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Mode-mode interaction for a CO2 laser with imperfect O(2) symmetry

R. Lopez Ruiz, G. B. Mindlin, and C. Perez Garci'a
Universidad de Navarra, Departamento de Fisica y Matematiea Ap/icada, Pamp/ona 31080, Navarra, Spain

Jorge Tredicce
Institute Non Lineaire de Nice, F06034, Nice Cedex, France

(Received 8 June 1992; revised manuscript received 20 August 1992)

The nonlinear interaction between transverse modes bifurcating from the trivial solution is studied for
a CO2 laser with imperfect" O(2) symmetry. The modes considered in this work are the Gaussian mode
and the ones with angular momentum +1. Solutions qualitatively different than the ones present in the
perfect case are found, which are in agreement with the ones observed [E.J. D'Angelo et al. , Phys. Rev.
Lett. 68, 3702 (1992)] in recent experiments.
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I. INTRODUCTION

There is a growing interest in the study of complex
spatial temporal behavior in physical systems. Actually
the origin and characterization of turbulence might be
the oldest unsolved problem in physics. It is now widely
known that lasers can be present complex self-pulsing due
to the nonlinear interaction of the electromagnetic field
and the active atoms in the cavity. More recent studies
indicate that lasers can also exhibit complex spatial struc-
tures, and there is hope that they will become a useful
test bench for turbulence theories [1—3].

Although most practical lasers operate with a simple
Gaussian transverse intensity distribution, it is possible to
achieve situations where many transverse modes are ac-
tive. The nonlinear coupling between these modes gives
rise to complicated dynamics, as shown by Green et a1.
[4]. In their work, the theory of bifurcations in the pres-
ence of symmetries was used in order to understand the
appearance of traveling and standing waves leading to-
ward spatiotemporal complexity in the transverse pat-
terns of the intensity of a C02 laser. It was assumed that
the system had a perfect O(2) symmetry (imposed by the
cylindrical laser tube) and that two modes were interact-
ing nonlinearly. There was a qualitative agreement be-
tween the solutions found experimentally and some of the
solutions predicted by the theory of bifurcations in the
presence of symmetries [5]. This theory predicts the ex-
istence of solutions with certain symmetries, but not their
stability. Therefore, a more quantitative agreement re-
quires the computation of the coefficients of the normal
forms for the bifurcation under study from a physical
model (in this case, from the Maxwell-Bloch equations).
According to the theory of bifurcations in the presence of
symmetries, a first bifurcation leading toward a traveling
wave was as likely to occur as a bifurcation toward a
standing wave. The experimental evidence indicated a
preference for standing waves [4,1]. Unfortunately, the
Maxwell-Bloch equations with circular boundary condi-

tions predict that a bifurcation that gives birth to a solu-
tion breaking the O(2) symmetry will give us stable travel
ing waves and unstable standing waves [6].

In order to explain the appearance of stable standing
waves in that experiment, we suggested that the symme-
try of the problem might be an "imperfect" O(2) symme-
try [1]. Physically this means that although the cavity
imposes an O(2) symmetry to the problem (rotations and
reflections), there are anisotropies in some of the laser pa-
rameters (e.g., the gain, the losses, the pumping) that
break the symmetry. Mathematically we say that a prob-
lem has an imperfect O(2) symmetry if the equations that
describe it can be written as an O(2) equivariant term plus
a perturbation that is not equivariant under O(2).
Specifically we propose a perturbation equivariant under
Zz (rellections). As Zz is a subgroup of O(2), the prob-
lem has a Zz symmetry [7].

These ideas were tested for an "annulus" laser [1]. It
consisted of a C02 laser in which the interaction between
the electromagnetic field and the atoms in the cavity can
take place only in a narrow range of values in the radial
coordinates. This was experimentally achieved with an
intracavity iris. The only spatial variable then was the
angle 0, with periodic boundary conditions. This
configuration allowed the comparison with theoretical re-
sults worked out by Dangelmayr and Knobloch [7], who
were the first, we believe, to study the appearance of
modes with nontrivial angular dependence through Hopf
bifurcations in the presence of imperfect symmetries.

If the interaction of field and atoms is allowed every-
where in the tube, though, the modes that break the cir-
cular symmetry do not generically appear from a vanish-
ing electric field; usually the first mode to be born is the
Gaussian transverse mode [6]. In this paper we study the
nonlinear interaction between the Gaussian mode with
nonsymmetric modes for a laser with imperfect symme-
try. We find solutions that cannot be found in a perfectly
symmetric system and are in agreement with recent ex-
periments [1].
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e(z„z2,zo)=(e' z„e '
z~, zo),

E(z] z2 zo)=(z2 z& zo)
(2)

(3)

where e and E represent the rotation and reAection
operations, respectively. Introducing this electric field
into the Maxwell-Bloch equations, and keeping terms to
third order, they got the following vector field for the am-
plitude of the modes:

z', =k,z, —[A (z, z*, +2z2z2 )+Dzozo ]z, , (4)

z2 =A, ~Z2 [ A (2z&z
&

+zpz2 )+Dzozo ]z2

zo =bozo —[E(z,z, +z~z2 )+Bzozo ]zo,
where A.o, =k.o, +iso, are functions of the detunings,
the parameters that characterize the pumping profile, and
the reflectivity of the mirror. The coeScients A, B,E,D
are basically convolutions of the spatial part of the modes
with the pumping profile. It is worthwhile to notice that
the real part of these coeKcients are positive quantities
(see Appendix).

The solutions that are obtained for this system are
brieAy reviewed in the following section, but there is a
feature to be stressed here. The solutions with z, =z2
(standing waves) are unstable and the solutions with ei-
ther z

&
or z2 =0 (rotating waves) are stable. This is a

discrepancy with the experiment, as there is a clear
preference for standing waves (which are observed as sets
of "balls" in the averaged intensity). Notice that the sta-
bility of the rotating waves and the instability of the
standing wave is due to the fact that the ratio between
the coefficients of the terms z&z*, and z2z2 is 2, and does
not depend on the particular values of the coefficients.

In order to explain this discrepancy we assume that
there is an asymmetry in the pumping profile, which acts
linearly on the electric field. The pumping is usually in-
troduced phenomenologically in the model, and a sym-
metry is conjectured for simplicity. It is often assumed to—cr2be a Gaussian function K(r)=ke '", where c is the or-
der of (radius of the tube) '. lf we now include a pertur-

Solari and Gilmore studied the conditions necessary to
obtain primary bifurcation branches from the trivial solu-
tion for a CO2 laser with perfect O(2) symmetry [6]. The
system under study was a laser in a Fabry-pe, rot cavity.
The cavity had a perfectly reAecting mirror at one end
and a reflecting spherical mirror at the other. Experi-
mentally, the change of the curvature of this last mirror
can be achieved by inserting a passive optical device in
the cavity. The pumping and the curvature of the mirror
were the parameters varied in their theoretical study, in
correspondence with the experimental situation.

Under these conditions the electric field can be written
as

E=P, (r)L, (1)(z,e' +z2e ' )e

+I'o(r)L, o(1)zoe' ",
where Po i are the radially dependent parts of the bifur-
cating modes, and L,o, the longitudinal ones. The action
of the O(2) group on the amplitudes is given by

bation term proportional to cos (8), the equations for z,
and z2 will couple (see Appendix). Such a term would
take into account the existence of physical asymmetries,
giving rise to a "privileged" direction. The equations will
now read

z', =A. ,z, —[A(z, z*, +2z2z2 )+Dzozo ]z, +ez2

+ezozoz2+e (z&z2 +z&z2)z&,

z2 =A&z2 —[A (2z&z f +z2Z2 )+Dzozo ]z2+ez]
+e zozoz~ +e (z~z2 +z] z2 )z2

zo =A~o —[E(z,z*, +z~z2 )+Bzozo ]zo

+e (z/z2 +z]zz}zo

(7)

Notice that now the system is no longer equivariant un-
der rotation, and only the Z2 symmetry remains. From a
mathematical point of view, the terms that break the
SO(2) symmetry will couple the equations of the modula
of the z; with the phase di6'erence between z, and z2, and
therefore will be responsible for qualitative changes in the
solutions of the system. Notice that the strongest eA'ects
will come from the linear terms in z„z2. Therefore we
will take hereafter e', e"=0 [7].

i/iLetting z, =p;e ' and scaling, this system may now be
conveniently written as

pi=~[pi a "(pi+2P', )p, +p~, cos(5+&,)—pop, ,

p2 =~~p2
—a "(2Pf+p2 }P2+p~~ cos(5 —P, ) —popz,

Po popo (Pi+P2}po b Po ~

5'= —a'(p, —p ) —[p, /p sin(5 —P, )

+p2/p, sin(5+ /, ) ]p, ,

(10)

(12}

(13)

P', =gI —a '(p, +2pz)+ p~2/p, sin(5+ P, ) —d'po,

e'(p'+ p'» b—'po'—
(14)

(15)

III. SOLUTIONS

In the case of perfect symmetry, the equations are par-
ticularly easy, as the equations for the amplitude decou-
ple from the equations of the phases. In Fig. 1 we show
the unfolding of the Hopf-Hopf bifurcation displaying
different solutions in the (p&,pz, po) projection of the
phase space for diferent values of the two unfolding pa-

where 5=$2—P„a"=A "/E", a'= A'/E", and b"
=B"/D", b'=B'/D", d'=D'/D", e'=E'/E". Now the
system is ruled by a subset of only four equations, Po, be-
ing enslaved by the others.

This set of equations is an extension to the case of three
modes of the one studied by Dangelmayr and Knobloch
[7], who analyzed the appearance of the modes e+', e
in the presence of a Z2 symmetry degenerated towards
O(2), as in this case. They can also be thought of as an
extension to the imperfect case of the equations with per-
fect symmetry studied by Solari and Gilmore [6].
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P2
A

pi= A cos(P/2),

p2= A sin(P/2),

Eqs. (10)—(15) will now read

A'=IX, ", —a "[1+—,
' sin (P)]A ] A

+ [p, sin(P) cos(5) cos(()It, ) —p()] A,
P'= —

—,'a "sin(2()tt) A +2p, [cos(P, ) cos(5) cos(t)t )

+sin(()t, ) sin(5) ],
5'= —a'A cos(P)+p, [cotan(()It/2) sin(P, —5)

—tan(P/2) sin((tte+ 5)],
pp

=Xppp A pp b "pp

(16)

(17)

(19)

(20)

(21)

FICs. l. Unfolding of the Hopf-Hopf bifurcation in the case
of perfect symmetry. The open circles indicate the position in
the (po, p„p2} projection of the phase space of the stable travel-
ing waves. This figure is an adaptation of Fig. 5 in [6]. A =

—,
'

[A,")+p,cos((I), ) ] /a ", (22)

In the (po=0) subspace we have solutions for ()( =sr/2,
5=0,m. with amplitude

rameters. It is generic, for the case of the laser, to turn
on the Gaussian mode first. Therefore we will briefly de-
scribe the solutions expected for this problem following
the curved arrow shown in Fig. 1. We begin with the
trivial solution (region of the unfolding parameter space
labeled A in Fig. 1), which loses stability in a Hopf bifur-
cation as Re(i(.o))0 (region B). As Re(t(, )) becomes also
positive, the zero solution emits two traveling waves
(TW) (saddle) and a standing wave (SW) (unstable) both
with p~=0 (region C). Then the (0,0,po) solution emits
two attracting TW and a SW with po( )0 (region D). As
the parameters are further changed as indicated by the
arrow, these TW collide with the unstable TW at pp=0
(region E). The SW with p()( )0 also collides with the un-
stable SW with po=0 (region F). From all this descrip-
tion it is important to emphasize that the TW are the
only stable solutions when the symmetry is not broken.

If the symmetry-breaking terms are included, there will
be qualitative changes in the solutions. For convenience
let us introduce another change of variables. If

E=( ) z'e+z2e ' )f(r)e' (23)

(e '8+e i(8 5—) )etc—otf (r)
ei(P+S/2)(ei(() —S/2)+ —i(8—S/2)) icutf ( )

(24)

(25)

the averaged intensity pattern for the solution with 5=0
(vr) will look like a set of two intense spots aligned with
(perpendicular to) the privileged axis [see Figs. 2(a) and
2(b)].

The stability of these standing waves can be computed
as a function of A,"„p„and (tt, . The eigenvalue associated
to the A direction is —2[A, )+p, cos(()It, )], while the eigen-
values associated to the (tt and 5 directions are the eigen-
values of the Jacobian

where the + (
—

) corresponds to the solution with 5=0
(ir). Hereafter this solution will be called SW() (SW ). If
(I),C [

—~/2, m. /2] ([vr/2, 3m. /2]), the first solution to bi-
furcate (as A, ) is increased, for a fixed value of p, ) is the
one with 5=0 (ir). As

—', A, ")+ p, cos(()It, )3 3
+2p, sin(P, )

—', (a '/a ")[A) p, cos( P, ) ] + 2p, sin( P, ) + 2p, cos( t(tt, )
(26)

Studying the behavior of these eigenvalues in the (p„A,", )

parameter space for diff'erent fixed values of P„we can
state that for P, H [ —m/2, ir/2] ([vr/2, 3'/2]) there will
be an interval in A, i such that SWO (SW ) is stable. In this
model, that interval grows with p, . Moreover, once that
A, ") takes values such that SWO (SW ) exists as a stable
solution, it cannot become unstable as p, is increased (see
Fig. 3). One has to keep in mind though that the limit

p,—+ ~ is beyond the scope of this model. The reason is
that A increases with p„and we truncated the normal

forms to third order.
For a fixed value of p„ increasing k& will induce secon-

dary bifurcations from the standing waves. The kind of
solutions obtained after the bifurcations depends on the
value of t)It,. As we already mentioned, for

P, H [ —vr/2, vr/2] ([vr/2, 3'/2]) there is a range of
values of A. ", for which SWo (SWo) is stable. If
P,&[m/2 —a, vr/2] or [3'/2, 3'/2+a] ([vr/2, vr/2+a]
or [3'/2 —a, 3ir/2 ] ) the SWo (SW ) bifurcates to a
modulated wave in a Hopf bifurcation (the value of a de-
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FIG. 3. Stability region of SW* for $,=1.82, Xz&0, in the
(p„k~) space. According to this model, once a SW gains stabili-
ty, it will not lose it as p, is increased.

pends on a, /a„; for a; =0, a=a/4) O. the.rwise, the SWo
(SW ) bifurcates to two solutions (A*,m. /2+P*, +6*)
[ A *,rr /2+13*, rr+5* ) ] in a pitchfork bifurcation. These
solutions are a mixture of traveling waves and standing
waves and will be called hereafter (TW'). Proceeding as
in Eq. (23)—(25) one finds that the TW' solutions have an
averaged intensity as the one displayed in Figs. 2(c) and
2(d).

If A,o is increased, SWo (SW ) loses stability in the po
direction. If P =a /2, 5=0(vr), Eqs. (18)—(21) become

(c)

po = (~o—A ' b "po)po—
A'= [[Ao+p, cos(P, )]——,'a "A —

poI A .

Therefore there will be fixed points outside the axes if

gr g2 br 2 0

A, ", +p, cos(P, ) ——,'a "A —po=0 .

If 1 ——,'a "b "( )0,

(27)

(28)

(29)

(30)

2
Po 1 ——'a "b"

2
—a
2 A, ",+p, cos(P, )

(31)

If 32,po'&0 there will be a fixed point outside the axes.
This implies that if 1 —

—,'a "b")0 ( &0), the fixed point
will exist if

Ao
—b "[A,",+p, cos(P, ) ) )0( & 0),

—
—,'a "Ao+ [A, ", +p, cos(P, )])0( &0) .

(32)

(33)

(d)

FIG. 2. Averaged intensity for SWo (a), for SW (b) and for
the TW' solutions (p*, ,p,*,~+5*,0) {c)and (p2, p&, ~—5,0) (d).
The line represents the privileged axis that breaks the O(2) sym-
metry.

Notice that for a given A, ", , a large p, implies a large A,o
range in which these standing waves exist. But as we
mentioned before, the limit of large p, is beyond the
scope of this model.

With this analytical "skeleton" in mind, we are in-
terested in studying the complete two-dimensional un-
folding of this nonlinear interaction between the Gauss-
ian and the e —' modes. As in the experiments, the pres-
ence of modulated waves was reported; we will choose for
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DO

CO

D4

our numerical exploration values of P, such that the
standing waves lose stability in a Hopf bifurcation as X& is
increased.

For P,= 1.8 and EE =0.25, we studied the two-
dimensional unfolding in a similar way to the perfect
case. Figure 4 summarizes the results. The "core" sys-
tern, being four dimensional, urges us to choose three-

BO

AO Al

FIG. 4. Unfolding of the Hopf-Hopf bifurcation in the case
of imperfect symmetry. The values of a" and b" were taken as 1.
A change in these values results in a change of the relative sizes
of the regions, but not in the qualitative features of the solu-
tions.

P lk
2

P)

k

2

(a)

PQ

(b)

P)

A1

(b)

Pa

(c)

P

FIG. 5. Phase-space behavior for the A region of parameter
space. (a) displays the behavior for the AO region, and (b) for the
A1 region.

FICx. 6. Phase-space behavior for the BO region {a), the B1 re-
gion (b), and the 82 region (c).
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dimensional projections in order to describe with figures
the different phase-space behaviors found for different
values of the parameters (Figs. 5 —8). We choose to pro-
ject on (p„p2,p0) to make the comparison with the per-
fect case (Fig. 1) easier.

We begin our description as the region indicated by AO
in Fig. 4. The zero solution is stable. As the parameter

k, is increased, the zero solution loses stability towards a
standing wave SW (region BO in parameter space). Its
averaged intensity profile is shown in Fig. 9(a). It con-
sists basically of two symmetric bright spots. If we in-
crease A, ; even further, this solution loses stability
through a Hopf bifurcation, creating a stable modulated
wave hereafter called MW (region CO). Increasing A, ",

P)

"o 'o

(a) (b)

P)

P) P)

P0

(e) (f)

FIG. 7. Phase-space behavior for the CO region (a), C1 region (b), C2 region (c), C2' region (d), C3 region (e), and C4 region (f).

Notice the coexistence of stable MWD and MW' in region C2'
~
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even further (region DO), two saddle node bifurcations
occur in the limit cycle, giving rise to TW solutions. No-
tice that before reaching the k", value for which the bifur-
cation takes place, there is a critical slowing down of the
MW„ in the neighborhood of the regions of phase space
in which these fixed points will appear. The observable
consequence of this dynamical behavior will be the
periodic alternancy between patterns as the ones shown
in Figs. 2(c) and 2(d).

If we increase A,o beginning at region B we observe the
following. When A,o becomes positive, the Gaussian mode
is born. This solution has an unstable manifold that feeds
the standing wave. If Xo is increased even further, the
standing wave emits a solution (p, p, po, ~) ( region B2)
that coHapses with the Gaussian solution at region B3.

Beginning at region CO and increasing A,o we observe
the following. At A,O=O, the Gaussian mode is born. As
before, its unstable manifold feeds the modulated wave
that lives at p0=0. At region C2 we observe a stable
modulated wave with po( )0 (hereafter MW'), which
emitted by the MW [see Fig. 9(b)] and a standing wave

(p,p, po, n), which was emitted by the SW .

The MW„' is a rather interesting solution, as three fre-
quencies are to be found anywhere in the intensity pat-
tern. Its average intensity profile is shown in Fig. 9(b). It
consists of a nonhomogeneous bright ring. If the ampli-
tude of the limit cycle bifurcating from the SW is small,
the nonhomogeneities will look like the symmetric spots
of Fig. 9(a), and the ring will hardly be noticed. This
solution collapses with the (p, p, po, m ) solution at an in-
verse Hopf bifurcation (region C3), and the former col-
lapses with the Gaussian mode at region C4.

It is worthwhile to describe what happens to regions
CO, C1, C2, C3 as k', is increased. We already said that if
we increase A,

&
from region CO we have a saddle node bi-

furcation taking place at the limit cycle MW . Increas-
ing A, ', from C1 and C2 simply produces the same effect.
From C3 to C2', though, a rather interesting phe-
nomenon takes place. The modulated wave MW emits
an unstable modulated wave with po( )0 gaining stability
[Fig. 7(d)]. Therefore, we have the coexistence of two
stable modulated waves. As A,

&
is further increased, the

modulated wave MW breaks as described before giving
rise to a coexistence between a stable modulated wave

(a)

"o

C'
()

FICx. 8. Phase-space behavior for the DO region (a), Dl region (b), D2 region (c), and D3 region (d). Notice the coexistence be-

tween stable TW' and MW' solutions in region D2.
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and two TW' (region D2). Notice that the existence of
regions as D2 and C2', where multistability of solutions

Th
ta es p ace, implies hysteresis as parameters are ch d

e information presented in this section is summarized
in Table I.

TABLE I. Summary of the solutions in the (k&, A,O) unfolding
of the nonlinear interaction between the Gaussian mode and the
e*' modes described in Sec. III. 0 stands for the trivial solu-
tion, G for the Gaussian solution, SWO for the SW„solution
(defined in Sec. III), SW' for the standing wave with po( )0,
TW' for the solutions' mixture between traveling and standing
waves, MW for the modulated wave bifurcating from the SW
solution, and MW' stands for the modulated wave with ( )0.

e stability of the solutions is indicated between parentheses.

's i
'I

(
c.

Region

AO

A1
BO
B1
B2
CO

C1
C2
C2'
C3
C4
DO
D1
D2
D3

Solutions (stability)

O{s)
O(u), G(s)

SWO(s), O(u)
O(u), SWO{s),G{u)

O(u), SWO(u), SW'(s), G(u)
O(u), SWO(u), MWO(s}

O(u), SWO(u), MWO(s), G(u)
O(u), SWO(u), MWO(u), MW'(s), G(u)

O{u),SWO(u), SW'(u), MWO(s), MW'1(u), MW'2(s), G(u)
O{u),SWO(u), SW'(s), MWO(u), G(u)

O(u), SWO(u), MWO(u), G(s)
O{u),SWO(u), TW'1(s),TW'2(u), TW'3(s), TW'4(u)

same as DO and G(u)
same as D1 and MW'l(u), MW'2{s)

same as D1 and SW'(s)

IV. CONCLUSIONS

//'/. , t', //t

' ~

FIG. 9. Average intensity for the (a) standing wave SWO and
the {b) modulated wave MW'. The MW' is born from a stand-

0

ing wave I a Hopf bifurcation. Therefore for some values of
th e parameters it has an asymmetry that reminds us of a stand-
ing wave. Also notice that as po itself oscillates around a
nonzero value, the center of the pattern is a bright spot. This
solution does not exist for the perfectly O(2) symmetric case.

It is a typical procedure in physics to study a
phenomenon by designing an experiment with the "easi-
est" conceivable symmetrical setup. This typically makes
the life of both the theoretician and the experimentalist
easier. But we should not forget that symmetries imply a
high mathematical degeneracy. The normal form of a bi-
furcation for a system with symmetry will have man
terms absent; therefore a slight perturbation is likely to

many

change the qualitative solutions to be found.
h'n this work we report an unfolding of a codimension

two, Hopf-Hopf bifurcation in a system with Z2 symme-
try [highly degenerated toward an O(2) symmetry]. An
analytical skeleton for primary and secondary bifurca-
tions from the trivial solution was obtained. Particular
parameters were chosen for a deeper numerical descrip-
tion of the unfolding so that the phenomenology would
correspond to the one observed in the experiments. The
main features of the solutions of the system under study
were as follows.

(i) The stability of the standing waves involving modes
of nonzero angular momentum. The average intensity of
these solutions will be a set of bright spots. In a perfectly
symmetric system, the stable solutions involving modes
of nonzero angular momentum are the traveling waves.
Their average intensity would be a bright ring.

(ii) The existence of stable solutions' mixture of stand-
ing waves and the Gaussian mode. These will have an
average intensity consisting of a symmetric bright spot
and a set of bright spots around it.

(iii) The existence of stable modulated waves emitted
b hy the standing waves. These solutions will have an aver-
age intensity consisting of a set of bright spots connected



508 LOPEZ RUIZ, MINDLIN, PEREZ GARCIA, AND TREDICCE 47

by a ring. The time-series data of any point in the pat-
tern will exhibit an additional frequency.

(iv) The existence of stable solutions that are a mixture
of traveling waves and standing waves. Their average in-
tensity will consist of a set of bright spots connected
through a bright ring.

(v) The existence of a periodic alternancy between the
patterns of Figs. 2(c) and 2(d). This occurs for parameter
values close to the ones in which TW' solutions are
born in the limit cycle in a global bifurcation. This
phenomenon might be dynamically similar to the period-
ic alternancy reported in [3].

Notice that these solutions cannot be obtained under
the assumption of perfect symmetry. We believe that
beyond a contribution to the understanding of this partic-
ular CO& laser, this work might be a challenging invita-
tion to explore the consequences of slightly breaking the
symmetry in widely studied symmetric problems.
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APPENDIX

In Sec. II we claim that an asymmetry in the pumping
profile gives rise to the linear coupling between the equa-
tions for z& and z2 (7)—(9). In this appendix we briefly re-
view the structure of the Maxwell-Bloch equations [8]
and write the parameter e in terms of laser parameters.

Expanding the electric field, the polarization field, and
the population inversion field in terms of longitudinal
cavity modes and slowly varying amplitudes N, II,D, and
plugging them into the Maxwell-Bloch equations, one
gets for the slowly varying amplitudes the following:

H+ —iy
0 H —iy'

Do D2 R+@+

I2+ 1/y
a
at

c rr*+e*n

ID 2 Do R

Do D2 H+
o =XI~+ @ [II+ II* ]+ ~ [4+ 4' ]-2

(A 1)

(A2)

R =(P iH+ )—
+[I/(s +z )] 0 c+rr++ ~+~+

(A3)

where y is the rate of decay of the population inversion,
P is the atomic rate of decay of the atomic polarization,
E is the pumping profile, s is the curvature of the mirrors,
and z = L+r /2A (w—ith L the longitudinal size of the
tube and A the radius of the mirror).

The trivial solution of these equations is

into Eqs. (Al) —(A4). In this way we obtain dynamical
equations for the mode amplitudes z, . For the perfectly
symmetric case, this procedure was performed in [6].

Notice that to lowest order, the H+ are linear in

=0,
H+ =0,
D+, ——0,

(A5)

(A6)

(A7) As

0 R+4+
0 K R

—
C

(A10)

Do= (A8)

L' (l) L' (l)
P i!0 fbi P il8

L' (l) ' L' (I)
(A 1 1)

For certain values of the parameters, different modes are
born in Hopf bifurcations. For bifurcation giving rise to
the modes we are interested in this work, the normal
form can be obtained by plugging

I 0

=zoPo(r) o (A9)

calling

L'+ (1)

L, (I) P;=li&

and assuming

(A12)

L 1

+(z, e' +z~e ' )]P,(r) (A9)
P „;„=K(r)+2acos(28), (A13)

the linear part of the equations for the amplitudes will be
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izo~o)+(izIe' +iz2e ' )~1)

—i(QO —iy)zo~o) —i(Q, —iy)(z, e' +z2e ' )~1)+ Kzo~o)
0

+ ~1)K(z,e' +z2e' )+ Ke' zz~ 1 )+ . e ' z, ~ )
P i—Q)

+e2i0(. . . )+e
—2ie(. . . )+e3i0(. . . )+ 3i—e( . . . ) (A14)

which implies

. (0/Ic/0)
izo = Qo —iy+i

i Qo— z0 (A15)

tudes are bilinear functions of these [Eq. (A3)], one gets
according to Eq. (A2) that the next lowest order for the
polarization is 3. Substituting the third-order approxi-
mation to the polarization and the field into Eq. (Al), one
can write

CXz)+i . z2,—tQ,

. ( I~IC~I )iz2= Q, iy+—i . z2+i z, .tQ—, —tQ)

(A16)

(A17)

z' =L z +M „pz„z*zp

with

~apvp = G aIJ,vpD apvp

(A20)

(A21)

E=
P iQ, — (A18)

Notice therefore that the complex parameter e in equa-
tions is

where

1/(/3 —i Qp) 1D +1+i(Q„Q„—)/y i3 i Q„ I3—+i Q

where 13 (the rate of decay of the atomic polarization) and
Q, (the eigenvalue of the empty cavity problem) are of
the same order of magnitude.

In order to compute the coefficients of the nonlinear
terms one proceeds iteratively [6]. After expanding

a~+
= gz (A19)

and

G = (T "T ~+T " ~)du,L
S +Z

T "=(a+ )*a~+ +(a )*a"

T "~=(a )*a"a 'a~ +(a )*a"a *a~

(A23)

(A24)

one obtains to lowest order a linear approximation for
the polarization. But as the population inversion ampli- as shown in [6].
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