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Inversionless amplification in a multilevel system
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We prove that the amplification condition for a multifrequency field in an atomic system with multiple
splitting of the operating levels implies a population inversion between the eigenstates of the density ma-
trix. This explains the possibility of amplification without population inversion when a coherent super-
position state of sublevels is prepared.

PACS number(s): 42.50.HZ, 42.25.Bs

INTRODUCTION I. MULTIPLE SPLITTING OF THE LOWER LEVEL

The amplification of a monochromatic field in a two-
level system requires population inversion when the field
and the atomic frequencies coincide (resonant operation).
Recently, many papers [I—4] dealt with the generaliza-
tion of this result to the A configuration. This
configuration can be considered as resulting from the
lower-level splitting in a two-level medium. Let the levels
be labeled 1, 2, and 3, with atomic transition frequencies
cOQi ((co3$ (c03] It was shown that the amplification of a
bichromatic field with frequencies v, =co3& and vb —f032
in a three-level medium with a A configuration is possible
in the absence of population inversion at both optical
transitions co32 and co». As demonstrated in [3], this pro-
cess occurs through the excitation of a coherent superpo-
sition of the two lower sublevels when the amplitude of
the low-frequency (LF) coherence p, z is large enough,
~p&2~ ) (p&&

—p33)(pz2 —p33), where pkI, is the population
of level k. DifI'erent ways to excite the LF coherence
were proposed in [I—4]. In particular, detailed studies
were published, which considered the use of either a reso-
nant microwave field or a bichromatic coherent field to
pump resonantly an adjacent transition in a double-A
scheme.

The recent experimental results of Gao et al. [5] on
amplification without inversion have emphasized the
need to address the difricult problem of amplification in
multilevel systems more systematically. There are many
possible configurations that can be considered, and the
experimental scheme of Gao et al. , based on Na atoms, is
surely not the simplest. As a first step towards a study of
multilevel atoms with multimode fields, we propose to
generalize the amplification condition for the case of mul-
tiple splitting of either or both operating levels. More
precisely, we want to formulate a general amplification
condition for a multifrequency field in a medium with a
multiple-level splitting when each component of the field
interacts with its own resonant transition. Although this
is a rather particular scheme, it has the advantage of be-
ing amenable to an analytic study.

A. Characteristic equation

a a
M-1 M-2 a, a

M —1

M —2

FIG. 1. Transition scheme with lower operating level split-
ting.

We first consider the propagation of a weak multifre-
quency field in a medium with multiple splitting of the
lower level. The lower levels are labeled 1,2, . . . , M —1,
in order of increasing energy levels, and the upper state is
labeled M. The transition diagram is displayed in Fig. 1.
We assume that before the weak field is applied, the
medium is in a steady state determined by external
sources, which excite a coherent superposition of the
lower sublevels. Thus the slowly varying envelope o.; of
the nondiagonal density-matrix elements with
1~i M —1 and 1~j &M —1 are constants fixed by
these external sources. The field propagation is described
by a set of wave equations for the slowly varying complex
amplitudes of the fields o;, with 1 +j ~M —1, and by the

1050-2947/93/47(6)/5003(6)/$06. 00 47 5003 1993 The American Physical Society



PAUL MANDEL AND OLGA KOCHAROVSKAYA 47

equations for the slowly varying complex amplitudes of
the resonant optical polarizations o.M with 1 ~j ~ M —1:

0
s(&) (p) ) ~ ~ ~ &s

0
s(M —1)

Bcxj BQj+c —27TE v ~)MM ~ %ATM /c1%
Bz at

~M' M —1

OMj() Mj+&~Mj ) EajOMM+~
MJ

J J J J k=1

since there was no excited optical polarization in the
medium before the action of the multifrequency probe
field. Using this basis, we obtain

(lb)
det(A)= Qgk(oMM —Xk) .

k
(5)

Here v is the carrier frequency of the j component of the
field and N is the atomic density. The optical transition
M —j is characterized by a dipole matrix element pM, a
polarization relaxation rate yM, and an atomic frequency
difference conj. The detuning is AMj conj vj All sum-
mations in this section are from 1 to M —1. Therefore, as
a convention, we shall omit the lower and upper bounds
in all sums. Similarly, all products are from 1 to M —1

and therefore their limits will also be omitted.
The assumption that the o.;- with i and j &M —1 are

constants implies that the set of Eqs. (1) is linear in
a and a~. . Therefore it has solutions of the
form a (z, t) =a exp( icot—+ikz) and o Mj(z, t )

=oM exp( idiot+—ikz). This idea is considered in more
detail in the Appendix. Substituting these expressions in
Eq. (lb) leads, for the optical polarizations, to the expres-
sion

X k kj ajaMM
k

) Mj+i(~Mj

With this result, Eq. (la) yields a set of algebraic equa-
tions:

Hence the amplification threshold of the normal wavea"= Ia", , a2', . . . , aM, I corresponds to the equality
between the upper-level population o.~~ and one of the
eigenvalues A,;.

B. Amplification condition

From Eq. (5), it follows that the amplification condi-
tion is

o MM )min(A. k ), 1 ~ k ~ M —1 .

In other words, the amplification condition implies an in-
version between the upper-level population and the least
populated of the eigenstates s'"'. To show this point
rigorously, we write Eq. (2a) as a matrix equation

(a*+Gkg 1)a(.) &-MMa(. ) g diag(gj) g- g I
(7)

Given the structure of Eq. (7), it is natural to introduce
the expansion of the vectors a'"' on the basis Is' 'I and,
conversely, the expansion of the vectors s' ' on the basis

(m)
I
.

g Ak ak=Ga, G=i(k —co/c),
k

Akj gj( ajk +oMM~jk )

277' )MM ~

X
cfi[yM, +i (b,M

—co)]

(2a)

(2b)

k = ~Cks™~ s = MD a™
m

Inserting the expansion of a'"' in Eq. (7) and multiplying
it by a' '* leads to the relation

y C"*s "' y (g C" s' *+Gkg a'"') =oMM ~a'

&s' '=Aks' ', = Io.k, ,
' 1 ~k, j ~M —1I .

The eigenvectors of the matrix o. will be

(4)

where 5, = 1 and 5 k =0 if kW j.
The normal waves and their gains coincide with the

M —1 eigenvectors a' ' and eigenvalues 6 of the
(M —1)X(M —1) matrix A whose elements are the Ak .
Gains are determined through the characteristic equation

det( A —GI ) =0,
which is the equation that determines the dispersion rela-
tion: It gives the complex wave number of the normal
modes as a function of the real frequency co, i.e.,
k„=co/c iG„(co). The —amplification threshold for each
normal wave, G„=O, is therefore defined by the condition
det( A ) =0. In order to calculate this determinant, we in-
troduce the basis of eigenvectors of the density submatrix
o. corresponding to the set of LF transitions between sub-
levels:

Solving this equation for the gain Gk yields the expres-
sion

—x )fc'/'
G

yg
(8)

For the sake of simplicity, we shall consider the case of
line-center operation co=5„J., bearing in mind that usual-
ly gain is maximum on resonance.

Let us first show that the eigenvalue G in Eq. (2a) is
real. In the case of equal coupling constants (g. =g, Vj),
this property is obvious because Ak is a Hermitian ma-

trix. When g Wg, the reality of G follows from the
fact that the matrix B=(&I ) 'A&t, where
i/I"=diag(Qgk ) and (+I ) =I, is obviously Hermitian
and has the same eigenvalues as the matrix A. This also
means that the eigenvectors of the matrix A are not mu-

tually orthogonal if g.Ag, because the eigenvectors of B
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form an orthogonal basis. However, the relation
p( '=(3/I ) 'a' ' gives the property (p( ', p'"')

(m) r 1 (n)) —g mn'
From Eq. (8), we conclude that a positive value for Gk

implies (rMM)min(A, ), m=1, 2, . . . , M —1. In order
to prove that this inequality is also sufficient, we multiply
Eq. (7) by D", sum over the index m, and multiply the re-
sulting expression by the vector s' '*; we obtain

states). The 4 are represented by a column vector of
dimension M —1 whose elements are zeros, except for the
mth element, which equals 1. In that basis, we also have
the decomposition s'"'=g K (I(' . The atomic medium
will amplify the field a that coincides with a' ' and there-
fore with s' '*. In other terms, the amplified field will
have components such that a /a~ =(K~ /K~ )*, and will
be amplified with gain Gk provided nMk & 0.

—X =~ G D'*D"(a(&' r-'a( ')MM k ~ m p m
m, p

=gG

If there is inversion, then o.
MM

—
A, k & 0 and there is obvi-

ously at least one positive 6 that provides amplification.
Thus we conclude that the necessary and sufficient con-

dition for amplification is population inversion between
the upper level and the least populated of the eigenstates
s". This is due to the fact that the density submatrix o. is
of course diagonal in the basis Is"I. Hence, there is no
interference in this basis and only population inversion is
responsible for the amplification.

C. Gain

We calculate the gain near the threshold o.
MM =A,k, as-

suming that all other eigenvalues A, ; are far enough from
o.MM. First, we rewrite the characteristic Eq. (3) in the
basis Is("'I as

+g; det(nM;5;k GFk)=0, —nM (10)

where Ft =gjsj("g~ 's~I"'*. In the vicinity of the thresh-
old 6=0, we only retain the terms that are linear in 6,
and obtain

nMk

g s("1~ /g
J

It follows from this result that even a weak population of
the upper level o.

MM can lead to amplification, i.e.,
Gk &0, provided it exceeds the threshold value A, k. This
result is consistent with Eq. (8). Indeed, from Eq. (7) near
threshold (Gk ——0), it follows that the normal waves coin-
cide with the eigenvectors of the matrix A, i.e.,a'"'=s' '*. Then C" =5 k and Eq. (8) becomes Eq. (11).
In the case of equal coupling constants (g; =g), the equal-
ity a'"'=s' '* remains true even away from threshold,
and from Eq. (8) the corresponding gain is

~11+~22 +
2 1/2

~1,2 ~11
s(1 2)

O21

(13)

As the LF coherence o-2, increases, the smaller eigenval-
ue A, , tends to zero, while the larger eigenvalue A,2 tends
to the sum of energy-level populations, as displayed in
Fig. 2. The characteristic equation det( A GI) =0 y—ields

(g,g2) 'G —G(Fzn»+F', n32)+n3, n32=0 . (14a)

It coincides with the characteristic equation that was ob-
tained for the A scheme in [3]. Because F2n3, +F', n32 is
obviously positive in the absence of population inversion
between energy states at the optical transitions (n, 3 )0,
n23 )0), the necessary condition for amplification takes
the form n» n 32 & 0. It means that there must be popula-
tion inversion between the upper level and the least popu-
lated of the eigenstates (n 32 & 0 and n 31 (0).

In the basis of energy eigenstates, the characteristic
equation becomes

(glg 2 ) G G(gl 13+82 23 /glg2

+ n 13n 23 (14b)

The gain condition is ~(T2, ~

& n, 3n23. If we solve that in-

P22

p~~

D. The A scheme

In the particular case of simple splitting (M —1=2),
we can easily find the eigenvalues and eigenvectors of the
density submatrix:

Gk gnMk g(oMM (12)

Another way to interpret this result is as follows. Con-
sider the incident field

I(r, 21
2 &) ) &22

a=col(a„a2, . . . , aM, )=g a %'

where the 4 are the atomic states (or energy eigen-

FICx. 2. Eigenvalues of the density submatrix corresponding
to the low-frequency transition as a function of the magnitude
of the low-frequency coherence.
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equality with respect to the upper-level population, we
obtain again n32 )0. However, we also have n» (0 and
ln3, I

) n3&. Because of this last relation, it seems at first
sight that absorption at the noninverted transition
(n3i (0) should prevail over amplification at the inverted
transition (n 32 )0), and hence prevent amplification.
However, this is not correct. To clarify this point,
let us consider the interaction Hamiltonian
V= —A'a&l P3 & & Pil —A'a2I g3 & & @2I+c.c. , which describes
the interaction between the medium and the bichromatic
field a=col(a&, a2). In the representation of the density-
submatrix eigenstates, V becomes

V=
cr i2( A.2

—k, )

x I [aiai2+az(all 4)] gi &&s"'I

aux; aux .

+c ' = —g g(o; —oMM5; )a, ,
Z at

ao;j
aMMfi

at

(16a)

We neglected here the longitudinal and transverse relaxa-
tion processes between the LF transitions, as well as the
longitudinal relaxation processes at optical transitions,
assuming that the multifrequency pulse duration is much
shorter than the corresponding relaxation times. At the
same time, we suppose that the transverse relaxation
times for the optical transitions are essentially smaller
than the pulse duration and we eliminate the optical po-
larizations adiabatically. As a result, we obtain the set of
equations

—[a,a„+a,(a„—&i)]I&3&&s"'I]+c.c. ,
+a g (cri crMMfi~ }a (16b)

where we used the relations

lg, & =(I""&
—I."'& )/(&, —&,),

y, &=[( „—&,)l~'"&

—(o„—X, )ls' '&]/[o~, (A, ,
—A~)] .

Decomposing the bichromatic field in normal waves
a=a, a'"+a2a' ' and taking into account that in the vi-

cinity of the threshold the normal waves coincide with
the eigenstates of the density submatrix, a"=s", we
can express the interaction Hamiltonian in the form
I'= —&[oi l@,&&s'"I+a2I@,&&s"'I]+c.c. It follows
from this result that each normal wave interacts only
with its own effective transition. As a result, the absorp-
tion of the normal wave a'", interacting with the nonin-
verted transition n» (0, does not prevent the
amplification of the normal wave a' ' interacting with the
inverted transition n 32 )0, since both normal waves
propagate independently of each other.

Let us consider the basis consisting of the absorbing
a1 cx24, =[ '] and nonabsorbing iIr„=[ '

] states, where 4„
2 1

does not interact with the field. The condition
lo2, I

) n»nz3 is equivalent to the population inversion
between the upper level and the absorbing state. The
basis I %„%„]is parameterized by the ratio of the two
wave amplitudes a, /a2. If we choose this ratio to be the
same as in the amplified normal wave a' ' [3,6,7], then
this basis coincides with the basis of the eigenstates of the
density submatrix s" ' at threshold (Icr2&I =ni3n23) and
hence both interpretations are equivalent.

E. Nonlinear propagation

Let us analyze now the nonlinear propagation of the
multifrequency field. For simplicity, we consider only the
case of equal coupling and relaxation constants for all the
transitions and exact resonance AM;=0. This propaga-
tion is described by Eqs. (1) plus an equation for the den-
sity submatrix corresponding to the LF transitions:

ao;~ =i(a,*crM —ajo,M), i,j ~M —. 1 .
at

In the vicinity of the threshold (oMM &minkk), only
one normal wave corresponding to this threshold can
propagate with amplification. Because gk=g, we have
a' '=s' '*. If just before the pulse arrives, the medium
was prepared in the eigenstate of the density submatrix,
i.e., s' '= g„sk "Irk, with (%k,s™)=sk™,we have

ozq(t= —~)= g A, s s™*,and after the action of
this normal wave only one eigenvalue A, will be
changed. Therefore we can seek a solution of Eqs. (16) in
the form

a=a(t, z)s' '*, (17a)

After substitution of the ansatz (17) into Eqs. (16), we ob-
tain

aA ~
ao,'

+c
~

=«~ —aMM»
az at

a~m

at

(18a)

(18b)

Multiplying the first equation by cx*, and taking into ac-
count that

o MM(t) =1—
A, (t) —g (1—fit }A (t t= —cc ),

1

we obtain finally the set of equations

aI , aI (19a)

an = —4In /y, (19b)

where I= lal and n =o.
MM

—
A, . These equations coin-

cide with the equations describing the resonant propaga-
tion of the ultrashort pulse in a two-level inversionless
medium [9] with a population difference between the en-

ergy levels equal to n. The formal solution of Eq. (19b)
can be written as n(t)=noexp[ 4f ' I(—t')dt'/y].
Substituting this solution into Eq. (19a), we find the law

o;(t)=.o;, (t = —oo )+[X. (t }—A. (t = —cc }]sI 's,™
(17b)
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of nonlinear propagation:

Io(t —z/c )

1 — 1 —exp g I nodz exp —4I I(t')dt'/y
0 oo

(20)

Thus a normal wave pulse propagates in a multilevel
system like a "monochromatic" pulse in an effective two-
level medium with a population difference n =o.~M

—A,

The interaction of this pulse with the multilevel medium
is reduced to the saturation of the effective two-level tran-
sition.

II. MULTIPLE SPLITTING OF BOTH
OPERATING LEVELS

max(A, "
) )min(A, „) . (21)

The superscripts u and l refer to the upper and lower lev-
els, respectively. Two simple consequences follow from
Eq. (21). First, in the case when only the upper level is
split, the sum of the upper-level populations must exceed
the population of the lower level in order to get
amplification. Indeed, from (21), we have

2+N 2+N
o, ,

= g A.
" )max'" )mink, '„=o„.

I =2 m =2
(22)

This does not mean that amplification without population
inversion due to the LF coherence excitation is impossi-
ble in the schemes with upper-level splitting. It is possi-
ble in the sense that, in the absence of LF coherence, the
population of each energy level could be smaller than the
ground-state population and hence there would not be
amplification. The excitation of the LF coherence allows
one to collect effectively all the atoms in one eigenstate
and hence to achieve amplification when the sum of the
upper-sublevel populations exceeds the sum of the lower-
sublevel populations.

However, the case of lower-level splitting is more ad-
vantageous in the sense that any amount of atoms in the
upper level is sufficient, in principle, to get arnplification,
because min(X )=0. Thus an empty eigenstate can re-
suit from the excitation by the LF coherence.

Another consequence of Eq. (21) is the following. It is
possible to prepare the medium in a coherent state such
that inversionless amplification will occur under the ac-
tion of an ultrashort microwave pulse only if, before the
pulse action, there was population inversion at least for
one optical transition. This follows from the fact that a
unitary transformation (which describes ultrashort pulse
action) does not change the eigenvalues of the matrix.

All the results obtained in Sec. I are directly general-
ized for the case when there is also an upper-level split-
ting. In particular, the instability condition for the mul-
tifrequency field consisting of X(M —1) components in a
medium with M —1 sublevels of the lower level and N
sublevels of the upper level, when each field component
interacts only with its own resonant transition and LF
coherencies are excited by the external sources, takes the
form

I

Let us remark that, for the particular case of the three-
level problem, the same result has been obtained in [8] in
a different way.

CONCLUSIONS

If there is a multiple splitting of both operating levels,
and LF coherencies are excited between the sublevels, a
multifrequency field will be amplified under the condition
of population inversion between the most populated and
the lowest populated eigenstates of density submatrices,
corresponding to the upper and lower operating levels,
respectively. In other words, in general the amplification
condition can be considered as a population inversion,
but not in the basis of the energy atomic levels.

The introduction of LF coherencies between sublevels
is equivalent to the redistribution of populations in a new
basis of the density-matrix eigenstates. As a result, there
can appear a state with the sum of energy-level popula-
tions as well as an empty state. The first state plays the
key role for inversionless amplification in systems with
the upper operating level splitting; the second one is espe-
cially important in systems with the lower-level splitting.
From the point of view of the inversionless amplification
mechanism that we considered here, the systems with
lower-level splitting are more advantageous because, in
this case, amplification can occur with any amount of
atoms in the upper level, while in the first case, the sum
of the upper-level populations should exceed at least the
population of the lower level. Note, however, that in
[10—12], it was shown that there is another mechanism of
amplification in systems with a splitting of the operating
levels when at least one component of the optical field in-
teracts simultaneously with different transitions. In sys-
tems with an upper-level splitting, it does not require that
the sum of upper-level populations exceeds the popula-
tion of the lower level.

It is worth stressing also that the interaction of a mul-
tifrequency normal wave with the multilevel system near
the threshold is equivalent to the interaction of a mono-
chromatic wave with an effective two-level system, not
only in the linear stage of amplification, but also in the
full nonlinear case.
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APPENDIX: SOLUTIONS OF THE
LINEARIZED EQUATIONS

Let us recall the principles of the linear analysis. The
assumption that the submatrix o.; is independent of the
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weak field is tantamount to a linearization assumption. It
has been removed in Sec. I E, when we considered the full
nonlinear propagation problem. As long as we only con-
sider the linearized problem, the o.; are field independent
and therefore time independent: they are determined by
the initial conditions up to corrections of O(a ).

Since the resulting equations [Eqs. (1)] are linear in the
variables a and o.I-, it follows from the general
theorems on linear differential equations that the general
solution will be a sum of exp onentials of the
form a =g„'a (n)exp( —ice„t+ik„z) and o~~

' o M (n )exp( —iso„t+ik„z), with real to„and
therefore complex k, . This is the obvious generalization
of the well-known result that the finite-dimensional set of

ordinary differential equations

dxkldt=fk(x, , x~, . . . , x~), k=1, . . . , N, (Al)

where fk is a linear function of the {x ], has solutions of
the form xk=g~ c(p, k)exp(Akt). The {kk] are the N
roots of the characteristic equation obtained by introduc-
ing into (Al) the formal solution xk =c(k)exp(A, l, t). In a
completely analogous way, the M —1 solutions Ik„] are
determined by inserting in Eqs. (1) the formal
solution a (z, t)=ct exp( iso—t+ikz) and crM. (z, t)
=0M exp( it—ot+ikz) Th. is leads, via the rules of ma-
trix calculus, to an algebraic equation of degree M —1

whose roots are the {k„]. The coefficients aj(n) and
o MJ (n ) can then be computed for each k„.
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