power spectrum is related to the well-
known fact that the distribution of the energy-level popu-
lation has an oscillatory behavior as a function of n for
highly squeezed states [25].

(c)

~ 1+4 ] 5

'O

1.0
~ r4
~ Oal

1.0—

0.0
—2 0

coordinate
0.0—

0.0 0.4
time

0.8 'I 0

FIG. 3. Time evolution of the wave-function modulus
squared: (a) t/T=0. 35, 0.4, and 0.5 for curves 1, 2, and 3, re-
spectively; (b) t/T =0.6 and 0.7 for curves 4 and 5, respectively;
(c) t/T =0.9, 0.95, and 1.0 for curves 6, 7, and 8, respectively.

FIG. 4. Time dependence of the optimal pulse for different
values of the weight factor w. Time is measured in the units of
vibrational period. s = 1, a = —3, and x =2.
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field providing global minimum of the objective functional (9)
for w =0.01 and T = 1 (s = 1, o.= —3 ).

The time evolution of the wave function for this case is
displayed in Fig. 6. Creation of the wave packet starts
again near the left turning point at x = —4.2. At
t/T —A/ =0.75, a much-broadened wave packet (squeezed in
momentum space) appears, which is centered around the
equilibrium position and is moving to the right. At this
point in time the pulse is almost over, and the following
dynamics is that of a free-evolving wave-packet. As this
wave packet continues moving towards the right turning

1.4—

1.0—

~ oa-I

0.6—

o 04-
0.2—

0
coo r din a t.e

FIG. 6. Time evolution of the wave-function modulus
squared for the field presented in Fig. 5. Here, t/T =0.5, 0.75,
.90, 0.95, and 1.0 for curves 1 —5, respectivel .

p
' = . ', , it becomes narrower and narrower due tooint (x =4.2'

the slowing down of its front. At t/T=1, the reAected
front meets the tail of the wave packet, resulting in the
maximal squeezing shown in Fig. 6 (curve 5). Thus, in
this case the squeezing is initially achieved in momentum
space, and then after one-quarter of the vibrational
period, in coordinate space.

To see how the value of the time interval T affects the
shape of the pulse, several fields realizing a global
minimum of the objective functional were calculated for
the same value of w and different T (see Fig. 7). The
fields are plotted as the functions of t-T. We see that for
optimization intervals longer than the duration of the
pulse of Fig. 5(a), the optimal field becomes almost in-
dependent of T (see the curves for T =0.8 and 1.2). In
each case the maximum of the optimal pulse occurs one-
half of a vibrational period before the end of the interval.
The optimization algorithm "knows" that the best
squeezing is most easily achieved near the turning point.
If, however, the length of the interval includes several vi-
brational periods, the algorithm "prefers" to use a
periodic sequence of several pulses rather than a single
one with the same form (see curve for T =2.0 in Fig. 6).

ne can explain this effect as due to the fact that the total
probability of excitation by X pulses, separated in time by
a vibrational period, scales as %, while the energy
Auence scales only as X. Therefore, the splitting of a sin-
gle pulse into a periodic sequence has an advantage for
minimization of the objective functional (9).

V. SUMMARY

In this work we have demonstrated how optimal con-
trol theorro eory may be used to design optical pulses which
create the "most" localized wave packet. We have intro-
duced an objective functional for minimization of the
spatial width of the wave packet while keeping a si l
aser pulse shape. This is achieved via a "cost" function

that restricts the bandwidth of the laser, and happens to
be proportional to the energy fIuence of the pulse. A free
weight factor balances the degree of squeezing against the
complexity of the field.
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%"e have suggested a two-step numerical algorithm
which reduces the nonlinear optimization procedure to
the solution of an eigenvalue problem. The formalism
was tested using a simple model of a molecule with two
electronic states described by two displaced harmonic po-
tential curves. The designed optimal fields generate wave
packets which are much more localized than the ground-
state vibrational wave function. In some cases our pro-
cedure reproduces the previous "intuitive guesses" as to
the choice of pulse shapes leading to squeezing. Thus,
the mechanism of generating a strongly localized nuclear
wave function as a result of interference of two wavelets
in the vicinity of a classical turning point [10] comes out
automatically in the present scheme. In general, howev-
er, the squeezing is attained by a complex cooperative in-
terplay of the intramolecular coherence and the pumping
field, whose amplitude-phase properties cannot be easily
guessed.

Although the formalism has been tested here using a

harmonic system, it is valid for any nonlinear molecular
adiabatic potentials. An interesting future application of
our procedure may be to the experiments [26,27] where
intense laser fields are used to modify molecular poten-
tials. In these experiments strong light-induced avoided
crossings of electronic states result in new bound molecu-
lar states with additional equilibrium positions. To trap a
molecule in these states, a considerable portion of the
wave function must be localized in the vicinity of the
crossing just before the modifying laser is switched on.
Our method of optimal squeezing may be implemented to
this end at the initial stage of trapping. A more detailed
discussion of this aspect will be published shortly.
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