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We present the results of R-matrix calculations for the bound-state properties of the atoms in the car-
bon group for states with odd parity and J =0-3. The calculations were performed in LS coupling with
the fine-structure interaction incorporated through an LS-jj frame transformation. We also present the
photoionization cross section of the ns*np? 3P, ground state for each of the atoms for final-state energies
between the two ns’np ZP}’C spin-orbit split thresholds. We discuss some of the limitations of our

method.

PACS number(s): 32.30.—r, 31.50.+w, 31.20.Di, 32.80.Fb

I. INTRODUCTION

There have been several experiments determining the
bound-state Rydberg spectra of atoms in the carbon
group for states with odd parity and J=0-3 [1-5]. The
Rydberg series approach two ionic thresholds, ns2np sz’c,
with J,=1 and 1. Other thresholds such as nsnp* and
ns%(m +1)s have much higher energies, and the states at-
tached to these thresholds do not enter the bound-state
dynamics (except for a couple of notable exceptions).
The Rydberg series interact with each other and can pro-
duce relatively complicated spectra. However, the spec-
tra are amenable to a simple graphical description
developed by Lu and Fano because there are only two
relevant thresholds in our range of interest [6].

In this paper we describe a series of small-scale calcula-
tions which accurately reproduce the experimental ener-
gy levels of C, Si, Ge, and Sn. By studying several
different types of atoms in one column of the Periodic
Table, we would like to draw attention to the similarities
(if any) in the Rydberg dynamics of chemically similar
elements. There have also been extensive experiments on
the carbon group of atoms that were interpreted in a sem-
iempirical way using multichannel quantum-defect
theory (MQDT) [1-5]. With their fitted parameters,
Brown, Ginter, and co-workers [1-5] were able to repro-
duce a remarkable amount of data, identify regularities in
the spectra, and draw attention to astonishing similarities
of the Lu-Fano plots of the heavier atoms; these similari-
ties are not apparent in the discrete absorption spectra.
Our goal is to provide the first nearly ab initio description
of these spectra; ab initio calculations can usually de-
scribe the energy dependence of dynamical parameters
more correctly than semiempirical fits. Our goal is to ob-
tain the MQDT parameters with moderate accuracy (at
the percent level) over several eV and obtain a global un-
derstanding of the dynamics over a broad energy range;
this goal complements efforts of those who strive for
wave-number accuracy in the several lowest bound states.
Thus, our motivation for studying these atoms parallel
those for our studies of the halogen atoms [7].

All of the wave functions used in these calculations
contain configuration interaction (CI). The ground state,
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the final state, and the target states are all computed us-
ing CI. The orbitals we use as a starting point are similar
to those obtained by the Hartree-Fock method, but the
final computation improves substantially over Hartree-
Fock.

We utilize calculational and theoretical techniques
identical to those of our previous studies [7], with one
minor exception which is described in Sec. IIB. We use
the eigenchannel R-matrix approach [8] for the brute
force part of the calculation and MQDT [9] to extend the
wave functions to distances larger than the R-matrix box
radius. The R-matrix calculation determines completely
nonrelativistic LS-coupled short-range wave functions
with the spin-orbit interaction incorporated in the
MQDT part of the calculation by applying the LS to jj
frame transformation [10].

The ground states of the carbon-group atoms are la-
beled ns’np?3P, with n =2 for C, n =3 for Si, n =4 for
Ge, and n =5 for Sn. In a photoabsorption process a p
electron can be excited to an s or a d wave, and an s elec-
tron can be excited to a p wave. For this paper we will be
focusing on the region below and between the ns?np ZPJ”C

thresholds. In this energy range the important channels
for photoabsorption are nsnp P es and ed; also in this
energy range are short-range resonances of the type nsnp3
which perturb the ns?np es and ed channels. These reso-
nances cause the MQDT parameters to vary rapidly with
energy for some of the LS symmetries. This paper is
similar to Ref. [7(a)] in that we focus on the energy range
where only the p electron can be excited.

II. THEORETICAL TECHNIQUES

We will describe in detail only one aspect of the
methods we used to calculate the atomic properties since
it is the only part different from our previous calculations

(7]
A. Old methods

The major physical approximation concerns the Ham-
iltonian H, which does not refer to the full atomic system.
H is strictly nonrelativistic, not even containing /;-s; in-
teractions. Most importantly, H only represent the Ham-
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iltonian of the valence shells [7,8]. The effect of the Z —4
inner-core electrons is approximated by a screened
Coulomb potential plus a polarization potential. The
valence-electron Hamiltonian in atomic units is

H:ZHV(pi,ri)“i' 2 l/rij
i Ij
(i <j)
—2 3 Py(cosb,; )\/Vpol(ri)Vpol(rj) , (1)

ij
(i <j)

where
cosO;; =r1;°1;/r;1; .

The computer code developed in Ref. [7] evaluates the
angular part of the multielectron 1/r;; matrix elements
by summing products of 6-j coefficients. The one-
electron Hamiltonian contains the interaction of the
valence electron with the nucleus and the inner-core elec-
trons and has the form

Hy(p,r)=p*/2+V
=p?/2—(4+{Z —4}exp{ —a'r}
+ajrexp{—air})/r+Vou(r) . ()
Here

Vp01= _ad(l'—exp{ —(r/rc )3} )2/274

represents the interaction of an outer electron with the
inner core due to its dipole polarizability. We use the
values of Ref. [11] for the dipole polarizability, a, of the
inner core for atoms of the carbon group; they are
0.008 92 for C, 0.1624 for Si, 0.7628 for Ge, and 2.264 for
Sn. The parameters a! and r, are fitted to optimize
agreement between the calculated energy levels of H)
and the experimental levels of the 3+ ion. We list our
values for a! and r, in Table I. Unfortunately, the nd
ionic levels of Ge and Sn are perturbed by a core excita-
tion, and the number of levels to be fitted is minimal for
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these atoms, which may have introduced unacceptable er-
rors in the a.

We use the streamlined formulation of the eigenchan-
nel R-matrix procedure [8(a)] to find a variational esti-
mate of the logarithmic derivative of the wave function at
a given energy normal to the surface of the R-matrix
volume. We define the R-matrix volume by r; <r. (i.e.,
all electrons confined to radii less than r.), with r, being
15 a.u. for the calculations reported here. The logarith-
mic derivative together with the value of the wave func-
tion at the surface completely determines the wave func-
tion everywhere outside of the R-matrix volume. The
wave function outside can be written in the form [9]

U, =AFOEQ)f;(r8,, —g,(NK LT, (3)
i

where A is the antisymmetrization operator (which has
no practical effect at » > r, since the outermost electron
no longer overlaps the core electrons), ®Y5(Q)
represents the target function and the LS coupling of the
target’s angular momenta with that of the outer electron
to give L and S, f;(r) is the radial Coulomb function [9]
for channel j that is regular at the origin, g;(r) is the radi-
al Coulomb function [9] for channel j that is irregular at
the origin and oscillates 90° out of phase with respect to
f;(r), and K% is the short-range reaction matrix. Open
and closed channels are included in Eq. (3); thus, the ;
contain terms which are exponentially diverging at
r— oo. The reaction matrix in Eq. (3) has the superscript
LS to denote that it depends on the total spin and orbital
angular momenta. The reduced dipole matrix elements
connecting the initial state to each of the independent
wave functions,

d;=<¢;||D||¥,) , 4)

are the only other short-range dynamical parameters
needed to obtain the photoionization cross sections and
oscillator strengths.

When the outer electrons leaves the atom, the rate of
phase accumulation at large distances (and even whether
it is bound or escapes to infinity) depends crucially on the

TABLE I. Parameters for the semiempirical potential for the valence electrons.

! I

Atom 1 al a; aj r, (a.u.)
C 0-4 6.758 75 7.274 85 9.23057 0.4
Si 0 5.28051 8.75903 3.59875 0.4
1 5.36326 8.928 72 3.503 32 0.4
2-4 5.03125 8.84700 4.32946 0.4
Ge 0 4.83139 8.755 88 3.084 73 0.4
1 4.98004 8.47518 2.92829 0.4
2-4 4.914 06 9.029 35 3.206 25 0.4
Sn 0 5.463 33 10.486 64 2.30393 0.4
1 5.468 40 9.26220 2.27133 0.4
2-4 4.906 96 8.46075 3.23997 0.4




4910

energy of the target state it leaves behind. The energy of
the target state does not depend on L, and S, alone but
on the total angular momentum of the core, J.. To ob-
tain the Rydberg series attached to each of the fine-
structure split thresholds, we use the LS to jj frame
transformation, which has been described in many other
works [7,10].

If we were calculating cross sections in LS coupling,
we would calculate K and d at every energy mesh point.
In jj coupling we need the K and d of several LS sym-
metries for each total angular momentum. To avoid stor-
ing huge arrays, we calculate K and d on a coarse-energy
mesh and interpolate. Actually, we do not interpolate K
and d but the smoother quantities [12]:

tij = 2 Usabtol UT)aj ’ ®
(d€);=23d;U;j,cosmp,( UT)ai ) 6)
ha

where U, are the eigenvectors of the K matrix and the
tanmu, are the eigenvalues of the K matrix. The coarse-
energy mesh is chosen such that

S pgle) —nyle+A) <0.1 .

We use a linear interpolation of u and d° with energy be-
tween each of the coarse-energy mesh points (the possibil-
ity of u, changing branches introduces prohibitive book-
keeping for higher-order interpolation).

The physical justification for the accuracy of the frame
transformation rests on a consideration of time scales.
The amount of time that the electron spends interacting
with the core is proportional to the derivative of the
quantum defect with energy, du/dE. The spin-orbit in-
teraction causes the orbital angular momentum of the
core to process about the direction of the total angular
momentum in a time proportional to the inverse of the
fine-structure energy splitting, AEg,. If the time that the
electron spends interacting with the core is much shorter
than the precession time of the core’s orbital angular
momentum, one can neglect the precession during the in-
teraction (i.e., the spin-orbit interaction can be neglected
when all of the electrons are in the R-matrix box). When
the electron spends a long time in the interaction region
or the precession time is short (AEgodu /dE is not small),
the precession cannot be ignored, and therefore the spin-
orbit interaction needs to be accounted for. For the
heavier atoms, AEg, can be fairly large, causing a break-
down of the frame-transformation approximation. For
the atoms studied in this paper, there are short-range
nsnp® resonances which give large values of du/dE for
some symmetries. These resonances cause trouble for our
Ge and Sn results, which otherwise would have worked
well. There is also an operational difficulty when the
frame-transformation approximation breaks down. We
always use the scattering parameters as a function of en-
ergy relative to the theoretical threshold. What energy
does this correspond to relative to the spin-orbit split
thresholds? If AEgodu/dE is small, it does not matter
which threshold is chosen; in general we set the theoreti-
cal threshold equal to the experiment, LS-averaged
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TABLE II. Parameters for the semiempirical potential for
the natural orbitals.

Atom i a a a
C 0 0.47573 1.63974 1.35306
1 0.33598 1.43034 151474
2-4 0.00000 0.000 00 0.000 00
Si 0 0.29439 2.348 99 0.930 04
1 0.301 51 1.856 87 0.980 74
2-4 0.00000 0.000 00 0.000 00
Ge 0 0.280 32 2.65535 0.903 50
1 0.27162 2.207 54 1.030 13
2-4 0.000 00 0.000 00 0.000 00
Sn 0 021312 3.50738 0.78179
1 0.13337 3.55244 0.89679
2-4 0.000 00 0.000 00 0.000 00

threshold. When AEgodp/dE is not small (i.e., where
the frame-transformation approximation breaks down),
the final results are sensitive to which threshold you
choose. Since there is no justification for choosing one or
the other, we choose the one which gives the best agree-
ment between theory and experiment. This is not entirely
satisfactory, and it points to the need for a more sophisti-
cated treatment than the one presented here for Ge and
Sn.

B. Hartree-Fock and natural orbitals

A key requirement of any R-matrix calculation is an
accurate description of the target eigenfunctions. These
are the energy eigenfunctions of the residual positive ion
in the energy range of interest. For the carbon-group
atoms in the bound-state energy region, there is only one
target state, ns’np. However, it is necessary to use
higher-energy configurations (especially of the type
nsnp?) to converge the K-matrix and dipole matrix ele-
ments in the bound-state region.

As described in Ref. [7], we do not use the orbitals that
are eigenstates of Hy, Eq. (2), to expand the target states
due to slow convergence. Instead, we use orbitals calcu-
lated using the potential

_
(13)‘

1

Vin=vi(rn+201—e “yr+lal(1—e P2 ()
This potential differs from that used in Ref. [7] which was
identical in form to that of Eq. (2). Unlike Ref. [7], for
some values of [/ the best convergence occurs for
V,(r)=V,(r). The natural orbitals were constructed by
superimposing the orbitals of the V,(r) potential [13] (see
Table II).

III. COMPUTATIONAL DETAILS

The atomic ground state can be represented well by a
Hartree-Fock wave function of the type ns?np?3P. How-
ever, we have used the ns and np orbitals to describe the
Hartree-Fock orbitals of the ionic state which are slightly
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compressed compared to the orbitals for the neutral
atom. This circumstance forces us to include many basis
functions which primarily represent this simple relaxa-
tion (i.e., functions like [nsms 1S np?, ns*npmp, etc.). We
also include correlation effects in the ground-state basis
function, which necessitates many more basis functions
than for the rare-gas atoms because the ground state has
nonzero spin and angular momentum.

The main effects emerge from calculations with less
than ten basis functions for the ground state, but we in-
clude many more basis functions than this in order to
achieve the good agreement between the cross sections
calculated in the length and velocity gauges for Sn. We
did not modify our choice of basis functions for the
different atoms, although the radial orbitals differed from
one atom to another. The ground state was composed of
~150 basis functions with ~50 different angular
configurations. The most important  angular
configurations were ns2np?, ns*npmp, nsmsnp?, nsnp’md,
np*, np’md?, and ns’md?. All possible angular cou-
plings are used for each shell configuration. The
disagreement between the cross sections calculated in the
length and velocity gauges is typically less than 10% for
all of the carbon-group atoms, which gives an indication
of the convergence of both the ground-state and the
final-state wave functions.

There are six different final-state LS symmetries and
eight total final-state channels which enter our calcula-
tion (in what follows the target state ns’np 2P° will be
shortened to 2P°: 2P°ms3P° Z2P°md *P° Z2P°ms'P°,
’P°md 'P°, *P°md*D°, *P°md 'D°, *P°md’F°, and
2P°md 'F°. The largest basis-set sizes were ~275 for the
L3pe symmetries. We also carried out calculations with
basis sets twice as big to test convergence; the larger basis
did not change our results by more than 0.03 in the quan-
tum defects. Part of the reason for the large basis-set size
was that we used the same basis (but with different orbit-
als) for all of the atoms.

Most of the basis functions for the final-state sym-
metries were not of the simple ‘“‘close-coupling-channel”
type (e.g., 2P°ms *P°). The most important “correlation”
types of basis functions had nsnp® or nsnp?mp character.
This is because some of the nsnp?® states fall among the
2p°ml Rydberg series and interact strongly with the
whole series, resulting in a strong energy dependence of
the quantum-defect parameters. If the calculated nsnp?
states fall at the wrong energy, the resulting Lu-Fano
plots can look wildly different from the experimental
ones. We constructed this part of the basis by attaching
ep and €f waves to the even-parity, CI target states:
nsnp 2 ns’nd, and ns*(n +1)s.

The complete calculation of the photoionization cross
section and Lu-Fano plots for one atom including the
computation of the ground-state wave function and LS to
jj frame transformation required ~ 15 min of computer
CPU time on a DEC station 5000,/200.

IV. OSCILLATOR STRENGTHS
A. Theory

The calculation of an oscillator strength for a discrete-
discrete transition from the quantum-defect parameters
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K;; and d, is slightly more tricky than the calculation of a
photoionization cross section. This is because the final-
state wave functions needed for photoionization are nor-
malized per unit energy and are thus easy to obtain in
terms of the f and g functions which are normalized per
unit energy. The final-state wave function needed to cal-
culate the oscillator strength must be normalized to unity
over the infinite volume.

There are two simple ways (among many) to derive the
normalization constant which converts wave functions of
the form Eq. (3) to one which gives the oscillator
strength. One way is to add to the real physical channels
one unphysical open channel coupled to the physical
channels. If you then formally take the limit that the
coupling of the unphysical open channel to the physical
closed channels goes to zero, the resulting photoioniza-
tion cross section will be a Rydberg series of 8 functions;
the oscillator strength to each bound state can be read off
from the coefficient of each 8 function. A (perhaps) more
straightforward method would be to use Green’s theorem
to obtain directly the normalization constant [9]. This
can be found from

[av = [ avpHye—voHy) /(€ —¢)

with the volume being bounded by the surface r;=R.
The right-hand side of this equation can be expressed as a
surface integral which can be evaluated analytically since
the asymptotic forms of f and g are known. At the
bound-state energies,

Y. =>9P;A;—0 asr—co . (8)

Take the limit ¢’ — ¢ =(bound-state energy); then take the
limit R — o to obtain the normalization coefficient. Both
methods give the same result (of course).

The bound states are at the energies that give
det(K +tanf3)=0, where

B;=mv,=m/V2(I.—E),

with I, being the ionization threshold in atomic units.
The oscillator strength to the nth bound state is

fo=2m(e,—€, (3 d; 4;)?

X |3[27,+1]

X3 AiA-i[K,»j—!-SA-tanBi}

i ) 9
< ide j

)
Il
]

where all quantities are in atomic units. There is a small
practical problem in numerically finding the derivative of
the K-matrix elements, i.e., there are energies where K
diverges. We used the derivatives of the eigenvectors and
eigen quantum defects of K to obtain the derivative of K:
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TABLE III. The oscillator strengths in atomic units for excitation from the C 2s22p23P, ground
state compared to those of Nussbaumer and Storey [14] and experiment [15]. The numbers in brackets

denote multiplicative powers of ten.

Oscillator strength

Configuration A (A) Present NS Expt.
2522p3s 3P¢ 1656.9 1.4[—1] 1.36[—1] 1.4[—1]+15%
2s2p3s 'Pg 1613.4 8.7[—5] 5.55[—5]
3ps 1328.8 5.8[—2] 4.95[—2] 6.4[—2]£13%
2522p4s 3PS 1280.1 6.8[ —2] 2.41[—2] 2.0[ —2]+20%
3pe 1277.2 7.3[—2] 8.90[ —2] 7.4[—2]+13%
2522p4s P9 1276.5 42[—4] 4.50[ —3]
1pe 1270.1 4.6 —4] 3.88] —4]
3pe 1260.7 42[—-2] 3.66[ —2] 3.6[—2]+15%
dK; _ dUg, + pear to be falling like 1/7°.
d—g_z de tan(mp, (U, In Figs. 1(a)-1(d) we show the oscillator strengths for
@ transitions from the *P, ground state. These figures are
U T)a j not meant to convey detailed information; they are meant
+ Ujqtan(mp,) de to convey a feeling for the level of channel interactions
du for each atom. For the J =1 final-state symmetry, there
a T . .
+U, —(UT)aj . (10) are five channels: two Rydberg series attached to the

a
de cos’mu,

The derivatives of the eigen quantum defects and eigen-
vectors are obtained from derivatives of the p matrix of
Eq. (5):

ap;
vh,—2U; 11
de 2( de ia an
du,, d.“—ji
—_— = (U™ o' U, - (12)
dE a' (zzyéa) :U“a :u‘a % ! dE

We find the derivative of u;; numerically. Equations (11)
and (12) avoid the problem of U, changing phase from
one energy step to the next (among other problems).

B. Results

There are few published data on the oscillator
strengths for the carbon-group atoms. Nussbaumer and
Storey [14] (NS) calculated oscillator strengths for C in
intermediate coupling and Goldbach et al. published
some experimental results [15]. We compare some of
their values and ours in Table III. Overall, there is good
agreement between the two calculations and the experi-
ment except_for the 1280.1- A and the 1276.5-A lines.
The 1276.5-A line has very little oscillator strength; we
do not expect good agreement for the weak transitions.
The 1280.1-A line is nearly degenerate with the 1277.2- A
line which causes *P¢->D¢ mixing to depend sensitively
on the spacing of *hese levels; the sum of the oscillator
strengths for these vwo lingcs is relatively insensitive to the
spacing and is equal to 0.14 tiresent calculation) and 0.11
(NS). Brown et al. [2(a)] published relative absorption
strengths from the 3s23p23PJg states to states with

J=0-3. We compare our results with theirs in Table IV
for the 2— 3 transition. The agreement is not very good.
At energies closer to the thresholds, our results decrease
much faster than those of Brown et al., which do not ap-

J.=1 threshold and three Rydberg series attached to the
J,=2 threshold. In the absence of channel interactions,
the oscillator strength of each Rydberg would decrease
like (I, —E,) 3’2, where I, is the energy of the ionization
threshold. Channel interactions can cause the oscillator
strengths to vary somewhat irregularly from level to lev-

TABLE IV. The oscillator strengths in atomic units for exci-
tation from the Si 3523p? 3P, initial state to the J =3 final state
compared to the relative absorption strength of Brown et al.
[2(a)]. The numbers in brackets denote multiplicative powers of
ten.

Oscillator strength

A" (em™) Present Expt.
53362.3 1.01[—3] 35
57450.6 6.01[—4] 50
58893.3 1.19[ —2] 80
60705.4 1.54[ —3] 30
614232 1.77[—2] 70
62 376.8 2.84[ —3] 20
62 802.8 121[—2] 50
63 340.6 4.14[ —3] 40
63641.8 5.90[ —3] 40
63945.1 4.93[—3] 35
64 187.8 1.75[—3] 25
64351.9 5.03[—3] 30
64 548.12 9.80[ —6]

64 647.5 4.59[—3] 450
64795.4 8.95[ —4] 15
64.881.5 1.69] —3] 30

64965.0 1.94[ —3] 15

65054.5° 1.00[ —7]

65102.5 2.16[—3] 25

65226.6 1.06[ —4] 10

*Theoretical energy.
*Blended line.
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FIG. 1. Oscillator strength as a function of energy below the
J. =-;~ threshold: (a) C, (b) Si, (c) Ge, and (d) Sn.
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el. However, as the energy approaches the lowest thresh-
old, the density of states attached to that threshold
diverges, while the density of states attached to the upper
threshold(s) remains roughly constant; when you get
close enough to the lowest threshold, the states form sim-
ple Rydberg series attached to that threshold with oscil-
lator strengths which decrease like (I, —E,) %2, The
main part of the channel interaction is due to the frame
transformation which mixes the channels of different LS
symmetries; if the thresholds were not split by the spin-
orbit interaction, the channel interactions would be very
small.

In Fig. 1(a) we give the oscillator strengths for C whose
thresholds have a spin-orbit splitting of 63 cm™!. This
small splitting is reflected in the appearance of five Ryd-
berg series decreasing like 1/n3 at energies more than
1000 cm ™! below the J, = + threshold. At energies closer
than ~400 cm ™! to the threshold, the series have irregu-
lar strengths due to channel mixing. In this figure we do
not reach the energy range where there are two simple
Rydberg series attached to the J, =1 threshold. In Fig.
1(b) we give the oscillator strengths for Si whose thresh-
olds have a spin-orbit splitting of 287 cm™!. This much
larger splitting (than that of C) generates more channel
interaction in this energy range. The oscillator strengths
are correspondingly more irregular; a generic 1/a3 de-
crease is still apparent. In this figure we do not reach the
energy range where there are two simple Rydberg series
attached to the J, =1 threshold. In Fig. 1(c) we give the
oscillator strengths for Ge whose thresholds have a spin-
orbit splitting of 1767 cm™!. At energies more than
~300 cm ™! below the threshold, the oscillator strengths
are very irregular, indicating strong channel interactions.
At energies less than ~300 cm ™! below the threshold, we
see the two simple Rydberg series attached to the J, =1
threshold. These series do not have the simple 1/n
dependence due to the interaction with perturbing states
at ~60 and at ~90 cm ! attached to the J. =3 thresh-
old. In Fig. 1(d) we give the oscillator strengths for Sn
whose thresholds have a spin-orbit splitting of 4251
cm ™. At energies more than ~600 cm ™! below the
threshold, the oscillator strengths are very irregular, indi-
cating strong channel interactions. At energies less than
~600 cm ™! below the threshold, we see the two simple
Rydberg series attached to the J,=1 threshold. One
series has a simple 1/n° dependence, while the other is
perturbed at ~320 cm ™! by a state attached to the J. = 2

threshold.

Wl

V. LU-FANO PLOTS

A Lu-Fano plot [6] provides a simple, graphical
method for checking the accuracy of multichannel
scattering parameters when there are only two thresholds
affecting the dynamics. For each bound-state energy lev-
el, this is a plot of the pairs of points (v,,,v,,) where

V!ln =[2(€u _En )]71/2
and

vip=[2(g;—¢,)]" "% (modl) ;
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£, is the energy level in atomic units; g, is the lower
(upper) threshold in a.u. For us, the upper threshold is
ns’np 2P ,, and the lower threshold is ns*np 2P, ,,. We
generate the theoretical results by treating the channels
attached to the upper threshold as closed and those at-
tached to the lower threshold as open in the MQDT cal-
culation. This gives a very energy-dependent K matrix;
the theoretical curves are the arctangents of the eigenval-
ues (divided by m) of this energy-dependent K-matrix. If
the original K matrix is energy independent, the theoreti-
cal curves will be identical when v, —v,+1. The dis-
tance between the theoretical curves and the experimen-
tal points indicates the error in the calculation.

In Figs. 2-5 we give the Lu-Fano plots for C, Si, Ge,
and Sn. The plots give the results of the present calcula-
tion as well as all of the experimental information (which
we know about) for the odd-parity levels with J=0-3.
We do not attempt to use the calculation to classify the
levels because in general the states are not very pure,
making classification meaningless. We clearly obtain the
best agreement for all symmetries in C and Si and in the
J =0 symmetry for Ge and Sn. The main source of the
discrepancies is discussed below. In some of the Lu-Fano
plots there are experimental points below the smallest
value of v, of the theoretical curves. We did not calcu-
late lower theoretical points because the wave functions
were exponentially diverging inside of the R-matrix box
[at negative energies the wave function of Eq. (3) always
diverges], which can give spurious results after making
the frame transformation. We could have obtained the
Lu-Fano plots at these energies by using a smaller R-
matrix box.

In Figs. 2(a)-2(d) we present the Lu-Fano plots for the
odd-parity, J =0-3 states of C. The experimental points
are taken from Ref. [1]. Carbon is qualitatively different
from the heavier elements due to the very small size of its
core; the maximum of the radial electron density,

p(N=3(8(r—r))),

for the ns’np ionic ground state is near 1.1 a.u. for C, 1.8
a.u. for Si, 1.8 a.u. for Ge, and 2.1 a.u. for Sn. All of the
vertical and horizontal lines are within 0.1 of an integer
(except at low v; ), which indicates small quantum de-
fects for all of the LS symmetries. Above nj,,~3.5, the
pattern repeats when v; ,—v; , + 1, which indicates that
the scattering parameters are independent of the energy
in this range. The pattern below v;,,==3.5 is different
from that above v; ,=3.5, which indicates a strong ener-
gy dependence in the scattering parameters. This energy
dependence is caused by the 2s2p32ST1L states which ap-
pear in the calculation as resonances in the 2s22p es and
ed scattering parameters. The nsnp? states give a strong
energy dependence to the quantum defects over the range
of the resonance. There are no nsnp>l:3F states; the
quantum defects for the 'F and *F symmetries do not
have a strong energy dependence. On the whole, the
theoretical curves are in good agreement with the data
points; we estimate that the error in the theoretical quan-
tum defects is less than 0.02.

In Figs. 3(a)-3(d) we present the Lu-Fano plots for the
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odd-parity, J =0-3 states of Si. The experimental points
are taken from Ref. [2]. Again, good agreement is found
between the theoretical and experimental results; in this
range we estimate that the error in the theoretical quan-
tum defects is less than 0.02. In the energy range covered
by Fig. (3), the scattering parameters are independent of
the energy. At smaller values of v, ,, the 3s3p> states
cause a large energy dependence in the scattering. For Si,
Ge, and Sn, the nsnp? states cause an energy dependence
over a much larger range because the ns’np ed can in-
teract more strongly with these states; in C the 2s2p>
states are more compact than the corresponding nsnp>
states of the heavier atoms and the ed partial wave does
not penetrate as far in C as in the heavier atoms. For Si
there are two curves for the J=2 symmetry and one
curve for the J =3 symmetry which are very far from the
lines v, ,,=integer or v;,=integer. These curves arise
from the large phase shifts of the 3s23p ed 'D and 3F sym-
metries. It is perhaps not surprising that these two sym-
metries have the largest quantum defects because the
1/r, interaction between the 3p and ed electrons is the
least repulsive for these symmetries.

In Figs. 4(a)—4(d) we present the Lu-Fano plots for the
odd-parity, J =0-3 states of Ge. The experimental data
points are taken from Ref. 3. The agreement between the
experimental and theoretical results is not as good for Ge
J=1-3 symmetries as it is for the two lighter atoms.
The discrepancies are almost solely due to the large ener-
gy dependence of the 4s%4p ed 3D quantum defect. We
estimate that the quantum defects for all other sym-
metries have errors less than 0.03. The quantum defect
for the *D symmetry has a large energy dependence over
the whole range shown because of the large interaction
with the 4s4p>3D state. This large energy dependence
makes the application of the LS to jj frame transforma-
tion somewhat problematical. We obtain noticeably
different results when we use the energy relative to the
LS-averaged threshold energy or use the energy relative
to the J,=1 or 2 energies. In Fig. 6 we show the two
different results when we zero the energy relative to the

. =+ or 2 thresholds; the curves which change when us-
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FIG. 6. Lu-Fano plots for the Ge odd-parity, J =3 states.
The two theoretical curves are for the energy being zeroed at
the J, =1 and 2 thresholds as described in the text. The region
between the two different plots is hatched.
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ing the two different scales depend on the 3D quantum de-
fect. In Fig. (4) we show our results when we zero to the
J.=1 threshold since we obtain the best match with ex-
periment with this energy scale. The physical and techni-
cal reasons for the difficulty are discussed in Sec. IT A.
Carbon and Si have much smaller spin-orbit splittings
and this problem does not arise for these atoms. The ex-
perimental data points near v,,,=1 of Fig. 4(d) are g
states; the ns2np eg channels were not included in the cal-
culation.

In Figs. 5(a)-5(d) we present the Lu-Fano plots for the
odd parity, J=0-3 states of Sn. The experimental data
points are taken from Ref. [4]. The agreement between
the experimental and theoretical results is not as good for
the J=1-3 symmetries as it is for the lighter atoms.
Like Ge, by far the largest error is induced by the large
energy dependence of the *D quantum defect. Again, the
quantum defect for this symmetry has a large energy
dependence over the whole range shown because of the
large interaction with the Ss5p®®D state. In Fig. 7 we
show the two different results when we zero the energy
relative to the J, =1 and 3 thresholds. In Fig. 5 we show
our results when we zero to the J, =1 threshold. The ex-
perimental data points near v,,,=1 of Fig. 5(d) are g
states; the ns2np eg channels were not included in the cal-
culation.

Part of the reason for presenting the theoretical data
for all of the atoms in one paper is to allow comparison of
the same parameters for the different atoms. From Figs.
2-5 some of the basic similarities are obscured by the
different ranges of v;,,; to make a comparison between
the different atoms, it is best to block out all but an in-
teger range of v;,. As with the other columns of the
Periodic Table, the first-row atom C is different from the
heavier atoms because its d-continuum wave cannot
penetrate into the core region and thus does not interact
strongly with the core electrons. Previous work on other
columns of the Periodic Table suggests that the heavier
atoms should be very similar to each other. Although
there are some striking similarities between Si, Ge, and
Sn, there are also some differences. The similarities are
biggest for the scattering parameters which vary the least
with energy; the differences are strongest for those which
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vary the most with energy. This should not be surprising
because the energy-dependent parameters depend on the
energy relative to threshold and on the width of the per-
turbing nsnp? state, which can be expected to vary some-
what from atom to atom.

In Refs. [2(b),3,4] Brown et al. fitted MQDT parame-
ters to their measured energy levels for Si (/=2 and 3),
Ge (J=0-3), and Sn (J=0-3), assuming these parame-
ters to be energy independent. In Ref. [5] the MQDT pa-
rameters of Si, Ge, and Sn were allowed to have energy
dependence but these fits were only for J =3; they explic-
itly included the nsnp®3D¢ perturber in the MQDT pa-
rameters. Although they obtained good fits, the number
of parameters needed to reach this level of agreement was
much larger than the fitted parameters of Refs. [2-4].
We feel the key parameter of Ref. [5] was the larger fitted
value of du /dE for the *D channel.

To obtain good agreement with experiment, it is neces-
sary to use energy-dependent parameters. Comparisons
which rest on the analysis of energy-independent parame-
ters are suspect. A recent analysis [16] of direct s-d
scattering for Si, Ge, and Sn does not give the full picture
for this reason. The “size” of the s-d scattering probabil-
ity can be estimated by examining the J =0 Lu-Fano
plots; the two J=0 channels are ns’np °P,,, €s,,, and
ns’np ’P,,, €d,,,. For zero scattering probability, the
horizontal and vertical lines would cross. It can be seen
in Figs. 4(a) and 5(a) that the size of the avoided crossing
(and hence the s-d scattering probability) changes with
energy. There are two indistinguishable paths for an s
wave to scatter into a d wave: (1) the direct path, ns’np
es —ns’np ed, and (2) the indirect path,

ns*np es—nsnp*—ns’np ed .

The amplitude for the direct path does not depend
strongly on energy, while the amplitude for the indirect
path does depend strongly on energy near the resonance.
This shows a limitation of the Ref. [16] analysis based on
empirical MQDT parameters from Refs. [2—-4], as we find
that it is impossible to extract a direct s-d scattering
probability that is roughly independent of energy.

We do not give tables of our MQDT parameters be-
cause of their large energy dependence. The tables would
need to be either large or else relevant to only a small en-
ergy range.

VI. AUTOIONIZATION SPECTRA

In Figs. 8(a)—8(d) we present the photoionization cross
section as a function of v, ,, for the different atoms for ex-
citation from the ns*np23P, ground state. For the J=1
final state, there are three Rydberg series attached to the
J.=3 threshold which can be clearly seen in Fig. 8 ex-
cept for C, Fig. 8(a), where the two d-wave resonances
cannot be distinguished. Classifying the resonances is
somewhat meaningless due to channel interactions.
However, the s-d mixing is comparatively weak, so we
can identify the s-wave resonances as the very sharp reso-
nances in C at v;,,~n+0.94, the resonances in Si at
vy,=n+0.15, the sharp resonances in Ge at
v3,,=n+0.18, and the sharp resonances in Sn at



4918

600 T T T T T

Q
~

500

400

300

o(Mb)

200

100

L L L L L B

T TP T

42.5 43.0 43.5 44.0 44.5

500 T T L

400

300

o(Mb)

200

LI e

P BRI TSI SR BT

100

[
I

21.5 22.0 22.5 23.0 23.5
Vs/2

—
O

- DENSITY
INTENSITY =~

200 T —T T

150

100

a(Mb)

50

LI B L L L L L N B

“/i‘.m.,.‘...

13.5 14.0 14.5 15.0 15.5
Vs/2

300 T T T

250

200

150

o(Mb)

100

50

TP T T T T TT T T T T T TT

0 . R A A" .
5.5 6.0 6.5 7.0

Vs/2

j\ 1
N AN I P NUUTE P S

5

FIG. 8. The photoionization cross section calculated in
length (dashed line) and velocity (solid line) gauges between the
.=1 and 3 thresholds: (a) C, (b) Si (the height of the s-wave
resonance is ~ 1300 Mb), (c) Ge with the densitometer trace of
Ref. [3] (the height of the s-wave resonance is ~750 Mb), and
(d) Sn.
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vy,,=n—+0.21. The two d-wave resonances are at,
v3,=n+0.98 and v; ,,~n+0.99 in C, at v, ,~n +0.92
and v;,,=~n+0.03 in Si, at v; ,~n and v; ,~n +0.75 in
Ge, and at v;,~n and v;,~n+0.7 in Su. If the
scattering parameters were energy independent, the au-
toionization cross section would repeat at v; ,—v;3,,+1.
It is clear for Sn that the pattern does not repeat in going
from v;,,~6 to v;,,=7 which is a change in energy of
~0.004 a.u. (compare to the spin-orbit splitting of
~0.02 a.u. for Sn*). The Ge cross section repeats when
going from v;,,~14 to v;,,=~15, which is a very small
energy change; however, when we compare the autoioni-
zation cross section near v3,,~8.5 to that near
v3,,==25.5, we see a noticeable difference.

The only experimental data which we know of in this
energy range is the densitometer trace of Brown, Tilford,
and Ginter [3], Fig. 11. We give their results above ours
in Fig. 8(c). Our cross section is similar to theirs with the
exception of the height and g value of the s-wave reso-
nance at v ,=~n +0.18. The positions of the resonances
are in pretty good agreement. Resonance shapes are
more difficult to reproduce; our problems with the frame
transformation discussed above might account for the
discrepancies. Alternatively, it should be kept in mind
that densitometer traces are not linear in intensity, and
accordingly may distort line-shape profiles.

The small widths of the C autoionizing resonances
compared to the heavier atoms should not be surprising
because the C d waves do not interact strongly with the
core. The autoionizing spectra for the heavier atoms do
not resemble each other as closely as might be expected;
the Si spectrum in particular looks very different from
the Ge and Sn spectra. This is again due to the large en-
ergy dependence in some of the scattering parameters
caused by nsnp > perturbers.

VII. CONCLUSIONS

In this paper we have compared our calculated scatter-
ing parameters to those of previous experiments through
the use of Lu-Fano plots as well as by direct comparison
to experimental and calculated oscillator strengths for a
couple of C transitions. The calculations show good
agreement with experiment for C and Si and for the J =0
symmetry of Ge and Sn.

The main reason for discrepancies is the rapid energy
dependence of the 3D° quantum defect near threshold.
This energy dependence causes problems in the im-
plementation of the LS to jj frame transformation for the
J=1-3 symmetries. A large energy dependence of a
quantum defect implies that the electron spends a long
time in the interaction region in that channel; the frame
transformation assumes that the time the electron spends
interacting with the core is short compared to the spin-
orbit precession time. The nsnp? short-range states cause
energy dependences in the ">P° and 3D° symmetries
with the strongest effect near threshold in the 3D° sym-
metry. Any detailed information which rests on the as-
sumption of energy-independent MQDT reaction ma-
trices should be viewed as suspect.

These calculations emphasize the need for accurate
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energy-level data for alkalilike ions throughout the
Periodic Table. By incorporating such data into a sem-
iempirical model potential, the main polarization and
screening effects of inner-shell core electrons can be built
into the calculation efficiently at the start. Both Ref. [7]
and the present calculations have suffered from the limit-
ed amount of ionic level information that is available,
especially for the heavier alkalilike ions.

Of particular interest is the degree of similarity be-
tween the different atoms. However, the similarities do
not appear to be as striking as those within other atomic
groups, like the rare-gas atoms or the halogens. This is
partly due to the nature of Lu-Fano plots, which depend
sensitively on the quantum defects. Most of the
differences between the atoms are in the symmetries with
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the most energy dependence; the slight differences in en-
ergies relative to threshold and in the widths of the nsnp>
resonances for the different atoms can translate into large
differences in quantum defects. Those parameters with
small energy dependences are similar in Si, Ge, and Sn;
this similarity is hard to see in the Lu-Fano plots because
the frame transformation mixes several LS symmetries
(except for the J =0 symmetry).
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