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In the present paper, we report a theoretical description of the internal dynamics of one-dimensional
molecular aggregates, subject to fluctuations of the excitation energy and site-site coupling. The role
played by these diagonal and nondiagonal stochastic interactions on the nonlinear optical response of
the aggregate is studied. As an example, the influence of these processes on the third-order hyperpolari-

zability is evaluated.

PACS number(s): 42.65.—k

I. INTRODUCTION

Over the last few years, considerable interest has been
directed toward understanding the optical properties of
molecular aggregates involved in media as different as
molecular beams [1,2], solutions [3], or surfaces [4], and
has spurred intense activity. Since the observation of a
strong narrowing and redshift in the absorption spectrum
of certain dye molecules [5], often termed the J band
[6,7], we have a signature of the existence of small aggre-
gates. This observation has been attributed to motional
narrowing of the inhomogeneous broadening of an exci-
tonlike state [8]. In fact, among all the theoretical
descriptions, the one-dimensional Frenkel exciton model
has provided the simplest description to the internal dy-
namics of molecular aggregates [9].

Some recent spectroscopic studies, performed with
hole-burning and accumulated-photon-echo experiments
[10], have shown evidence that in strongly coupled aggre-
gates the electronic excitation is delocalized, while for
weakly coupled aggregates there is no J band formation,
but instead an excitation trapping and polaron formation.
In optically thin samples, the excited-state dynamics of J
aggregates having intermolecular dipole-dipole coupling
and a varying inhomogeneous broadening have firmly es-
tablished that the enhanced fluorescence rate results from
microscopic superradiance and that the cooperativity is
determined by a coherence length which can be equal to
or smaller than the aggregate size depending on the
amount of dephasing [11]. As the homogeneous or inho-
mogeneous broadening is increased, the coherence length
decreases inducing in turn the disappearance of the su-
perradiant decay.

Further studies have shown an enhanced radiative de-
cay rate that depends on aggregate size [10,12]. This
enhanced radiative rate may result from the N!/? scaling
of the transition dipole moment, which in turn, generates
an N scaling of the radiative decay rate with aggregate
size N. In fact, it has been shown that pure dephasing
competes with the radiative damping [13], and this com-
petition depends on the relative value of the pure dephas-
ing with respect to the enhanced radiative rate. For in-
creasing values of the pure dephasing, the enhanced radi-
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ative rate decreases up to the value of the radiative rate
of the monomer which is recovered for very large pure
dephasings.

The investigation of third-order nonlinear optical hy-
perpolarizability in molecular aggregates and its scaling
with aggregate size has been very active in recent years.
Since the volume-squared scaling of the third-order hy-
perpolarizability for semiconductor microcrystallites or
quantum dots predicted by Hanamura [14], many
theoretical works concerning the electronic behavior of
molecules in restricted geometries have been published.

The size dependence of the third-order hyperpolariza-
bility in linear molecular aggregates incorporating the
one- and two-exciton states has been considered by
Ishahara and Cho [15], as well as by Spano and Mukamel
[16,17]. In addition, by taking advantage of a model
based on a coupled set of anharmonic oscillators, Spano
and Mukamel were able to establish the influence on the
nonlinear optical properties when the N-molecule system
ranges from the small-aggregate limit with an N? scaling
to the bulk-crystal limit giving an N scaling [17].

Other works have emphasized the exciton motion in
molecular aggregates. Their main goal has been the
study of the coherence loss inherent to the exciton migra-
tion. To this end, microscopic models, including a
quantum-mechanical description of the interaction be-
tween Frenkel excitons and the phonons of the surround-
ing heat bath, are required [18,19]. Because these models
are very difficult to solve, stochastic descriptions have
been introduced where the influence of the phonons is ac-
counted for by correlated Gaussian stochastic processes.
As long as the stochastic variables describing the fluctua-
tions of the local excitation energy are § correlated, the
model can be handled. As an example, this approach has
enabled the study of the coupled coherent and incoherent
motions of excitons [20]. The influence of the fluctua-
tions of both excitation energy and transfer matrix ele-
ment on the line shape of optical absorption has also been
evaluated under the same assumption [21]. This study
has enabled the evaluation of the contributions to the
linewidth resulting from the local and nonlocal fluctua-
tions. An exactly solvable model for coherent and in-
coherent motion of exciton in organic crystals has also
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been developed [22]; it gives explicit results for the
mean-square excitonic displacement [23], as well as for
the diffusion constant [24].

Besides the linear optical properties of stochastic
molecular systems, other works have been developed con-
cerning the nonlinear optical responses, such as the
third-order hyperpolarizability. = However, to our
knowledge, only the cases of diagonal stochastic interac-
tions [25,26] or of correlated diagonal stochastic interac-
tions between near-neighboring sites [27] have been dis-
cussed. Finally, some recent improvements have been
achieved which go beyond the white-noise treatment of
the stochastic processes. Among them, we can mention
the study of the optical line shapes of one-dimensional ex-
citons under the influence of heat bath with colored noise
[28]. It has clearly been established that upon increasing
the rate of the excitation-energy fluctuations a transition
from static to dynamic disorder is observed. Also, the
corresponding optical absorption line shapes which are
asymmetric for slow fluctuations become Lorentzian for
fast fluctuations. With a different approach, Sato and
Shibata [29-31] have developed a theory based on the
time-convolution equation formalism. In their work,
only the linear optical response of the material system
has been considered. Assuming a medium subject to fluc-
tuations generated by a Gaussian process, the cases of di-
agonal and nondiagonal randomness have been studied.
In a first step, the problem has been handled perturba-
tively up to second order [29], while higher-order contri-
butions have been accounted for by using the partial cu-
mulant expansion to calculate absorption spectra and
density of states [30,31]. It is worth mentioning that
their approach is not restricted to the Markovian limit.

It is our intent to study the influence of both the fluc-
tuations of the local excitation energies and the site-site
interactions. Because of the difficulties inherent to the
cumulant method when nondiagonal stochastic interac-
tions are present, we will just be concerned in this work
with the 8-correlated case. In Sec. II we introduce the
description of the aggregates. It is done in the local basis
set as well as in terms of the exciton basis set. Next, we
describe the general dynamical evolution in Sec. III and
discuss the influence of the stochasticity on the one- and
two-exciton states. In Sec. IV we derive a formal expres-
sion of ¥'*, the third-order susceptibility, which is explic-
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itly evaluated in Sec. V. Finally, in Sec. VI we present
the results concerning the role of the diagonal and nondi-
agonal fluctuations on the third-order hyperpolarizabili-
ties, and we summarize our findings in the last section.

II. DESCRIPTION OF THE AGGREGATES

In order to give a theoretical description of the role
played by intersite stochastic coupling on the third-order
hyperpolarizability, a basis for the representation of the
aggregates must be chosen. The model consists of a set of
noninteracting molecular aggregates, each of them hav-
ing N identical molecules with two electronic
configurations, an electronic energy gap #(, and parallel
transition dipole moments. As long as the temperature is
sufficiently low, phonon interactions will be neglected.

For the problem at hand, two types of representation
are of interest. The first one consists of a set of localized
states which are given by

N
lg?=11 lg;) ,
j=1
N
lny="TI lg*le,), 2.1)
j#Fn, j=1
N
]lym): H lgj>|e1>|em> ’
I#j#m, j=1

where |g;) and |e;) are the ground and excited states of
molecule j. Therefore we have one ground state, N singly
excited states, and N(N —1)/2 doubly excited states
since, for our model, two excitations cannot reside on the
same site. Of course, higher excited states must be intro-
duced in the study of hyperpolarizability of order higher
than three. Also, we will assume periodic boundary con-
ditions, say, [p)=|p+N), and |p,p+n)=Ip+n,p)
=|p+n,p+N). If the intersite coupling #V is restricted
to nearest-neighboring molecules, the corresponding
Hamiltonian takes the simple form

N N N (N—1)/2
Hy= 3 #QpYpl+ 3 #Vlp)p+1l+lp+1)pll+ 3 3 24Qlp,p+n){p,p+nl

p=1 p=1
N N-—

1
+ 3 3 #avilp,p+aXp+tlp+nl+ip+lp+tn){p,p+nl].

p=1n=2

Now, because of the coupling, it is convenient to intro-
duce a delocalized basis set of states which diagonalizes
H,. In such a way, we may introduce the one- and two-
exciton states, denoted |4, ) and |Bg,), respectively,
and defined by

N < t t
Hy= 3 #Qb/b,+ 3 #V[b/b,, +b] b1, (2.2)
p=1 p=1
or in terms of its spectral decomposition
p=1 n=1
2.3
[
HolAk>:ﬁ(l)k|Ak) N
2.4)

Hy|Bg ) =% ,|Bg,) ,

where excitonic states and their corresponding energies
are given by
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N
| 4,.) 3 M),

=—x/—ﬁ_
ﬁwk=ﬁﬂ+2ﬁVcos[2;k ] , k=0,...,N—1,
N (N=1)/2 _
u;Kq)__]z\7 2 ngl etZwK(2p+n)/Nsin[(2q N1)7Tn }
Xlp,p+n), 2.5)
Ay , =2 |AQ+2AV cos | 275 Lcos [(Zq—l 7’]
K=0,...,N—1, g=1,..., N1

2

H ,x(t)=—d-E(r,1)

N—-1(N—-1)/2
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Here, for the sake of simplicity, N is taken to be odd.
Notice that only linear molecular aggregates of arbitrary
size and free ends admit fermionic eigenfunctions. There-
fore the one- and two-exciton states | 4, ) and |Bg ),
which are eigenfunctions of H,, cannot be eigenfunctions
of a fermion number operator [32]. However, in the
infinite limit, the fermion character is recovered. This is
because in this limit, the eigenenergies of the two-exciton
states are the sum of two different one-exciton energies
and their corresponding two-exciton eigenfunctions are
Slater determinants built up from the same one-exciton
eigenfunctions [33].

From these representations, the transition dipole ma-
trix elements can be evaluated, depending on the problem
at hand. The spectral decomposition of the aggregate-
field interaction takes the form

(N—1)/2
M0(|Ao)<g|+|g>< A0|)+ > :u'O;O,q(|B0,q )< A0|+|A0)(Bqu|)
g=1

+ 2 2 :u'2KKq(lBKq><A2K|+iA2K>(BKqI . (2.6)

k=1 g=1

In the previous expression, we have introduced the nota-
tions p,,, for the matrix element of the monomer dipole
moment, and

=N"y_ . @.7)

because only the totally symmetric state | 4,) carries os-
cillator strength from the ground state, and

1, N 7% | (2g —1)mn
/-"k;K,q=4y'monN 12 2 sin l__q__ﬁ___.__

n=1

27Kn

X cos ‘N— ]Sk,zK ) (2.8)

which gives the selection rules for optical excitation from
the other states of the one-exciton band. Finally, d
stands for the unit vector characterizing the orientation
of the dipole moments g, .
transition dipole moments in the delocalized basis set is
schematically depicted in Fig. 1.

III. DYNAMICAL EVOLUTION

The dynamical evolution of a one-dimensional cyclic
aggregate, consisting of N coupled two-level systems in-
teracting with the applied electromagnetic fields, is con-
veniently described, in the rotating-wave approximation,
by the superradiant master equation

N
40— S i0p(0), by 1+ S 19, [p(0),5], ]
dt n=1 m,n=1
J t
m,n=1

—L[b} b,p(1)+p(t)b,) b, 1}

_ ll'l’mon

N
> E(r,,t)[p(1),b] +b,],

n=1

(3.1)

The redistribution of the

!ﬁrst established by Lehmberg [34], and later extensively
studied by Gross and Haroche [35]. Here, p(?) is the den-
sity matrix of the aggregate, and the prime on the sum-
mation means m>n. The applied electric fields E(rn,t)
and the Pauli creation and annihilation operators b and
b, are defined at site r,. These operators obey the an-
ticommutation rules

(b),b, 14 =8, +2b]b,(1=5,,),
" (3.2)

[6],b)1,=(1—5,,)2b]b} .

Notice that if the excitations are limited to a single site,

Bog — {Bx,q}
Bo,3 ; — {Bx,3}
Bo,2 y {Bk,Z}
Bo,i {Bk,1}
Ao Yy YY D {Ax}
A
g \
k=0 k £0
FIG. 1. Redistribution of the transition dipole moments in

the one- and two-exciton basis set.
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they behave like fermions, while for different sites they
are bosons. Finally, g, is the monomer transition di-
pole moment, () the electronic energy gap, and the con-
stants Q,,, and 7,,, account for the excitation transfer
and damping including spontaneous emission and super-
radiance. These quantities, respectively, reduce to ¥ and
v in the long-wavelength limit and near-neighbor interac-
tions. Notice that y is the monomer spontaneous emis-
sion rate. Their explicit expressions have been estab-
lished for the particular case of parallel dipole moments
and can be found in the literature [11,35]. In addition, if
we assume that the aggregate is small compared to an op-
tical wavelength, its corresponding wave vector k satisfies
the inequality k-r,,, <<1, and consequently E(r,,?) will
be approximated by E(r,?).

If we omit the interaction of the external fields with the
aggregates, the evolution of the density matrix as given
by Eq. (3.1) can be accounted for by the Liouvillian Lg
defined by
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N N
Lep(t)=— 3 #Q[p(1),b}b,]— 3 #V[p(1),b)b,]

n=1 m#n

N
+i S #y{b,p(t)b]

m,n =1
—L[b} b,p(t)+p()b) b, 1} .
(3.3)

Besides the free evolution of the aggregates, we must in-
troduce the description of the surrounding medium.
Despite the fact that a stochastic description does not al-
low us to calculate the temperature dependence, it will be
convenient for our purpose to construct a damping
operator which accounts for the relaxation and dephasing
processes induced by the surrounding medium. To this
end, we introduce the stochastic part of the Liouvillian
L(t)=[H(1), ], where the Hamiltonian is defined by

2

_ N N N (N=1)/
Hn= 3 ¢,0p)pl+ 3 3,0lpXp+1+p+1)pl]+ 3 3 [e,(0+e,4,0]lp,p+n){p,p+nl
p=1

p=1

N N-—1
+3 3 3,Wlp.p+n)p+Lp+nl+lp+1Lp+n){pp+nl].
p 2

=1ln=

Here, the fluctuations are defined in the local basis. The
quantity €;(¢) represents the fluctuations of the local exci-
tation energy for the mono-excited and doubly excited
states, while 9;(¢) describes the fluctuations of the inter-
molecular coupling between nearest-neighboring sites j
and j+1, as depicted in Fig. 2. When the fluctuation
time scale is very short with respect to all the other
characteristic times of the aggregates, the correlation
functions of the stochastic variables associated to the
Gaussian Markov processes are 8 correlated and satisfy
the relations

(g,())=0,
(3.5)
(e, (e, (1")) =7y 8,,8(1—1")
for the diagonal fluctuations, and
(15‘p(t) )=0,
(3.6)

(9,(1)8,(1")) =y 8, 8(1 —1")

for the nondiagonal ones, where y, and ¥, stand for the
fluctuation amplitudes. Because we are dealing with 6-
correlated variables, the cumulant expansion method
works and a stochastic damping operator can be defined
[36]. Therefore the Liouville equation which governs the
evolution is given by

Gpt) _

v —;—[LS-FZ(t)'FLAF(I)]p(t) , (3.7)

if L \g(2)=[H zg(?), ] stands for the interaction with the
exciting fields. In the interaction representation, the for-

p=1 n=1

(3.4)

r

mal zero-order solution with respect to L zg(t) corre-
sponds to

p(2)=T exp (3.8)

“éft:dhfq(tl) lpl(ti) )

where T represents the chronological ordering operator
and

p,(t)=e(i/mLStp(t) ’
. —u (3.9)
EI(I)=e(1/ﬁ)LStE(t)e /ALst

For Gaussian Markov processes with 8-correlated vari-
ables, the cumulant expansion reduces the expression of
the averaged density matrix in the Schrodinger represen-
tation to the simple form

v v Y y~ \'%4
N N ST
% YW YW SH & YW e
3 A A A A
'u,..o.. ‘ ' ’pmo,.
g
1 2 3 p-1 P

FIG. 2. Diagrammatic representation of the stochastic in-
teractions acting on the aggregate. The broken line corresponds
to the diagonal and the wavy lines to the nondiagonal stochastic
couplings. Also shown are the coupling constant ¥ and the di-
pole transition moments f,op.
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(pO1))=e —(i/mLst(T exp | — é— ft_tdtlf,(tl )

(i /A)Lgt;
>e ()

e /MEsley [— L f dr, f dt, (Lt (1)) | s'in(s,) | (3.10)
From time derivation of {p'®)(¢)), the Liouville equation of the averaged density matrix
) ;
A at(”) =~ [Ls—iAT(1) ] p () 3.11)

is straightforwardly established with
1 pt, =, —G/RLglt—1) =, (i/R)Lg(t—1')
—?ftidt (L(n)e L(te ). (3.12)

Consequently, in the Markovian limit, the stochastic damping operator I' corresponding to the stochastic processes is
given by

—(i/Lg(t—1") = (i/ALs(t—t)y

1 ) ~
F=ﬁf_wdt'(L(t)e L(te (3.13)
Because we assume the processes uncorrelated,
C=ry+T, (3.14)

is the sum of two independent contributions, I'; for the diagonal part and I'; for the nondiagonal part. However, in
both cases thelr dynamlcal influence depends on the mixing induced by the averaged Liouvillian

o ZGi/#iLg /) Lg(t—1") o . . N
(L(r)e Mot " L(t)e mLste= ) on the excitonic states. As shown in the Appendix, we have no mixing in the
| A,,g » Liouvillian subspace, because the relations

I“0| Ag.8 »:‘}’ol Ag.8 »,
r]|Ak7g >>:27/1lAk,g )>

are satisfied. On the contrary, the diagonality is lost in the | A;, A;.)) subspace, and the mixing results in the form

(3.15)

Y N-—1
FO]Ak:Ak » 2’}/0|Ak, Ak )) —2 Iv(,) 2 Skl_kZ’kvk,IAkl’ Akz » )
ky k=0
(3.16)
N—1
Ty Ay, A ) =4y | 4, A ) — yRal > sk ki k—k' |COS 27 (k—k") Ycos | ZT(k+ky) L {1 4g, 40 )
N i jg=o0 ! N N 1 Tk
[
Similarly, the mixing induced by T in the |g,Bg ,)) sub- N—1(N=1)/2N—1 ,
space is described by the relations DolBg g A N = 2“0 q2=1 kZO@)(K ,q,k;K',q",k")
XI-BK q)Ak >>
Tolg, Bk, M =2v4lg, Bk, ) N—1(N—1)/2N—1 (3.18)
3.17) T |Bg,, A D= 2 > 3 Y(K,q,k;K',q',k’)
_ 2 . (2q —1)m K'=0 g¢'=1 k'=0
Fllg,BK, » =4y, 1———sm2{——-—— lg,Bg . »
! N N ! X|BK’,q’1 Ak’» ’
——81— (sz') sin (2q —1)w where  the functions ©(K,q,k;K’,q’,k’) and
N 5 N Y(K,q,k;K',q',k') are given by relations (A3) and (A5).

From the previous expressions, it appears that after an

(2¢'"—1)w ] optical excitation satisfying strict selection rules, the sto-

N chastic damping operator induces a redistribution of en-

ergy. Due to the nature of the coupling, we have no mix-

X|g,Bg o . ing between the subspaces corresponding to the Liouvilli-

an states |g,g)), | A;,g), 18,Bk N, and |Bg ,, 4 ).

All these relations will be of interest, in the following, to

Finally, the action of I" on the |By ,, 4, )) states has been  evaluate the nonlinear optical properties of the molecular
developed in the Appendix and is given by aggregate.

Xsin
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IV. INFLUENCE OF THE STOCHASTICITY
ON THE NONLINEAR OPTICAL RESPONSE

As the dynamical evolution of the molecular aggregate
interacting with its surrounding is known, the nonlinear
response of the system to an optical excitation can be
determined. We are interested here by the third-order
hyperpolarizability which characterizes any four-wave-
mixing process.

For a steady-state experiment, the electric fields have
constant amplitudes E ;» and take the form

z(kr @;
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where c.c. denotes the complex-conjugate part, if @ s kj,
and €; are the frequency, wave vector, and unit polariza-
tion vector of the jth field, respectively. As usual, the
third-order polarization is deduced from the third-order
term of the time-dependent perturbation expansion of the
density matrix. It can be expressed as

P3Ar,t)=Tr[{p®r,t))pu] , 4.2)

where the symbol Tr stands for the trace and the aver-

E(r,t)= 3 [€;E;e + c.cl, 4.1) aged density matrix of the molecular aggregate initially
j=ab,c at equilibrium is given by
J
(00 =5 [ at, [, [t Golt =t L ap(t3)Go(ts 1)L (83060t =t L ar(t ol @.3)

because, in the Markovian limit, the factorization assumption is valid. Also, it is assumed that the aggregate is initially
at equilibrium. Notice here that the Liouvillian G,(z —¢’) is defined by

—(i/A)Le—iAlC)(t—1¢")
Golt—1)=O(t—1")e /Mhs~ 0] ,

if ©(¢ —t’') stands for the Heaviside function. If the initial conditions are defined at ;= —

we get

e, t)) =3 3 3 (

p~abcq—abc,r—abc

(p ,)(d-€,)(d €,)

(4.4)

o0, with a change of variables

Xfo dt3fowdt2f0wdt1G0(t3)L#Go(tz)L#GO(tl)L p(t;)

where we have introduced the notation
L s(t)=—d-E(r,t)L,,
with L, =[u,].

ponents as

(k T—w,t)
(3)(1.’ 2 P(3
a

“ " +c.c.],

where all the combinations
k,=+tk,*tk, tk,

o,=to,to,To

ro

i[kp~r—wp(r—t3)} k Tow (t—t,—t)]

X{E,e +c.c.}{Eze ? +c.c.}
X (E,e Mot T o oy .5)
(4.6)

The formal development of the third-order polarization can be written in terms of its Fourier com-

4.7

(4.8)

are present and the indices p, g, and r run over a, b, and c. If we consider the particular combination k,=k, +k, +k_

and o,

ps)(wa):_

X ¥ (d-e,) (de,,)(de)EEbEe

perm

if the molecular aggregate is in its ground state at the initial time, so that p(¢

=, o, to,, from the identification of Egs. (4.2) and (4.7), we obtain

—h%dfo”dt3 fowdtz fowdtl((,uIGO(t3)LuGO(tZ)L#GO(t,)L”lg,g»

(0, tw, to, )13 i(w +a)b)t2e1w t

(4.9)

=|g,g ). Also, 3 perm Stands for the 3!

permutations over the fields since any ordering, involving the three different ﬁelds, participates only once.
At this stage, we can introduce the third-order hyperpolarizability from the formal expression

3 =43 .
ng )(wa)“X( )(wwwa’wb’wc )eaEaebEbecEc ’

where

(4.10)
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XNy 0,,0,,0.)= 3 R0, +0,+o,.,0, +o,,0,)dodeded

perm

and

R¥Nw,+0,+o.,0,+0,,0,)=—(u|Gyo, +o, +o, )L, Gy, to,)L,Glo, )L,lg,g) .

Notice that of the four d’s, three of them are to be ap-
plied separately on the unit vector €; of the three
different exciting fields, and the remaining one defines the
polarization component. Also, we have introduced the

definition of the frequency-dependent Green function

1

—_— . (413
#io— Lg +i#il @13

Go(w)z—éfo dt e''Gy(1)=

To get an explicit evaluation of the third-order hyper-
polarizability, we have to evaluate R© )(a),, +w,
+o.,0,tw,,0,). This calculation can only be done if
we know the various couplings induced, in the Liouvilli-
an space, by I' and Lg. Concerning I', the couplings
have been calculated previously and are given by Egs.
(3.15)-(3.18).

We still require the couplings induced by Lg in the
Liouvillian space. To this end, we introduce a partition

of Lg given by
Ly=LytL,+L,, (4.14)

where the various terms correspond to

N N
Lop(t)=— 3 #Q[p(2) ,b)b,1— 3 #V[p(1),b}b,],

n=1 m¥n
N
Lip(t)=—i 3 L#ay[blb,p()+p(t)b)b,], 4.15)
m,n=1
S t
L,p(t)=i 3, #yb,,p(t)b,
m,n =1

The first term L, is purely diagonal, as it can be seen
from the eigenvalue problem of H described by Eq. (2.4).
However, this is not the case of the two other terms. The
mixing induced by L, can be described by the following
relations:

Lil gD ==Ly 4,80 ,

Lyl dg, 4 ==L 1y (0 +1 (k] 44, 400

(4.16)
Ll IBK’q,g )): _lﬁg(K,q)lBK,q’g »
(N—1)/2
—ifi 3 £(K,q,q')|Bg 8,
q'=1,9'#q
Ly|Bg g, 40 = —i#[§(K,q)+1y(k)]|Bg 4, A )
(N—1)/2
—ii Y E(K,q,q")|Bg g AN,
q'=1,9'#q
where
v(kK)=Ny&;,, 4.17)
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(4.11)

(4.12)

[
and the functions §(K,q) and §'(K,q,q’) are given by

(2 —1)+2K
K,q)=-1 RCL At Vit S
§K.a)=55 {c"t 2N
2
(2g—1)—2K
t—ﬁ—
+co 3 T ’ ,

(4.18)

’ ’ :z’l N1 . (Zq—l)ﬁm
§'(K,q,q") N lm’nzzlsm -
% sin (2g'—1)77'nJ
N
27K(m —n)
X cos —————N J

Finally, the last couplings of interest in the present model
are induced by the Liouvillian L,. They are described by
the following relations:

Lyl Ay, Ao =i#iyNlg,g ) ,

L,| Ay,B,, ) =2ifiy cot % lg, 40 , (4.19)
A (2g —)w
Lo|Bo,g, Ao ) =2ifiy cot | == || do,g)) -

From the knowledge of these various couplings, the func-
tion R ¥(w, + v, +,,0, +w,,»,) can be evaluated.

V. EVALUATION
OF THE THIRD-ORDER HYPERPOLARIZABILITY

For the sake of convenience, we introduce in the expli-
cit evaluation of the third-order hyperpolarizability some
simplifying assumptions. While L, and L, will be treat-
ed exactly, we will neglect in the following some nondiag-
onal couplings introduced by L, and I'. With respect to
L, the range of validity of this assumption has been dis-
cussed previously [25] and is given by the condition
N3y << V7% The second assumption is on the stochastic
damping operator I'. Here, we must distinguish two
types of assumptions. The nondiagonal terms can be
neglected in the subspace |Bg ,,g)), as long as the condi-
tion Ny, << V7 is satisfied. However, rejecting the non-
diagonal terms in the subspace IBK,q, A, ) is more res-
trictive because, here, the condition 8N(y,+5y,) <<V is
required. Notice that all the previous conditions have
been obtained by assuming that the various nondiagonal
matrix elements are small compared to the corresponding
energy levels.
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The last difficulty, which needs to be overcome to
evaluate the third-order hyperpolarizability, is the partic-
ular role played by that part of the stochastic operator
corresponding to the nondiagonal stochastic interaction
I",. Its introduction in the complete dynamics of the ag-
gregate is quite tedious. Because the ratio of ¢, over y is

A.S. CORDAN, A.J. BOEGLIN, AND A. A. VILLAEYS

Golw)= 3 G (o) —i#il G (w)]" (5.1)

n=0

is obtained from Eq. (4.13). Therefore, in this subspace,
we get successively for the zero-order term

, G (w)= 1
generally small [22], a first-order perturbational treat- o (@)= #io—L+i#il ’ (5.2)
ment of T'; on the subspace | 4;, 4;.)) can be introduced. s 0
The iterative development of G(w) given by the matrix element
|
1 Byr0 (1—8,0)
A, A |G (o) Apr, A N = ' '
€ il G5 ) e i) = | T o iy,
2iyy (0+2iy No+2iyy+iNy) ) (1—8,,)
X 18t ro Y(? ?/f) u T i , (5.3)
’ N (wo+iy No+iy_) o+iNy+2iy, o+2y,
where we have introduced the notation
Y+ =1[Ny +27,]£L[(Ny +270)*—8y7,]'/* . (5.4)
For the first order-term, the expression is similarly deduced from the relation
C Ap, 4G (@) 4g, AN =i 3 ( Ay, 4G (@) 4y, 45 N
ky.k,
X Ay, Ag IT Ay, A DK A, 4, |G (@) Ao, 40)) (5.5)
—
where we have used the property that I'; and GY couple Tk .o = Bg ,,gITIBg 8 M
populations to populations and coherences to coherences 4
only. The expressions of the matrix elements of interest _ o) — V1. ,(2g—1)m 5.8
in the other subspaces are easily obtained by using the as- 21rot2ry) N N 58

sumptions previously discussed. For the states | 4;,g))
we have

« Ak,g‘Go(CL))I Ak,g >>

N ﬁ[w—wk]+iﬁ[%ly(k)+yo+2yl] - 56
In the |B ,,g )) subspace, we obtain similarly
« By ,,81Go(0) By o8 V)
! (5.7

T Hlo— Qg 1 Hifl T, TEK,9)]

if we introduce the notation

lF‘K,q;k =«BK,q’ Ak|F|BK,qy Ay »

N

oo

_ 87/] )
—3(y0+2y1)—Tsm e

Ccos *

71

2m(K —k)
—16—7

N

N

(2g =) | 16y, W D72
|3

n=1

2m(K +k)

still valid for Ty and I';. Finally, the last type of terms
corresponding to the states |Bg ,, 4, )) are given by the
expression

Bk, A;|Go(@)| Bk, 45 )

_ 1
lo—Qg ,to, ] Hif[ g, +EK,q)+1y(k)]

(5.9

where the restriction of I" to its diagonal part is described
by the complementary notation

sin? l

Q2g—linm
N

]

(N=1)72
X 3 sin

n=1

(2g ;vl )Th ] sin

N

[(2q——1)1r(n+1)

|+sin((2 —Da(n = 1) } (5.10)

N

The last required terms correspond to the nondiagonal matrix elements included by L,. Notice that the evaluation of
R¥w,+w,+o,,0,+0,,0,) implies the difference of the following matrix elements:
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’

g |~

(g,g1Go(w)lg,g =

5.11
(w+iy No+iy _)=2yyo(N—1)+2iyyo+2iy,) G0

(0+iNy +2iy No+iy No+iy_)

«g,glGé,O’(w)le,AO»:%_

In fact, the divergence due to the term 1/ is just an artifact since it can be seen from the previous relation that this
dependence cancels. We still require the matrix element

_ 2iy cot{(2¢ —1)m /2N }
€ Ao.g]Go@)Bo,g, 407 Alo—wg+iye+2iy,+(i /2Ny lo—Qq, +@o+iTq 5.0+ (i /2) Ny +i(0,g)] (5-12)

The same expression holds for (g, 4¢|Go(@)| 44, B, , ) provided that w, and Q, , are replaced by —w, and —Q,.
Of course, the complete expression of the third-order hyperpolarizability is quite cumbersome. Nevertheless, because

it constitutes the starting point of the numerical simulations presented in the next section, we give its explicit form, that
is to say

R0, +0,+0,,0, +o,,0,)=R;+R,+R;+R, , (5.13)

where the various terms take the form

R =10 1 + L
! # | 0, Tt (i /2Ny +ivy+2iy, @,—wet(i/2)Ny+iy,+2iy,
v 1 . 1
w, o, to,—wo+(i /2Ny +iyg+t2iy, ,+w,+o, +w,+(i/2)Ny+iyet2iy,
X |<< Ag, Aol G (@, +0,)+ GV (w, +w,)| Ay, Ao M
1 (0w, +iy  Nw, o, +iy_)—27yo(N —1)+2iylw~+2iy,) 510
# (0, oy +2iyo+HiINy o, o, +iy  No, +o, +iy_) ’ ’
2
w3 (N=1/72
R2:——— .‘"‘(2);0,
ﬁ3 P q
x 1
[0, to, to, —wg+ (i /2)Ny +iyot+2iy, ][, +w, —Q,+i8(0,q)+il ,.8]
x 1
w, —wy+ (i /2Ny +iyy+2iy,
. 1
[0, Ty to, g+ (i /2)Ny +iye+2iy][o, t o, +Qy, +iE(0,q)+ilg .. ]
% 1
@, Tyt (i /2)Ny +iyy+2iy,

1
0, +w, 0, —Qq ,+wo+(i /2Ny +iTy 0 +i&0,q)

X

#{ Ay, Aol G (0, +0p)+ G (w0, +wp)| A, Ay )

1 1
_+_
w, g+ (i /2Ny +iye+2iy, o,—wy+(i/2)Ny+iy,+2iy,

1
+
(g +wp —Qp, +iE(0,g) il g —wo+ (1 /2Ny Fiyg+2iy,] ]
. 1
, +(L)b +wc+Qqu—a)0+(l/2)N1/+ll"o,q,0+l§(0,q)

X

i g, Ag|GP(w, +0,)+ GV (w, + )| Ag, Ao )
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1 i 1
w, oyt /2Ny +iye+2iy, w,—wyt+(i/2)Ny+iyy,+2iy,
1
[w, T, +Qq, +i8(0,g)+iTg 4.0 [, T oo+ (i /2Ny +iyo+2iv,] ’
.Uo N—1(N—11/2 1 5.15)
R =
24 El M3k K.q w, o, o, +Q , —ox +iE(K,q)+iTg ok
_ 1
w, tw, +wC—QK’q+a)2K +i(K,q)+ilk 40k
XU Ay, Ay |G, +0,) + G (w, +wpy )| Ag, Ay N
1 1
; - —+ ; ; ; ) (5.16)
W, twy+ (U /2)Ny +iyo+2iy, w,—wyt+(i/2)Ny+iyy,+2iy,
,“o v
R4: ﬁ3 2 Ho;0,9
g=1
. (2g— )7 1
X {—2iy cot
[ 14 2N [0, + @, + o, —wg+ (i /2Ny +iyo+2iy,]

X
o, tw, to,

—Qq,, 0o+ (i /2)Ny +i&(0,q)+iTy 0]

+

#{ Ay, Ag|GP (0, +©,)+ G (0, +w,) Ay, Ag M
1 n 1
o, twg+(i/2) Ny +iyyt2iy, o,—wgt(i/2)Ny+iy,+2y,

1

[w, —wg+ (i /2)Ny +iyyt2iy,][w, T o,

(2¢g —1)mr

—Qq,, +i£(0,g)+iTq .0 ] l
1

+2i t
iy co N

[a)a +(1)b +O)C+a)0

+(i/2)Ny +iyy+2iy,]

X
[0, o, T, +Q,

—wo+(i /2)Ny +i£(0,¢)+iTy 0]

7 A, Ao|G§)0)(0)a +o, )+G(()1)(wa +wy)l Ao, Ag M
1 4 1
w, twy+ (i /2) Ny +iyve+t2iy, w,—wyt(i/2)Ny+iyy+2y,

1
+ .
[, + ot (1 /2)Ny +iyo+ 207, [, + @, + Qo , +iE(0,g) il ] ] l (5.17)

At this point, we have the explicit expression of the
third-order hyperpolarizability which is required for the
numerical calculations.

VI. NUMERICAL CALCULATIONS AND DISCUSSION

In this section, we present and discuss the role of the
diagonal and nondiagonal fluctuations on the third-order
hyperpolarizabilities. We want to emphasize the role of

[
the nondiagonal fluctuations ¥, and compare their con-
tribution to the one of the diagonal fluctuations y,,.

We treat two cases: the resonant case through a degen-
erate forward four-wave-mixing experiment, and the non-
resonant case through a phase-conjugate four-wave-
mixing experiment. By ‘“resonant” or ‘nonresonant” we
mean that the frequencies of the electric fields are close to
or far off the monoexcitonic resonance w,=Q+2V.

The nonlinear susceptibility has been studied as a func-
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tion of the parameters N, y,, and y;. However, their rel-
ative magnitudes are subject to restrictions because of the
approximations y;<y, and more importantly
8N2(yo+57,) < ¥, made in the evaluation of y**.

In the following, we are not interested in the superradi-
ant limit, largely discussed by Spano and Mukamel [25],
and v, is taken to be much larger than Ny, with y being
the monomer spontaneous emission rate. Of course, this
also means that for fixed values of y, v, and y,, the ap-
proximations made put a limit on the aggregate size. No-
tice that as is the case of J aggregates, the nearest-
neighbor coupling V is considered to be negative. For
our numerical simulations, we have chosen V= —600
cm™ L Y= 1073 cm™!, and the monomer electronic ener-
gy gap Q equal to 16000 cm ™ 1.

A. Resonant case

In a degenerate forward four-wave-mixing experiment,
three nearly collinear laser beams with the same frequen-
cy w, and wave vectors k;, k,, and k;, respectively, propa-
gate in a nonlinear medium. A signal with frequency o is
generated in the direction k; —k,+k;. However, we are
not concerned with the propagation of the fields through
the medium, and focus instead on the response of an ag-
gregate. x'* can be written as

)((3)(a);co,a), —a))=R(3’(w,0,w)+R(3)(w,O, —w)

+R®w,20,0) , (6.1)

where we have expressed the permutations over the fields
of Sec. IV as a sum of three terms. The frequency o is
scanned over a frequency interval centered at
0y=0+2V, to be close to the monoexcitonic resonance.
In this case, x'> can be accurately simplified by

¥ w;0,0, —0)=R(0,0,0)+R (0,0, —w), (6.2)

keeping only the two terms being triply resonant for
0=, as seen in Eq. (5.14).
In Fig. 3, we first represent |Y*N(w;w,0,—w)| for

1.00

075 [~

0.50 [~

(3)| (arb.units)

|

025 [~

0.00

Frequency Detuning - @, (cm™)

FIG. 3. Third-order hyperpolarizability |y (w;0,0, —w)| vs
detuning (w—w,) with N=5, yo=1 cm™!, and y,=0, 0.1, 0.2,
and 0.3 cm™'. The curves are normalized to peak height of uni-
ty. Curves with increasing widths correspond to increasing
values of y,.
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N=5, yo=1cm™ !, and y, varying from 0 to 0.3 cm .

The curves are normalized to a peak height of unity to
compare the different linewidths. As expected, these
widths are increasing with y,. The full width at half
maximum (FWHM) can be easily derived from Egs. (6.2)
and (5.14), and varies linearly with (y,+2y,). Therefore
the amplitude of the nondiagonal fluctuations, although
smaller than the amplitude of the diagonal ones, contrib-
utes twice as much to the overall linewidth.

Next, in Fig. 4, we compare the linewidths of the
monomer and the aggregate. Notice that the monoexci-
tonic resonance of the chain is shifted by 2V with respect
to the monomer, reflecting the intermolecular coupling
V. Therefore the line shapes are plotted against the de-
tuning Aw=w—Q for the monomer, and Aw=w—w, for
the aggregate. Here, we have set ¥, equal to 0.5 cm ™!
and y; to 0.05 cm™!. First of all, notice that the
linewidths are independent of the aggregate size. Numer-
ical calculations for N =5,7,9 show that the line shapes
are indistinguishable. This result is characteristic of the
nonsuperradiant behavior considered here, with the
relevant parameter (y,+2y ) much larger than Ny. The
same observation remains true for y,=0, where we re-
cover the result discussed by Spano and Mukamel [25] far
off the superradiant limit.

The second feature is the difference between the mono-
mer and the aggregate’s linewidth. This difference stems
from the parameter v, increasing the width of the aggre-
gate compared to the monomer’s, the latter lacking for
obvious reasons any nondiagonal fluctuations. Indeed,
when y, is set equal to zero, the aggregate’s linewidth ex-
actly coincides with the monomer’s.

In order to further characterize the effect of ¥, and N
on the nonlinear response of the aggregate, we integrate

[x'>|? over the frequency o,
+ o0
AN, 70v1)= f_ X 00,0, —0)|*do , (6.3)

so as to recover a quantity proportional to the total inten-

1.00

0.75 =

o
o
o

T

(arb. units)

P!

o
IS
a

T

0.00

Frequency Detuning Ao ( cm™)

FIG. 4. Third-order hyperpolarizability | y'*(w;0,0, —o)| vs
detuning Aw for the monomer and the aggregate, with y,=0.5
cm™! and ¥,=0.05 cm™!. The wider curve corresponds to the
aggregate and the narrower one to the monomer. Only for
71=0 does the aggregate line shape coincide with the
monomer’s.
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3.0

A(N, g, 11 ) /10" (arb. units)
o
T

0.1
vy (102cm™)

FIG. 5. A(N,v07)) Vs 7y, close to resonance, with y,=0.5
cm™ !, and for several aggregate sizes N=5,7,9. A larger signal
corresponds to a larger aggregate.

sity of the recorded signal.

In Fig. 5, A(N,v,,7v) is plotted versus y,, for several
values of N, with y, being held fixed at 0.5 cm ™!, As ex-
pected, close to resonance, A(N,v,v,) is a decreasing
function of y,. In this case, it turns out that the total in-
tensity of the signal times (y,+2y,)* behaves as a linear
function of (yy+2y,).

The dependence on N can be seen in Fig. 6, where the
function A4(N,y,,7,) is depicted versus [N(N +1)]?, for
several values of y,;, with v, equal to 0.2 cm~!. The
straight lines observed show that near the resonance,
A(N,vo7v, is proportional to [N(N+1)]?, with the
same type of enhancement over the monomer’s response
whether v, is finite or whether it vanishes. This enhance-
ment can be explained through the increased oscillator

strength between the fundamental state |g ) and the total-
J

(3) .
X2~ 0;, —;,

The frequency w; is held fixed and o, is scanned over a
narrow frequency interval centered at ;. In order to be
far off resonance, we have chosen w; equal to w,+ 10V. It
turns out that the linewidth of |x'®'| is the same whether
Y1 vanishes or not, because the FWHM is proportional to
v only, in the limit y,>>Ny and far off resonance.

In Fig. 7, A(N,y,,71) is plotted versus 7, for several
values of N, and 7,=0.5 cm ™. In this case, 4(N,y0,7,)
is obtained by integrating |x'*’|? over the frequency o},

+ o
ANyorD)= [ "IXP0, 00, —0;0i)?do; .

(6.5)

In contrast to the resonant case, 4 (N,y,,7,) is now an
almost linearly increasing function of y,.

The dependence on N can be seen in Fig. 8, where
A(N,y0,7v,) is depicted versus N2, for several values of
¥1 and v, fixed to 0.2 cm~!. The straight lines scaled as

wi)=R(3)(2w,~—wj,a),»—-wj,co,»)+R(3)(2a)i—a)j,a),-
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[N(N+1)]2

FIG. 6. A(N,yo,7)) vs [N(N+1)]? close to resonance, with
¥0=0.2 cm™ ! and for ¥,;=0, 0.01, and 0.02 cm~!. A lower sig-
nal corresponds to a larger value of y;.

ly symmetric state | 4,). Again, as was shown in Fig. 5,
A(N,y,71) is a decreasing function of y ;.

B. Nonresonant case

We now consider a phase-conjugate four-wave-mixing
experiment with two pump beams and a probe beam
propagating in a nonlinear medium. The wave vectors of
the pumps are k; and k;, with k;=—k;, and their fre-
quency is w;. The wave vector and the frequency of the
probe are k; and w;, respectively. A phase-conjugate sig-
nal with frequency 2w; —w; is generated in the direction
k;—k;+k;,=—k;. Again notice that we are not con-
cerned with the propagation of the fields through the
medium.

This time, we write )((3 ) as

—0;,—0;))+R¥20,~0;,20,,0,) . (6.4)

3.0

-

A(N, o, 74) /1078 (arb. units)
n
T
\
)
\
\

0.5

v, (102cm™)
FIG. 7. A(N,ys7v1) vs v, far off resonance, with y,=0.5
cm™!, and N=5, 7, and 9. A larger signal corresponds to a
larger aggregate.
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A(N, Yo, 71 ) /1017 (arb. units)

1 1 1

25 49 81 121 169
N2
FIG. 8. A(N,Y0,71) VS N?, far off resonance, with y,=0.2
cm™! and for ¥,=0, 0.01, and 0.02 cm~'. A higher signal cor-
responds to a larger value of v .

N? show that there is no enhancement with chain size, as
was the case in the resonant process. As expected, for
71=0, one recovers N times the monomer result. Again,
we observe that A(N,y,,v,) is an increasing function of

Y1
VII. CONCLUSION

In this work, we have studied the internal dynamics of
small molecular aggregates (k-r,,, <<1) subject to sto-
chastic perturbations, and how they affect the nonlinear
optical responses of the aggregates. This work, initially
developed in the limit of diagonal stochastic perturba-
tions, has been extended to include diagonal as well as
nondiagonal couplings. Only the far-off-superradiant
case has been considered here, with pure dephasing rates
much larger than spontaneous emission rates.
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with the aggregate size close to resonance. On the other
hand, fluctuations in nondiagonal couplings efficiently
reduce the integrated intensity.

The difference between the linewidths of an aggregate
and a monomer stems from the nondiagonal parameter
71, pertaining to the chain only. The two widths coincide
in absence of nondiagonal fluctuations.

For far-off-resonance phase-conjugate four-wave mix-
ing, the total signal does not show any enhancement at all
with size, but this time the intensity is an increasing func-
tion of y,;. When y, vanishes, one recovers N times the
monomer result.

In this paper, we have shown that despite the fact that
the nondiagonal amplitude y, is smaller than the diago-
nal one y,, nondiagonal fluctuating couplings have a siz-
able effect on the nonlinear responses and optical line
shapes.

So far, we have analyzed the contributions of indepen-
dent diagonal and independent nondiagonal fluctuations
to the nonlinear optical susceptibilities. In a forthcoming
paper, we plan to compare the predictions of our model
to those resulting from a model based on diagonal corre-
lated stochastic fluctuations only.

Notice that only the Markovian limit has been con-
sidered here. It will be of interest, in the future, to de-
scribe the internal dynamics in the non-Markovian limit,
for both diagonal and nondiagonal fluctuations, and to
evaluate the resulting nonlinear responses of the aggre-
gates in this case.

APPENDIX

As an example, we give here the evaluation of the mix-
ing induced by the stochastic damping operator I'. For
the sake of simplicity, only the coupling generated by
(L(t,)L(t,)) on the Liouvillian states |Bg,, 4 )

For degenerate forward four-wave mixing, the total in-  =|Bg ,){ 4,| is explicitly calculated. From the
tensity of the signal displays an important enhancement definition of the Liouvillian, we have
J
(L(t)L(15)) B o, A W=|[CH(£,)H(£,)),|Bg ) A |14 D —2[CH(1))|Bg , ) A |H(2,)) ) . (A1)
The evaluation of the first term [(H (¢,)H(t,)),|Bg ,){ A, |] can be obtained from the expression
L N N (N=1)/2 N
(H(t)H(1,))=%8(t,—t )y, 3 IpXpl+2y, 3 3 Ipp+nXpptnl—2v; 3 Ip.p+1p,p+1lt,
p=1 p=1 n=1 p=1
(A2)

where the notation ¥y, =v,+2y, has been introduced. Using relation (2.5), we get the result

(CH(2))H(1,)),|Bg o ) A |14 =#8(t, —1,)

N

XN _ |
3'}/5|BK’q)<AkI—4NTI/2 2 2 sin [_(2_q_1)1 ]eIZWK(Zerl)/N

p=1p'=1

Xe-iZWkp'/Nlp,p+1><pr| l . (A3)

Next, we must calculate the second term {H(z)|By,, ){ A;|H(z,)) of relation (A1). It can be obtained from the evalu-

ation of the separate factors
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9 N (N-1)/2 (2q )TN | i2eK(2p+n)/N
H(t1)|BKq)"-A7 > 3 lele)te, ,(2)]sin v e 2K tn/N|p b4n)
p=1 n=1
9 N (N-D/2 . [(2 1)mn ]
+=3F 3 3,()sin
Np=1 n=1 N
X[eizﬂ_K(zp+2+n)/N‘p’p+n+1)+(1_81’n)ei27rK(2p+2wn)/N|p,p+N+l_n)
+ei2ﬂK(2p—n)/N|p+1’p+N_n>+(1_81’n )ei21rK(2p+n)/N|p+1’p+n>] (A4)
and
A1) 4, N1/2 2 (£, (£2)e 20 /N|p ) 4.3 (1,)[e 27+ V/N|p ) 4 gi2eko/N|p 1)1} (A3)

From these expressions, their product and statistical average must be performed. Therefore the mixing due to the diag-
onal fluctuations is given by the expressions

N—1(N—1)/2N—1
FO]BK,q’ Ak » = KZO '21 k'zo ®(K’qak;Kl7q"k')]BK’,q’y Ak’)> > (A6)
= q'= =

where the function ®(K,q,k;K’,q', k') is defined by
O(K,q,k;K",q",k’")

Yo (N—1)/2
:37’05K,K'3q,q'5k,k'_ N2 — 8k -k kK >

n=1

N N

. [(Zq—l)mz ’ . '(Zq'—l)*rrn ’ l(K—K')Zﬂ'n ]
sin sin cos

Similarly, the mixing induced by the nondiagonal fluctuations corresponds to

N—1(N—1)/2N—1
F1|BK’q,Ak »=K,20 21 kZOT(K’q’k;K"ql’k’”BK"q"Ak’» , (A8)
=0 ¢'= =

where the function Y(K,q,k;K’,q’,k’) is defined by

(2g — )7
N

2¢'—)m
N

(2g jvl Jirn }sin

sin

’ ’ ’ y .
Y(K,q,k;K',q",k ):6’)/18K,K!5qvqr8k’kr—87181n B kSr i

Y1 (N=172
- 16F52(K—K’),k—k' > sin
n=1

(2¢' —m(n+1)
N

2T

X |cos [——
N

[n(K—K")+(K'—k")] }

+cos

%T[n(K—K’)+(K’+k)]H

(2g —1)mn

+sin sin

(2¢'—1)mwr(n—1)
N
X

cos %[n(K—K')—uc—k')]

2

~+cos W[n(K—K’)-(K’-%—k’)] ] ] | . (A9)

All the other types of mixing can be deduced similarly. Because their evaluations follow the same lines, they are not
developed in this appendix.
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