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Coherence and elastic scattering in resonance Auorescence
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Some coherence properties of the light emitted from a two-level atom which is excited by a mono-
chromatic coherent field are investigated. It is shown that the elastically scattered light is coherent, and
that this compoment of the emitted field can be separated from the total field by narrow-band filtering at
the driving frequency. These results are then applied to the problem of interference between the Auores-
cent and the elastically scattered field. An interference experiment is analyzed in which the detection of
one emitted photon signifies the beginning of a Rabi cycle and the detection of a subsequent photon fixes
the instant in the Rabi cycle when the interference is detected. It is shown that the visibility of the in-

terference is near zero at the time when the fluorescence is maximum.

PACS number(s): 42.50.—p 32.80.—t

I. INTRODUCTION

The subject of resonance fluorescence from a single,
coherently excited atom has received a great deal of at-
tention, both theoretical and experimental, over many
years. Resonance fluorescence provided the first experi-
mental evidence for nonclassical states of light [1—3] and
for the Mollow spectrum [4] showing the effects of Rabi
oscillations [5,6]. Numerous variations on these themes,
such as time correlations between the fluorescent side-
bands [7], and the generation of the squeezed states of
light from resonance fiuorescence [8—10] have also been
investigated.

However, a rather fundamental quantum effect, con-
cerned with interference of light from single atoms, seems
to have escaped observation so far. Whereas any two
classical electromagnetic waves of similar frequencies
can, in principle, give rise to observable second-order in-
terference effects, this is not true for quantum fields, be-
cause the phase of a quantum field does not always have a
value. For example, the fluorescent light produced by
two excited single atoms cannot produce second-order in-
terference for just this reason. Another way to under-
stand this is to notice that in such cases the source of
each detected photon can, in principle, be identified by an
auxiliary measurement that does not significantly disturb
the atoms [11,12]. For the same reason it has been sug-
gested that, when the fluorescent light from a coherently
driven atom is allowed to interfere with a strong classical
light beam of similar frequency, the visibility of the resul-
tant interference should vanish at just those moments
when the driven atom is fully excited and the rate of
fiuorescence is maximum [13].

Such an experiment appears to be most practicable
with a trapped atom confined within a region much
smaller than a wavelength, so that the optical path
differences in the experiment can be held constant to a
fraction of the wavelength. With moving atoms in an
atomic beam, such as those used in previous experiments
[1—3,5 —7] the proposed interference experiment appears
to encounter formidable difFiculties. The reason is that

distances relative to the coherent pump field and relative
to the coherent reference field have to be held constant to
a fraction of a wavelength, and therefore the atomic
beam cross section has to be held to this size also. This
limits the atomic flux and consequently the photon rate
so severely that the interference experiment is not feasi-
ble.

In the following we examine another approach to the
same experimental problem, in which the position of the
atom is not severely restricted and a larger atomic flux
can therefore be used. We show below that the light
which is elastically scattered from the coherently excited
atom is itself coherent, and therefore can serve as the
coherent reference in the investigation of interference be-
tween a fluorescent photon and a coherent or classical
field [13]. Because both the elastically scattered light and
the fluorescent light follow the same optical path, the
path lengths are balanced automatically and it is only
necessary to separate the two with a narrow-band filter
and then to recombine them in order to study the in-
terference.

Let E, '(r, t ) and E 2+'(r, t) be the positive frequency
parts of the elastically scattered and the fluorescent con-
tributions to the optical field at (r, t) from a coherently
driven atom located at the origin. We identify Hilbert
space operators by a caret. If both fields at (r, t) are po-
larized, quasimonochromatic and can be approximated
by plane waves, we may write

E ', +'(r, t ) =eE, (t)e

E 2+'(r, t ) =eE2(t)e

where e is a unit polarization vector. If these fields are
combined at a photodetector with a relative phase
difference P that can be varied, then the total field at the
detector is

E'+'(r, t) =e[E,(t)e'"' ' '+E,(t)e'""'],
and the photodetection probability at (r, t) is proportional
to [14]
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( E ' '(r, t )-E '+ '(r, t ) &

= (& ', '(t)& ',+'(t) &+ (& ', '(t)& ',+'(t) &

+2l(E ', '(t)E 2'+'(t) &leos[(k2 —k, ).r —P] .

In the special case in which field F. ', +'(t) is in a coherent
state and has eigenvalue Ei(t), we have

(4)

III. NARROW-BAND FILTERING

As the coherent driving field is monochromatic and of
frequency co„so is the elastic scattering. We now consid-
er more explicitly the action of a narrow-band optical
filter centered on frequency ~, on the light emitted from
the atom. Let E '+ '(r, t ) represent the total field radiated
by the atom falling on the filter at r at time t, and let
Eo+'(t) denote the field at the filter output. Then from
linearity and the time translation property, if the exciting
field is turned on at time t =0 we must have

so that the visibility of the interference is proportional to
(E 2'+ (t) & and vanishes whenever (E 2+'(t) & =0. We
now proceed to show that if the total field at r is passed
through a sufficiently narrow-band optical filter, then the
light emerging is indeed coherent.

II. SCATTERED FIELD
IN RESONANCE FLUORESCENCE

Eo+'(t)= f dt'f(t —t')E'+'(r, t') (t )0),
0

(9)

where f (t) is the real impulse response of the optical
filter, which always vanishes for t (0. Let the passband
of the filter be centered at the coherent driving frequency
co, and be of bandwidth cr, with o. ((P, where f3 is half
the Einstein A coefficient for the atomic transition. For
example, we could take f (t) to be of the form

f ( t ) =o e 'c socvt, (10)

in which case the frequency response F(cv) of the filter
would be of the Lorentzian form

F(tv) =f f(t)e'"'dt
0

1 1 1+
2 1 i(co+—cv, )/cr 1 i (cv —cv, )/—o

(1 la)

1/2
1 i (rv to, )/o— — (1 lb)when co) 0 .

Alternatively, if f (t) is of the Gaussian form

f(t)= e '
csocto(t )0),20

&2~
(12)

E'+'(r, t)= p, —- + cvolpi~l

4&E'pC T

+E q,
+„'(r, t ) ( t ) r /c ) .

(p„. )
b(t r /c)—

r2
then the spectral response function of the filter is Gauss-
ian and given by

(5) F(to)= f f(t)e' 'dt

We suppose that a two-level atom of complex
(b,m =+1) transition dipole moment p, 2 and atomic lev-
el spacing Scop is located at the origin and is subjected to
a coherent, monochromatic exciting or pump field of

1CO)f t col t
electric-field amplitude eEe '. We take eEe ' to be
the eigenvalue of Et,+„'(r,t) belonging to the multimode
coherent state

l [ v ] & that corresponds to the exciting
field, and we shall suppose that e p, 2= lp, 2-l and that this
field vanishes at the detector. In the following we shall
make frequent use of results for this problem derived pre-
viously by Kimble and Mandel [15], where it is shown
that the total electric field at (r, t) in the far field of the
atom is expressible as

b(t) is the atomic lowering operator at time t. The initial
q~ antum state for the atom is the lower state ll &, and
since E z,

+„) represents the driving field we have

E',+„'(r, t)lg, & =0, b(0)lg, & =0 (6)

for the combined state
l P, & =—

l
1 & ~ l [ v ] &~ of atom and

field, provided r is outside the exciting field. For simpli-
city, we henceforth ignore the propagation delay r/c in
Eq. (5), which can be made small. As in Ref. [15] we find
it useful to introduce slowly varying dynamical variables
which have had the highly oscillatory factor exp(+icvot)
removed. We define

b, (t) —=b(t)e

Then from Eqs. (5)—(7) we obtain

E'+'(r, t ) lg& & =Ke

where K stands for the factor to the left of b(t —r/c ) in
Eq. (5).

—(co+co ) /2o. —(co—co ) /2o=e ' +e
—(co—co ) /2o.=e when co) 0 . (13b)

More generally, we shall take

f(t) =k(t)costv, t, (14)

where k(t) is any real function of t of width 1/o that
vanishes for t & 0, whose peak value occurs close to t =0,
which satisfies the condition

(15)

(16)

If the filter output is to be of bandwidth o., then we must
focus on sufficiently long times t such that t »1/o. .

tk(t')dt'=1 when crt ))1 .
0

After combining Eqs. (5), (6), (9), and (14), we obtain

Eo+'(t)lg, & =Kf dt'k(t t')coscv, (t —t')—
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Then, since o ((P, it follows that t )) I/13 necessarily
also. After expanding the cosine we obtain

xb, (t )lq, ) .

1 0
]

ldll

t 1 (CO CO ))t

The term oscillating at the double optical frequency
co, +coo obviously will make a negligible contribution to
the integral compared with the other one, so that we
have, to a good approximation,

E'+'(t)lf, ) =—'Ke ' I dt'k(t t')e—

xb, (t')lg, ) . (17)

Because of the factor k(t —t'), which is nonzero only
for t' in the range t —1/o. to t, roughly speaking, we are
concerned only with the long-time behavior of b, (t').
After a long time, when all transients have died out,
b, (t')i/i) either becomes constant in time or it exhibits
oscillatory behavior with frequencies determined by the
parameters P, y, p, 2, ego

—co„{U],etc. y is the Lamb
shift for the given transition of the two-level atom. Ac-
cordingly we write quite generally, for any initial state of

the form rj, l@, )+gzl@2) with lp~ )—:lj) „l{vI )F,
j=1,2,

e'" "'
b. (t)(q, lq, &+q, lq, &)

=g {[~ l.!+Bi.l(t)]l 1 & g l {n j )F
jnj

+[cl„l+Dl„l(t)]2) „l{n])F] . (18)

Here
l {n I )F is the multimode Fock state of the elec-

tromagnetic field and {n I stands for the set of all photon
occupation numbers. We have chosen to separate the
coefficients of l 1)~ l{n ] )F and l2, ) „l {n J )F into con-
stant parts and time-dependent parts, with the under-
standing that Bl„l(t) and Dl„!(t) are oscillatory in the
long-time limit, but that 1/o. is much longer than any of
the periods of oscillation.

We now use Eq. (18) to calculate the expectation of
exp[i(ei, coo)—t ]b, (t) in the state (il, lp, ) +F12 $2) )I
(lq, l

+ lg2l )' . Recalling that the scalar product

en&

& { ]l{ ] &=rr
Qn, !

where A, is a mode label and the product is taken over all
modes, we obtain

t(co& —coo)t

, (qi &gil+q2 &&pl)b, (t)(ni gi)+n21$2&)
( rti '+ nz ')

en&
1 —fv /2/2 Ugg {'t)*, [A l„!+Bi„l(t)]+i)z [Cl„!+Dl„l (t)]J Qe

( ni '+ n2') l. l Qn, !
(20)

Now it has been shown [15] that the expectation on the left-hand side is independent of t and independent of the initial
state in the long-time limit for any l {U J ). Hence we must have

r)*, B!„l(t)+r)2D!„l(t)=0,
from which it follows that

B„l(t!)= iZ)2(„(t!), Dl„l(t)= —i)*, Z!„!(t) . (21)

The Zl„l (t), like Bl„l(t) and Cl„l(t), are oscillatory functions with periods much less than I /cr Then Eq. (2.0) becomes

exp[i(co, ego)t]-
(gl (@ll+ )2 & 41», (t)( )ilgi &+ i)2lfp& )

ni '+ n2'

and if this is to be independent of g„g2, we require

jn j g)Hjnj p Cjn j fj2Hjn j
e

en&
1 g (i)*, A l„) +g2 C(„) ) + e

'g il + Ii)21
(22)

(23)

The expectation on the left-hand side of Eq. (22) has been evaluated explicitly in the long-time limit. It is given by [15]

( —
—,
' IIIP)(1+iD IP)

lq l'+l~, l' ' " ' "' ' " '" 'n'II3'+I+D'IP' '( *(~i~ I+ *(~~~ l)b (t)( l~~i )+ I~i~ ))
2

(24)

where 0 is the atomic Rabi frequency and D—:(co, —co0+y) is the detumng. Comparison of Eqs. (23) and (24) then
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shows that we must have

—
—,'(0/P)(1+iD /P)

H „ —'0 /P +1+D /P

"A, —
lU l'/'z

n~!
(25)

We now use Eqs. (21), (23), and (25) in Eq. (18) and obtain

e' " ""b,(t)(q, lP, &+g, lg, & )

( —
—,
' 0/P)(1+iD /P)

, (77, /I &+77,/2&)y / e "
/n~ & +y Z[„)(t)/[n I &(7J,'/ I &

—77", /2& )

&0 /P +1+D /P ( ) i Qn&? Inj

( —
—,'0 /P)( I+iD/P)

, [q, l@,&+q, lq, &]+gZ(„~(t)l[n } &[q,*II &
—q', 12&] .

—,'II /P +1+D /P Inj
(26)

Finally, we substitute Eq. (26) into Eq. (17) with
hz=0, g, = 1. With the help of Eq. (5) together with

f k(t —t')Z(„) (t')dt'= 0, —
0

because of the oscillatory behavior of Z(„~ (t), we then
obtain

, (
—

—,'0/P)(1+iD/P)
Eo+'(t) ~&~, &

=
—,'Ke '0 /P +—1+D /P

(28)

Hence ~g, & is the right eigenstate of Eo+'(t) in the long-
time limit, and the corresponding eigenvalue is the expec-
tation (E0+'(t) &. After a long time t the field emerging
from the narrow-band filter is therefore in the coherent
state ~[ U J &.

IV. APPLICATION TG AN INTERFERENCE
EXPERIMENT

Having shown that the output of the narrow-band filter
which is illuminated with the fluorescence from the atom
is in a coherent state, like the pump field, we now consid-
er the interference experiment illustrated in Fig. 1. An
atom of an atomic beam is illuminated by a coherent
pump field near resonance. A microscope objective col-
lects some of the emitted 1ight, which is then split into
two parts with the help of beam splitter BS&. One part
enters the narrow band filter, whose output is combined
with the other part at BS3, and the mixed beams fall on
detector D3. A phase shifter PS is inserted into one in-
terferometer arm, as shown, and a portion of the fluores-
cent light in the other arm passes through beam splitter
BS2 to detector D2. The outputs of D2 and D3 go to the
start and the stop inputs, respectively, of a time-to-digital
converter (TDC), which measures the time difference be-
tween photoelectric pulses at its two inputs.

The appearance of a start pulse at time t signals the
presence of an atom in the field of view of the microscope
objective, which is in the ground state at the moment t.
At a subsequent time t+r the field 2 ~~+'(t+r) at detec-
tor D3 is a linear superposition of the fluorescent field

P F+'(t) and the phase-shifted filter output X' 0+'(t),

E',+'(t+r)=ri, E'+'(t +r) +q,E,'+'(t +r) .

Hence the probability of photodetection by D3 at time
t+r is proportional to

(,E', '(t+r)E', '(t+r) &

= lg, I'& IF(t+r) &+ In2I'Io(t+r)

+ri,*i)~(EF'+'(t+r) &ED(t+r)

+q, r)2EO (t+r)(E F'(t+ )r& . (30)

PS
Narrow Band

Filter BSr
Atomic

BS3
$F Beam

BS2

Qn Js

TDC

FIG. 1. Outline of the proposed experiment under discus-
sion.

In this equation Eo(t) is the eigenvalue of P 0+'(t) in the
initial state. It follows that the interference terms involve
(,E ~+'(t+r)& and its conjugate, and the interference
vanishes or becomes small at those times when
(E'z+'(t+r)& vanishes or becomes small [13j. The time
delay r, following the return of the atom to the lower
state at time t, determines whether the interference is
strong or weak. Loosely speaking, the visibility of the in-
terference is expected to be small at times when z-m/0,
when the atomic excitation is greatest in the Rabi cycle.
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V. COINCIDENCE COUNTING RATES

Although the foregoing argument shows that there is
no observable interference at times t +~ when
(E z+'(t+r) ) =0, an experiment to study this effect
would have to be based on delayed coincidence counting

with the two detectors D2 and D3. Such a measurement
cannot be adequately described by a second-order corre-
lation function, as in Eq. (30). Let us therefore examine
the joint probability density P2( t, t +r ) for detections of a
photon by D2 at time t and another photon by D3 at a
later time t+r. If E '+'(t) is the field incident on BS„
then from Fig. 1 this is given by

P, (t, t+r)=a, a, (9t;X,'X' ' '(t)[X,*X',' '(t+r)e'&+9t*, 9t;9t,*X' ' '(t+r)]
X [X32 o+'(t+r)e '~+9t, 9tz9t3P '+'(t +r)]9t,X P2, '+'(t)) . (31)

cK3 and a2 are the quantum efficiencies of the detectors D3 and D2, respectively, and %j and Xj are the complex
refiectivity and transmissivity of beam splitter j (j =1,2, 3). The visibility 8 of the interference pattern is then given by

21»9t29tP-3II(&' '(t)E ' '(t+r)&o+'(t+r)&'+'(t)&I
(32)

I9t)9t29t31'«' '(t)E' '(t+r)E'+'(t+r)E'+'(t)&+ir, i'(E' '(t)E,' '(t+r)E,'+'(t+r)E'+'(t)) '

provided t ))1/o ))1/P. If we now use Eq. (9) to express E z+'(t) in terms of E '+'(t) via the convolution integral,
then it is apparent from Eq. (31) that we need to evaluate certain three-time autocorrelation functions of the general
form

I-""(t,t', t",t) =(E ' '(t)E ' '(t')E '+'(t")E '+'(t)) (0 t' & t") . (33)

The procedure for the evaluation is outlined in Appendix A where it is shown that, for the special case of on-resonance
excitation,

tl

K [(R (t) ) + —,
' ]g(t' —t, t"—t )e ' when t & t' & t" or t' & t" & t

r

1~'[(& (t))+ —,'] (b, (t' —t))(b, (t" t)) '—"
(34)—3p/2(tj —t )

4 e cosQ'(t t )+ sin—Q'(t. —t )2n

—p(t. —t )—e ' ' when t'~t ~t" .

The two-time correlation function

g(t, r):(b, (t)b, (t+r) )— (35)

is identical to the one defined in Ref. [15]. If co/ is the frequency at which the filter passband is centered, the numerator
JV and denominator 2) in Eq. (32) become

and

(9t,9t,9t,X3e' ) 2;f dt'k(t+r t')costa/—(t+r t')1""—(t, t', t+r, t) +c.c.
0

2)= i9t,9t,9t, i'r" "(t,t+r, t+r, t )

+ iX, i'iX, i'f dt" f dt'k(t+~ t")k(t+r t')c—oscar&(t—+r t")—
X coscoI(t+ r —t')I""(t,t', t",t )

(36)

i coo(t' —t" )

XcoscoI(t +r—t")I
I' ' '(t, t', t", t)e ' +c.c. ]

(t+r) f —dt'k'(t+r t')cos'coI—(t+r —t')I"""(t,t', t', t)
0

(37)
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On equating the filter center frequency cof with the laser frequency cot (which is equal to coo —y on resonance) and go-
ing to the long-time limit (t ))1/cr ) and the narrow-bandpass condition o ((P, we see that

JV=9t t9t29t3X3'Lt*l K (r) — [&A3(t) ) + —,
' ]&b, (r) ) e 'r'cos(p+ v]) (38)

&=19lt9129131'K'(r)[&&3(t)&+-,'][&&3(r)&+-,']+ l&3I'I&tl'K'(r)[&& 3(t) &+-,'] (39)

g is an arbitrary but constant phase associated with the complex transmissivities and reAectivities of all the beam
splitters. On substituting Eqs. (38) and (39) into Eq. (32) we obtain for the visibility t)(~) in the long-time limit and for a
narrow filter bandwidth

l&b, (~)) I0 +2P

I91,912913I'[&&3(~)&+-,']+1~31'I&pl' 0 +213

(40)

Figure 2 shows plots of visibility t9(r) as a function of r
for two values of 0/P when all beam splitters are
50%:50%. The visibility falls to zero at those times when
the atom is either fully excited or fully de-excited (cf. the
graphs in Ref. [13]). The peak visibility of near 100%
that is found for Pr((1 occurs at the time when the am-
plitude of the growing fluorescent field of the atoms
equals the amplitude of the elastically scattered field that
emerges from the narrow-band filter. At that time the
two possible photon paths through the interferometer are
completely indistinguishable, which makes the degree of
coherence unity [16] as expected.

VI. CONCLUSION

Equation (40) confirms the conclusion that was already
reached by the more general argument given in Sec. III

I

0.8

0.6

above. It is possible to study the interference between
Auorescent photons from a single atom and a coherent
field by making use of the elastically scattered light from
the atom. As the state of the atom goes through its Rabi
cycle of oscillation, the visibility is expected to vanish at
those times when the atom is close to being in the fully
excited state, when the source of the detected photons
can in principle be identified. This is yet another example
of the relation between coherence and indistinguishability
I:16].
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APPENDIX A

We wish to evaluate

r""(t,t', t",t)
'(t)& ' '(t')& '+'(t")& '+'(t) )

(t'&t") .

After separating out the rapidly oscillating factor and
writing

I

0.4

0.2

O. j 0.2 0.3 0.4 0.5

E '+'(t) =E,'+'(t)e

where P l+ l(t) is given by the usual dipole formula

E,'+'(t) =K(r)b, (t)+E,'+„',(r, t ),
we have

r" "(t,t",t, t)

(A2)

(A3)

FIG. 2. Visibility 8{&) as function of delay w given by Eq.
(40), for 0/P=10, 20. All beam splitters are assumed to have
X~ =1/&2=9t~ {j=1,2, 3}.

=K4(r)e ' &b t(t)b t(t')b, (t")b,(t)) .

%'e have made use of the fact that

(A4)
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F., „,(r, t)~g) =0

for the initial state ~g) and

(A5)

(A7)

[b, (t),EI+„,',(t')]=0 for all t, t', (A6)

F(t, t', t",t)=(b i(t)b i(t')b, (t")b, (t) }

Xe
i(, co —co )(f.+ t")

as shown in Appendix B. We have approached the calcu-
lation of the correlation function in (A4) in the Heisen-
berg picture via the same techniques that were used in
Ref. [15].

We make use of the coupled integral Eqs. (75) and (76)
of Ref. [15] to construct three different multitime correla-
tions:

H(t, t', t",t)—:(b ~(t)b ~(t')A, (t")b,(t))e

where

t when t'~ t ~ t"
t' when t t'~ t" or t'~ t" ~ t . (A8)

These inequalities are dictated by Markovian considera-
tions. Using Eqs. (83) of Ref. [15] and the relation
[b, (t), b, (t) )

=1 and proceeding along the same lines as
in Eqs. (80)—(86) of Ref. [15], we arrive at the following
Volterra integral equation for the combination
G(t, t', t",t)+F(t, t', t",t):

t

G(t, t', t",t)+F(t, t', t",t)=m (t, t', t")+J dt, K(t" t, t, )[——G(t, t', t, , t)+F(t, t', t, , t) j

with integral kernel K(r)=(0 /13)(e ~' —e ') and with inhomogeneous term

(A9)

I ( CL)
$

Cc)o )fXe ' [1—e ~" "] when t'& t & t"
m, (t, t', t")= '

(b, ( )tb, (t')b, (t')b, (t) )e ~" ' ' — (b, (t)b,—(t')b, (t) )
II I

Xe ' [1—e ~" ' '] when t &t' t"or t'&t" &t .

(A10)

After eliminating F(t, t', t",t) from Eqs. (A7) and (A9) we find from the definition of G(t, t', t",t) in Eq. (A7)

(b, (t)b, (t')b, (t")b, (t) ) = (b, (t)b, (t')b, (t) ) (b, (t" t ) )e—
+ —,'(b i(t)b i(t')b ~(t)b, (t))e ' ' e

X e '~ "' " cosQ'(t" t)+, sinQ'—(t" t) —e—
2Q'

when t' & t & t" (Al la)
II I

=[(R3(t))+—,']g(t' t, t" t')e ' ' —— when t &t'&t" or t'&t" &t, (Al lb)

where II'—= (0 —P /4)'~ . In Eq. (Al lb) the two-time correlation function g (t, r) is identical to the one defined in Eq.
(77) of Ref. [15]. The two-time, third-order correlation function (b, (t)b, (t')b, (t)) can be calculated with the help of
Eqs. (100)—(103) of Ref. [15] and is found to be

(b, (t)b, (t')b, (t)) =[(R,(t))+—,'](b, (
' tt))e (A12)

The two-time, fourth-order correlation function in Eq. (Al la) has not previously been evaluated. It can be obtained
by proceeding along the same lines as in the calculation of g (t, r) in Ref. [15]. This gives

(, b i(t)b ~(t')b ~(t)b, (t)) =
—,'[(R,(t))+ —,']e ' ' e'"'

sII'(t' —t)+ sinful'(t' —t2Q' (A13)

On substituting Eqs. (A13) and (A12) into Eqs. (Al la) and (A4) we obtain finally
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=K'[(R, (t) ) + —,'] (b, (t' t )—) (b, (t" t )—e'i'"

cosQ'(t t )+— , sinQ'(t t—)

—p(t. —t)—e for t'~t ~t" . (A14)

Let

C= [b(t),E,',+,'(r, t')]

APPENDIX B

Proof that [b(t —r/ c),E' ,+t„'(r, t')]=0 for all t, t'

(B1)

But from Eq. (5) the total field is

3&2 g l( ro) ej,a„,k, e'""=K(r)b(t)+
3&2 g l(co)e~, &f i, (t)e'""

L k, s

We now scalar multiply each term in this equation by ck.,e ' ' and integrate over the volume L . Then we obtain

L l(co)it„„k,(t)=ep, - J,K(r)e ' 'dr b(t)+L 1(ro)at„,k, (t)

or

(B2)

at„,k, (t)=a „,k, (t) —ek, f K(r)e '"'dr
3&2

b(t) .
L l(to)

After substituting from Eq. (B3) in Eq. (Bl) we arrive at

(B3)

(B4)

As this holds for all t, t', we may replace b(t) by b(t r Ic ) in the definit—ion of C'.
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