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Quantum noise in two- and three-level models of the laser
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We compare the quantum fluctuations in two commonly used models of the laser, the Haken-Lamb
model [H. Haken, Laser Theory (Springer-Verlag, Berlin, 1984)] and the Lax-Louisell model [W. H.
Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973)]. In the Haken-Lamb
model the laser medium is taken to consist of two-level atoms whereas in the Lax-Louisell model it con-
sists of three-level atoms. We compare the predictions of both models for the output statistics of the
field in the limit where the atomic variables may be adiabatically eliminated. Our comparison is valid
from near threshold to far above threshold. While the three-level model is the more realistic of the two,
we find that the simpler two-level model gives good agreement for the amplitude noise, provided this
decouples from the phase noise in a given system.

PACS number(s): 42.55.—f 42.50.Lc

I. INTRODUCTION

The quantum theory of the laser was developed by
several groups in the 1960s [1—4]. The models differ in
their basic assumptions. In the Lax-Louisell [2,3] model
the laser medium is taken to be an ensemble of three-level
atoms whereas in the Haken-Lamb [1,4] model the laser
medium is taken to be an ensemble of two-level atoms. In
order to achieve population inversion the atoms are cou-
pled to an inverted pumping reservoir such that the exci-
tation rate co12 is greater than the deexitation rate co2, .
Because a real laser must have more than two levels in or-
der to achieve a population inversion (the inversion is put
in "by hand" in the Haken-Lamb model), the Lax-
Louisell mode is the more realistic of the two. The aim of
this paper is to find under what circumstances the
simpler Haken-Lamb model is an acceptable approxima-
tion, in the adiabatic limit.

The predictions of both models are identical for the
classical dynamics. The difference between the models lie
in their predictions for the quantum fluctuations. In the
Haken-Lamb model, the diffusion coefficients in the
Fokker-Planck equation grow linearly with the pump
rate, whereas in the Lax-Louisell model, they approach a
limiting value.

A recent investigation into generating squeezed light
from a laser with an intracavity second-order nonlineari-
ty y' ' found different results depending on the laser mod-
el chosen [5]. We wish to give a detailed comparison of
the two models, which we shall designate Haken's and
Louisell s for simplicity, in the limit where the time scale
for the atomic decay is much greater than that of the cav-
ity field. Therefore we can eliminate the atomic variables
adiabatically. For the three-level model the adiabatic el-
imination was done by Louisell (Chap. 10 of Ref. [2]) and
we shall restate his results valid from near threshold to
far above threshold. In the two-level model the adiabatic
elimination has only been done in the near-threshold re-
gime [1,6,7]. We wish to extend this to the region far
above threshold so that a comparison may be made with

the predictions of the three-level model for both near and
far above threshold. We note that Schack, Sizmann, and
Schenzle [5] used the near-threshold expansion of the
two-level model and Louisell's full expansion of the
three-level model in their comparison.

II. THE TWO-LEVEL MODEL

H =H, , +H„,+H;„, , (2.1)

where H, , contains the free parts of the field and atomic
Hamiltonians, and their interaction:

H,„,=ficoa a+ S, +igA(a S —aS+),
AcoL

2
(2.2)

and there are separate reservoirs for the atoms and the
field

(2.3)

Joz ~ (2.4)

~ +ik x.
S+ = g o'~e

j=1
(2.5)

The operators o.„o.+ are the usual atomic Pauli opera-
tors for the jth atom:

(2.6)

We use Haken's model of the laser [1]. The laser medi-
um consists of N two-level atoms, of transition frequency
col, coupled to a single cavity mode at frequency
co=col +A. The lower lasing level of the jth atom is
denoted by I

1 )~ and the upper lasing level by I2)i. Then
the Hamiltonian for the system may be written
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a'~ = f2), (1/, , (2.7)

(2.8)

a= —(y+ib, )a+gv+r
0 = —y~U+gDcx+ I, ,

(2.9)

(2.10)

Thus 2o.~ is the inversion and o. + and o. are the raising
and lowering operators, for the jth atom. S, is the total
atomic inversion and S+ can be thought of as the macro-
scopic dipole moment of all the atoms. k is the wave vec-
tor for the cavity mode and x is the position of the jth
atom. For the interaction between the atoms and the
cavity mode in Eq. (2.2), the dipole and rotating-wave ap-
proximations have been used. g is the dipole coupling
constant. In (2.3) the assumption of homogeneous
broadening has been made; that is, to model the atomic
loss and pumping mechanisms, each of the atomic opera-
tors is coupled to independent heat baths. I J represents
energy loss by collisional or phase-damping processes for
the jth atom, while I ~ represents spontaneous emission
and incoherent pumping.

The derivation of the Langevin equations via a master
equation and Fokker-Planck equation for the generalized
P function, in the Markov and rotating-wave approxima-
tions, has been well treated by other authors [1,7,6] so
here we simply state the Langevin equations:

We now carry out the adiabatic elimination. We sup-
pose that the thermal photon number n =0, and that

'V~~X~~ &&X . (2.21)

This allows us to set (u, D)=0 in Eqs. (2.10) and (2.11)
and solve for the adiabatic values of D and v, obtaining

y, N+ I — (ar t+a I, )
2g

Vl

y„(i+ 'ayan)
(2.22)

where cv2, is the loss rate 2) —+~1) due to spontaneous
emission, co, 2 is the incoherent pumping rate

~
I )~ ~2),

and yz is the rate of collisionally induced phase decay of
the atoms (Fig. 1 shows the level scheme, with the transi-
tion rates co,2 and co2, marked).

y~~
is the "longitudinal" decay rate of the population

inversion D, y~ represents the "transverse" decay rate of
the dipole moment U, and y&z=co&z —coz, is the rate at
which the population inversion is built up by the pump-
ing process. The pumping rate co&z must be larger than
the atomic decay rate coz, for lasing operation. The de-
tuning 6 between the cavity mode and the lasing transi-
tion is defined by

(2.20)

D =y, N y~~D
—2g—(u a+ua )+I

where

(r (t)r t(t'))=(r &(t)r (t'))=2yn5(t —t'),

(r, (t)r„(t')) =(r t(t)r t(t')) =2gua6(t t'), —

(2.11) gDa+ I,
(2.23)

(2 12) where the saturation photon number n, is defined by

V jX
f/

n, =
4g 2

(2.24)

(r, (t)r, (t')) =(r, (t)r„(t') )

(2.13)
We may then substitute the adiabatic values (2.22) and
(2.23) back into the equation for the field (2.9) to get

co,2N+ (N+D ) 6(t —t'), (2.14)

(r (t)r (t')) =[2(y~~N —y, D)

0!— p 1

+
n,

a —i De+I", (2.25)

—4g(u a+ua )]6(t t'), —

(r (t)r, (t ))=(r,(t)r, (t'))'

2', 2v5(t ——t') .

(2.15)

(2.16)

where the new stochastic force 1"' is related to the old
forces by

a is the internal amplitude for the cavity mode, corre-
sponding to the operator a. U is the collective atomic di-
pole moment, corresponding to the operator S,while D
is the total atomic inversion, corresponding to the opera-
tor 2S, . We note that in the generalized P representa-
tion, the variable pairs (a,a ) and (u, u ) are not con-
strained to be complex conjugates. We have defined

~~~ =~»+~»

co~z+ cozen+ P&
'Vz =

2
7

Xiz=~iz ~z&

(2.17)

(2.18)

(2.19)
FIG. 1. The two-level atom, showing the transition rates co&2

and co2l.
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r'=r +a a
1+a a f2n, r,

1+
n

The scaled laser pump parameter C is defined by

Ng y (2.27)

a /2n, 2

n~ n~

(2.26)
I

We now calculate the correlation functions of the sto-
chastic force I"'. To do this, we evaluate the correlation
functions (2.12)—(2.16) at the semiclassical steady state
given by solving (cc, U, D)=0 and ignoring I, I „and
I D,

' that is, we ignore the noise in the calculation of the
noise coefficients. We finally arrive at

2

yC
[oo(2+i') +cro(i') +2(1+i')(1—oo)

4crop(1+i')
—2(2+ i') [(oo+ 1)(1+i') + (p —1)(1 +i'+ o 0) ]

—2o0(2+ i')(1+era)+2croi'( I+@0)]5(t—t'), (2.28)

[
—2(2+i')(i') cro+2p(1 cro)—i'(1+i')yC

4 cpr o(1+i ')

+oo[(2+i') +(i') ][(oo+ 1 )(1+i')+(p —l)(1+i'+cro)]
—4cr o(1+era)i ']5( t t '), — (2.29)

where = A t+D tg(t),1/2

dt a aa o.'a
(2.35)

~ aa
1 =

n,

is a scaled intensity,

(2.30) where g(t ) is a 2X 1 5-correlated stochastic force vector
and the drift and di6'usion coefficients are

~12
Op=

~ll
(2.31) CK fX

n,

—1 n —ihn, (2.36)

is the inversion per atom at the lasing threshold, and

(2.32)

D =D yg=—aa a a

yCa /n, (2+i )

2(1+i)
(2.37)

is a measure of phase damping. p is greater than or equal
to 1; the equality occurs when y =0.

To simplify Eqs. (2.28) and (2.29), we take co&2»co&&,
so that

o.p= 1,
and we consider the limit of large phase damping,

p))1 .

(2.33)

(2.34)

This will turn out (Sec. IV below) to be the logical limit in
which to compare the two-level system with Louisell's
three-level system. In this limit the Langevin equation
(2.25) may be written

) C(2+i )(2+2i+i )
a a aa 2(1+i)3

(2.38)

r = A„~+D„'~ ri(t),
dt v

(2.40)

where ri(t) is the same 5-correlated stochastic force and
the new drift and diffusion coefficients are (assuming

We are interested in the fluctuations in the intensity of
the laser, so we change to amplitude and phase variables
(r, P), defined by

a =Qn, re (2.39)

and obtain a new Langevin equation
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/a/2»1) I I I
)

I I I
f

I I I
f

I I I6

Cg, =y —1 r,1+r (2.41)

yC(l+r /2)
n, (l+r )'

yC(1+r /2)
r n, (l+r )

D„~=O .

(2.42)

(2.43)

(2.44)

(2.45)

3
+' X&x0

V)

0—4
I » I I

(c)

2

We note that the amplitude and phase equations decou-
ple; that is, we may write

g.46)

FIG. 2. Output amplitude spectrum for Haken's model, in
the adiabatic limit: a plot of Eq. (3.34), for (a) C=2 (solid line),
(b) C = 5 (dots), and (c) C =20 (dashes).

(2.47)

S»»(co) = 1+8yn, :S„„(co):, (2.50)

We now solve for the deterministic steady state by set-
ting the drift coeKcients equal to zero. We find that the
steady-state intensity is simply

(2.48)

but the phase P has no steady state. When the detuning
6=0, the phase diffuses freely; for nonzero detuning
there is a drift motion (a rotation at constant frequency
b, ) superimposed on the phase diffusion. This means that
the zero-frequency component of the phase spectrum will
diverge. We may, however, calculate the amplitude spec-
trum of the output light:

gout(~ )
—f dt e ttut(+out( t )g ollt(0) ) s (2 49)

where X'"' is the usual output amplitude quadrature, and
the spectrum is normalized so that zero corresponds to
no fluctuations, and one to the vacuum level. Following
Gardiner [8] we can calculate S»»(to) by linearizing Eq.
(2.46}about the steady-state amplitude r'. We find that

of the laser pump parameter C. The spectrum is a simple
Lorentzian, with full width at half maximum
4y i '/( 1+i ') W.e note from (2.53) that the zero-
frequency fiuctuations are divergent at threshold (C= 1,
i'=0). Above threshold the fiuctuations tend towards
Poissonian (S»» = 1) at all frequencies.

III. THE THREE-LEVEL MODEL

The results of this section have all been derived by
Louisell in Chap. 10 of Ref. [2], so we merely summarize
the results contained therein.

Louisell assumes the active laser medium to consist of
homogeneously broadened three-level atoms (see

energy-level diagram in Fig. 3). The lasing transition is
between the upper two levels. The Hamiltonian for the
system is exactly as in Eqs. (2.1)—(2.3), but with the extra
atomic level ~0), and extra heat baths to model the

~
0 )~

~
1 ) and ~0 )~

~
1 ) transitions. As in Haken's mod-

el, each atom is assumed to couple to its own independent
heat baths (the assumption of homogeneous broadening).

The system operators for the three-level system are a,
a S S+ N 1 and N2, where a and a are the boson
operators for the cavity mode,

where

:S„„(co):—:J dt e ' '(:r(t)r(0):)' (2.51)

g = y l», &21, ,
j=1

N

(3.1)

(3.2)
D„„

(BA„/Br) +co
(2.52}

gout( ) 1+ 8(1+I /2)

4( s)2+ ( 1+ s}2

Figure 2 plots the spectrum in (2.53) for different values

(2.53)

Equation (2.52) comes from Gardiner [8]. We note that
because the Langevin equations are derived via the P
function, the spectra obtained are normally ordered, as
indicated by the:: symbols in Eq. (2.51). To get the
symmetrically ordered spectrum, we have added one in
Eq. (2.50). We finally obtain

are the collective dipole moments for the lasing transition
I
1 )~12), and

(3.3)

(3.4)

are the populations in levels ~1) and ~2), respectively.
Comparing the definitions (3.1) and (3.2) of the dipole
moments with Eq. (2.5), we note that there is no factor

+lk x.
e ', dependent on the position of each atom. Howev-
er, given the assumption of homogeneous broadening,
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(r (r)r (r )) =[R,+~„W,+r,W,

—g(u a+va )]5(t t')—,

(r ( )r ( '))=2[ „—Jv', „—tv,

(3.19)

+g(u a+ua )]5(t—t'), (3.20)

( r (r)r„(r') ) = (r~ (r )r,(r ) )'=2r, v 5(t t—'),

FIG. 3. The three-level atom, showing the various transition
rates.

(r,(&)r, (&')) =(I ~(&)r t(t'))t

= —2', 2v 5( t —t ' ),
and the various rates are defined as follows:

(3.21)

(3.22)

N»N„N, . (3.5)

this factor makes no difference to the final equations.
It is assumed that there is a very large number of

atoms available in the ground state to be pumped to other
levels, so that the depletion of the ground state is negligi-
ble, i.e.,

R, —:Neap],

R z
=—Ncopz,

I i =coip+coiz )

I z=cozp+6)zi

r„=r~„"+-,'(r, +r, ) .

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

a+~a,

a ~~a

S ~U,
S+~U

(3.6)

(3.7)

(3.8)

(3.9)

With the following correspondence between operators
and c numbers

I,z is an atomic dephasing rate due to collisions and oth-
er phase-destroying processes, y, 5, and g are as defined
in Sec. II, and the transition rates m k are as defined in
the level picture of Fig. 3.

To simplify the model, Louisell assumes that I, is
much larger than all other decay rates. The atoms in lev-
el ~1) then decay to the ground state ~0) so rapidly that
we may set

(3.10)
A', =o (3.28)

Nz~ (3.1 1)

and with a truncation of the Fokker-Planck equation to
derivatives of first and second order only, valid when Eq.
(3.5) holds, the I.angevin equation is

and ignore the JV& equation entirely. This is a sensible
limit to take for a normal laser, as the population inver-
sion JVz —JV, )0 becomes easier to achieve with a very
small population in level ~1). To complete the adiabatic
assumptions, we assume that I z is much larger than the
cavity loss rate y so that we have

a= —(y+i A)a+gv+ I

v = —y~u+g(A'~ —JV, )a+1, ,

JV, =R
&

—r, JV, +co@,JV2+g(u a+ua )+I ~,
A'2=R2 —I 2JV2+co, 2JV, —g(v a+ua )+I~,

(3.12)

(3.13)

(3.14)

(3.15)

I z»I, »y . (3.29)

Under these conditions the atomic variables may be adia-
batically eliminated to give equations for the field of the
form of (2.35), where

where

( r, (r )r, (r') ) = ( r t(r)r q(&') ) t=2gua5(t —t'),

(r„(&)r,(&')) =(r, (&)r (&'))

(3.16)

—1 e —ikey,

@Ca /n,

1+
n,

(3.30)

(3.31)

=2[R +(I,+2I 'g)JV +co, JV, ]5(t t'), —

(3.17)

(3.18) a,nd

(r (r)r (t ))=[R,+~„A,+r,W,

—g(u a+va )]5(t —t'),

au1+
2g

D y
=D y=2yCaa aa na1+

Pl

2 (3.32)
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&x0
V)

I I
i

I I I
i

I I I
i

I I I6 was so great that the population JVI of that level could be
set to zero, and the JV, equations ignored entirely. In
that case we can compare Eqs. (2.10) and (2.11) of Haken
with Eqs. (3.13) and (3.15) of Louisell, identifying
Haken's population inversion D with Louisell's upper
level population JV2. The deterministic parts of the
equations are the same if we make the following
identifications:

Haken Louis ell

Q—4
I I I I I I I I I I I I I I

—2 0 2
~/7

FIG. 4. Output amplitude spectrum from Louisell's model, in

the adiabatic limit: a plot of Eq. (3.74), for (a) C=2 (solid line),
(b) C=5 (dots), and (c) C=20 (dashes).

r,r„
n, —=

22g

R~C=
2+n

(3.33)

(3.34)

CA„=y —1 r,
1 + 2

(3.35)

The saturation photon number n, and scaled pump rate C
are the three-level model equivalents of those defined in
Eqs. (2.24) and (2.27).

Changing to the same amplitude and phase variables
defined in Eq. (2.39), we find that the amplitude and
phase decouple, with the phase rotating at angular fre-
quency 6 and freely diffusing as well. The Langevin
equations are of the form of (2.46) and (2.47), with

D
N R2

r, +r,
2

+I I,'2

I2

r]2= r]/2 » r2 (4.1)

To simulate this Haken's model we must therefore take
y~ &)y~~, or in other words,

2Yl 3
~( 7p ))1 (4.2)

We are thus modeling the fast decay from the lower
lasing level as a strong phase-destroying process,

(ii) In Louisell's adiabatic approximation the atoms in
the lower lasing level ~1) decay so quickly to level 0)
that there is little probability of reexcitation to level ~2).
In Haken's model therefore we take

It is clear that to approximate Louisell's model using
Haken's, in the adiabatic limit, we must make two as-
sumptions.

(i) Louisell has taken I I much larger than all other de-
cay rates, so that

(3.36) Q)~2 +(&2~ (4.3)

yC
n, (1 +r )

1 yC
S

(3.37)

(3.38)

Linearizing these equations, we find the output amplitude
fluctuation spectrum:

S~~(co)= I+8yn, :S„„(co):

8(1+i')

4(
~ s)2+ ( 1+ ~ s)2

y

(3.39)

(3.40)

IV. COMPARING THE TWO MODELS
IN THE ADIABATIC LIMIT

Louisell's first step in deriving Eqs. (3.30)—(3.32) was to
assume that the decay rate I

&
from the lower lasing level

which is plotted in Fig. 4 for the same values of C as in
Flg. 2.

The unsaturated inversion per atom is then

COp) 6) )2
Op= =1 .

602) +6) )2
(4.4)

The best possible agreement between the models of
Haken and Louisell then should be in the limit

p ))1,
gp=1 .

(4.5)

(4.6)

This is just the limit in which Eqs. (2.41)—(2.44) are valid,
leading to the spectrum (2.53). We note that the ampli-
tude diffusion coefFicient D„„ is smaller for Haken's model
than for Louisell's by a factor

DH

LD„„

1+i '/2
1+i' (4.7)

where the superscript H denotes Haken's model, and the
superscript L Louisell's model. The drift terms are equal,
so the normally ordered spectra will differ only by the
factor in Eq. (4.7). We can see from (4.7) that in the
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X+ X0
V)

X&x0
(f)

1.0

0.8

0.6—

0.2—

I I I / I I I I I I I ~ ~

I ~
I )—& ~0 ) of Louisell as a phase-destroying process in

Haken's model, which has inflated the phase noise. Pro-
vided we are primarily interested in the amplitude noise,
and the amplitude and phase noise are decoupled (which
is certainly the case for the bare laser system considered
above, and is often the case even with nonlinear elements
inside the laser cavity), we are not concerned by this.

V. CONCLUSION

I I I I l 1 1 I I I I I I I I I I I I I I I I I0 0
10 20 30 40 50

FIG. 5. Comparison between Haken's and Louisell's models
in the adiabatic limit: we plot the ratio of zero-frequency
symmetrically ordered spectra for the two models.

high-noise region just above threshold (i ((I) the two
models agree. Well above threshold (i')) 1), the normal-

ly ordered spectrum will be smaller by a factor of 2 for
the two-level case; however, in both cases the symmetri-
cally ordered spectra (which measures the actual noise
present) tend to 1. In Fig. 5 we plot the ratio of the
zero-frequency spectra for the two models. There is good
agreement just above threshold and well above threshold;
the worst disagreement occurs at

C = I+&2 =2.4, (4.8)

when [Sg~(0)] is smaller than [Sx~'(0)] by a factor of
(3 —V'2) /2 =0.79.

The phase diffusion term D&& is larger for Haken's
than for Louisell's model by a factor

We were able to make a useful comparison between
two often used laser models, those of Haken and Louisell,
in the adiabatic limit. To make a connection between the
two models in this limit, we modeled the fast transition to
the ground state in the three-level model of Louisell, by a
fast atomic dephasing process in the two-level model of
Haken. This seems reasonable, as in the three-level mod-
el we expect the transition to the ground state to destroy
the phase relationship between the 1asing levels.

We obtained fairly good agreement in the output inten-
sity spectra for the two models, from near threshold to
well above threshold. However, the effect of introducing
the fast atomic dephasing in two-level model was to
inflate the phase noise.

Our overall conclusion then is that Haken's simpler
model is an acceptable approximation to that of Louisell,
provided that we are primarily interested in intensity
fluctuations, and that the intensity and phase fluctuations
decouple. However, if the intensity and phase fluctua-
tions are coupled, by introducing a nonlinear element in-
side the laser cavity (for example, intravity second-
harmonic generation, in the bistable region [5,9, 10]), then
the more realistic model of Louisell should be used.

ACKNOWLEDGMENTS

(4.9)

We have been forced to model the fast transition

This research was supported by the New Zealand Vice
Chancellors Committee, the University of Auckland
Research Committee, the New Zealand Lottery Grants
Board, and IBM New Zealand.

*Present address: Department of Physics, Princeton Uni-

versity, Princeton, NJ 08544.
[1]H. Haken, Laser Theory (Springer-Verlag, Berlin, 1984).
[2] W. H. Louisell, Quantum Statistical Properties of Radio

tion (Wiley, New York, 1973).
[3] M. Lax and W. H. Louisell, Phys. Rev. 185, 568 (1969).
[4] M. Sargent, M. O. Scully, and W. E. Lamb, Laser Physics

(Addision-Wesley, Reading, MA, 1974).
[5] R. Schack, A. Sizmann, and A. Scheuzle, Phys. Rev. A 43,

6303 (1991).

[6] M. A. M. Marte and D. F. Walls, Phys. Rev. A 37, 1235
(1988).

[7] M. A. M. Marte, H. Ritsch, and D. F. Walls, Phys. Rev. A

38, 3577 (1988).
[8] C. W. Gardiner, Handbook of Stochastic Methods

(Springer-Verlag, Berlin, 1983).
[9] D. F. Walls, M. J. Collett, and A. S. Lane, Phys. Rev. A

42, 4366 (1990).
[10]R. B. Levien, M. Sc. thesis, University of Auckland, 1991.


