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Two-photon ionization of lithium in the time-dependent Hartree-Fock approximation
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The two-photon ionization rate for the lithium atom is calculated in the time-dependent Hartree-Fock
approximation for a variety of intensities and photon frequencies. The time-dependent equation for the
valence Hartree-Fock orbital is solved on a two-dimensional cylindrical-coordinate lattice using both
fixed and variable grid spacings. The nonperturbative results are compared with previous perturbation-
theory results at photon energies near the 2s — 3p single-photon resonance.

PACS number(s): 32.80.Rm

I. INTRODUCTION

With the development of high-intensity lasers that can
exert forces on electrons in atoms equal to those that bind
the atom, new theoretical methods [1] have been
developed that treat this essentially nonperturbative
problem. A promising approach is the application of
time-dependent Hartree-Fock (TDHF) theory on a
space-time lattice. The direct solution of the TDHF
equations has been used to study heavy-ion collisions in
nuclear physics [2], as well as atomic photoabsorption
[3], ion-atom collisions [4-6], and ion-metal scattering
[7]. Application of the TDHF method to nuclear physics
centers around numerical methods tailored to rapidly
varying short-range potentials. Complicating the appli-
cation of the TDHF method to atomic physics has been
the long-range nature of the electromagnetic interaction,
and the consequent need to consider a very large spatial
lattice.

In this paper we examine the direct solution of the
TDHF equations for the two-photon ionization of lithi-
um. For the case of lithium, which has one electron out-
side a closed shell, the TDHF equations may be solved in
a frozen-core approximation, thus avoiding the need to
solve a Poisson equation for the mean-field potential at
each time step. To study two-photon ionization rates
from the 2s subshell of lithium under linear polarized
light, we employ a standard finite-difference solution on a
two-dimensional (2D) lattice. To address the long-range
Coulomb problem, we examine the extension of uniform
grid methods to those employing variable mesh spacings.
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A key finding of this paper is that the implementation of
a variable grid method is straightforward and leads to im-
proved numerical accuracy. Following the development
of the specific numerical method in Sec. II, we compare
our 2D uniform and non-uniform mesh results with each
other and with previous perturbation theory calculations
in Sec. III. A brief summary is found in Sec. IV.

II. THEORY

For the single configuration 1s22s of lithium, the time-
dependent Hartree-Fock equation for the valence orbital
is given by (atomic units are used)

0¥, (r,1)
ot

= —lvz—%+ V(R +E (1)z sinot Wy (1,1) ,

> (1)

where V (r) includes the electrostatic interaction with a
frozen core 1s? shell, E () is the amplitude, and o is the
frequency of the electromagnetic field. If one sets the
wave function \I’(r,t)=\lf(p,z,t)eim¢/\/p, the TDHF
equation may be solved in cylindrical coordinates (p,z,¢),
where ¢ is ignored. Discretizing space and application of
the variational principle to the energy functional yields
the finite-difference equations [8],
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In Egs. (2)-(4), ¥;;=v(p;,z;)
tice distances between successive points in p and z.
On the other hand, for a nonuniform mesh,
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and Uj;(?) is the combined atom and field potential. The quantities Ap and Az are the lat-
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The quantities Ap; and Az; are the lattice distances be- 1 |24 3
tween the points (p;,z;) z{nd the points (p;_y,z;) and Vilr)=— 2 {[a(r)+ay(nN]' P =[205(N]'"),
(pi»zj—1), respectively. For a uniform mesh the matrices
H, and H, are symmetric, but for a nonuniform mesh the (10)

matrlces are nonsymmetric. The latter causes no
difficulties since the numerical quadrature used for the
energy functional and all other observables is well-defined
for a nonuniform mesh. Stated another way, the nonsym-
metric matrices on a nonuniform mesh may be
transformed by the matrices
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to obtain the symmetric matrices S "'H,S and T 'H,T.
Observables calculated with the time-dependent solutions
of S 1H S and T 'H,T would then have numerical
quadrature weights of unity, and would equal those
directly obtained from H, and H,.

The time evolution of the wave function in Eq. (1) may
be approximated by the implicit expression [8]
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where the time step At=t—t, is much less than o .

Explicit expressions based on the Taylor expansion of the
time evolution operator, exp(—iAzH), may be used, but
only with time steps a factor of 5 or more smaller than
those used in Eq. (9).

After calculating bound-state orbitals in the Hartree-
Fock approximation [9], the atomic potential for Eq. (1)
may be constructed as a sum of the Hartree potential and
a local exchange potential, V. (r), given by [10]

when o(r) is the total probability density for the atom
and o,,(r) is the probability density of the 2s electron.
The initial wave function, ¥, (r,0), on the lattice is ob-
tained by solving Eq. (1) in imaginary time, making sure
the wave function remains orthogonal to all the same
symmetry orbitals. Starting from the Hartree-Fock 2s or-
bital [9], convergence to the lattice function is usually
achieved in 10-20 time steps. For propagation in real
time, an imaginary absorbing potential is added to V(r)
of Eq. (1) to remove flux at the boundary of the lattice.
Typically, W,.(r,?) is propagated for 6000 time steps
representing 30 optical cycles. The radiation field is
turned on slowly by setting E(t)=Eyt/t,, with
t.ax = 10 optical cycles. An ionization rate is calculated
from the decay of the norm of the wave function once the
full intensity is reached.

III. RESULTS

Two-photon ionization rates for Lithium are obtained
by solving Eq. (1) on both a uniform and nonuniform
mesh. The 2D uniform spatial grid is 20.0X25.0 and
contains 1.0X10°> grid points with grid spacing
Ap=Az=0.1. The 2D nonuniform spatial grid is
19.5X24.5 and contains 1.4X 10> grid points with grid
spacing doubling five times from Ap=Az=0.0125 to

=Az=0.2. The ionization energy of the 2s wave
function is given in Table I for both lattices. The use of a
nonuniform mesh has substantially improved the agree-
ment between the lattice ionization energy and that of the
Hartree-Fock energy and experiment [11]. By halving
the grid spacing of the 2D uniform mesh a more accurate
ionization energy could be obtained, but only at the com-
putational cost of a factor-of-4 increase in the number of
grid points.

The application of standard perturbation theory results
in a two-photon ionization rate R 2), given by [12]
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TABLE I. Ionization energies for lithium.
Method Ionization energy (eV)
Hartree-Fock 5.34
TDHF (uniform) 5.57
TDHF (nonuniform) 5.33
Experiment (Ref. [11]) 5.39
’N 2
R(z): 167212 (¢k|D>¢n><¢n|ﬁ|¢a> (11)
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where I is the intensity, c is the speed of light, k is the
wave number of the photoelectron, and D is the length
form of the dipole operator. The continuum normaliza-
tion is one times a sine function. The perturbation-
theory results of Mizuno [13], McGuire [14], and Ed-
wards [15] for lithium, based on Eq. (11), are in good
agreement and are presented in Fig. 1 for frequencies in
the vicinity of the 2s —3p one-photon resonance and for
an intensity of 10'> W/cm? The energies in the denomi-
nator of Eq. (11) have been adjusted [13-15] to the exper-
imental resonance value of 3.83 eV [11].

The lowest-order perturbation-theory calculations are
not applicable at very high intensities or on resonance.
The 3p resonance in Li is broadened by single-photon
Rabi cycling to the 2s ground state,

1/
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and single-photon ionization to the continuum,
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The energy positions of the ground and excited states
may also be affected by ac Stark shifts,
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For lithium at the 2s — 3p resonance energy, and for an
intensity of 10> W/cm?, we find that the Rabi cycling
rate Q,;_,3,=0.05 eV, and the photoionization rate
I3, =0.05 eV. Using the Dalgarno-Lewis method to
sum over intermediate states, we also calculate that
A =0.05 eV and A;,=0.12 eV. We thus expect that
nonperturbative TDHF calculations for the two-photon
ionization of lithium, also at an intensity of 103 W/cm?,
should yield a resonance width of around 0.1 eV and only
a small change in the resonance peak position due to ac
Stark shifts.

In Fig. 1 the TDHF ionization rates for lithium, at a
fixed intensity of 1.0X10'* W/cm? are compared to
second-order perturbation theory in the vicinity of the
2s —3p one-photon resonance. The differences between
the TDHF resonance energies and experiment are com-
parable to the ionization energy differences reported in
Table I. The nonuniform mesh results are again found to
be superior. The line-shape width of the TDHF results
(note the log scale for the ionization rate) is in reasonable
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FIG. 1. Two-photon ionization of lithium near the 2s—3p
one-photon resonance at an intensity of 10'> W/cm? Solid
curve, second-order perturbation theory; dashed curve, TDHF
theory with uniform mesh; chain-dashed curve, TDHF theory
with nonuniform mesh. The 2s—3p excitation energy is indi-

cated by the dotted line (Ref. 11).
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FIG. 2. Ionization of lithium at a photon frequency of 3.57
eV (ruby laser second harmonic). Solid curve, second-order per-
turbation theory; dashed curve, TDHF theory with uniform
mesh; chain-dashed curve, TDHF theory with nonuniform
mesh.
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agreement with that due to Rabi cycling and excited-state
photoionization. The antiresonance feature at 3.9 eV in
the perturbation-theory results has also been quenched in
the TDHF calculations, a characteristic of nonperturba-
tive methods [16].

The TDHF line-shape curves at higher intensities will
further broaden and will also show a shift in the reso-
nance peak position due to stronger ac Stark shifts; the
perturbation-theory expression of Eq. (14) yields
A3, =1.24 eV at 1.0X10" W/cm’. Pronounced asym-
metries in the line shape should also develop, in analogy
with those found for hydrogen [17] and helium [18]. In
Fig. 2 the TDHF ionization rates for lithium, at a fixed
photon energy of 3.57 eV (ruby laser second harmonic),
are compared to second-order perturbation theory. The
TDHF curves of Fig. 2 track the I*? dependence of the
perturbation-theory results until about 6.0 X 103 W/cm?,
where there follows a sharp departure for higher intensi-
ties. Plateau features in the rate versus intensity curve
for hydrogen [17,19] were attributed to the appearance of
a complicated spectrum of ac Stark shifted excited states,
undoubtedly the case found here for lithium.
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IV. SUMMARY

The accuracy of atomic photoabsorption calculations
employing 2D TDHF methods has been shown to be
significantly enhanced by the use of nonuniform grids. A
path now lies open for the calculation of atomic collision
dynamics in which one begins with an atomic structure
containing all the core orbitals, represented by a grid ad-
justed to their widely different spatial extents. The stan-
dard technology of polarization potentials and spin-orbit
interactions may then be invoked directly to obtain accu-
rate energies and ionization rates. The great strength of
the TDHF space-time lattice method remains its poten-
tial application to a wide variety of phenomena in atomic,
nuclear, and particle physics.
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