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A noniterative eigenchannel R-matrix approach, combined with the quantum-defect method, is for-
mulated to describe the predissociation of H2 in the Rydberg state 3pm.D 'H„by the low-lying
3po.8' 'X„+ and 2p~C 'll„+ states belonging to the same Rydberg channel. The Coriolis coupling leading
to the dissociation has been accounted for by a rovibrational frame transformation. The predissociation
line positions and widths for the U =3 to v =11 levels have been calculated. Very good agreement be-
tween experiment and theory is obtained.

PACS number(s): 33.10.Cs, 33.10.Lb, 33.80.Gj, 34.80.Kw

I. INTRODUCTION

Much of the complexity of an excited molecular system
derives from the coupling of electronic and nuclear de-
grees of freedom. These correlations give rise to multiple
decay paths for the system. The most interesting spectro-
scopic region is where the basic molecular deexcitation
processes, namely, Auorescence, ionization, and dissocia-
tion, are in strong competition [1,2]. Besides, related
processes such as dissociative recombination and associa-
tive ionization also occur in this energy range [3,4]. Un-
derstanding how electronic and nuclear coupling mediate
the decay of the system into such different escape chan-
nels is a very general problem. The hydrogen molecule is
a prototype molecule which has been subjected to both
experimental [5—7] and theoretical [8—11] studies. The
simplicity of the system enables one to explore the com-
plicated coupling of electronic and nuclear motion in
great detail.

Among numerous theoretical approaches, the mul-
tichannel quantum-defect theory (MQDT) [12,13] pro-
vides one of the most powerful methods to describe these
nonadiabatic effects. The role of rovibronic coupling in
the ionization processes has been well documented in
terms of the MQDT [8]. It has been shown that a Born-
Oppenheimer quantum-defect function contains all the
necessary information about the short-range electronic-
nuclear coupling. The non-Born-Oppenheimer effects
which occur typically in Rydberg states (large electron-
core distances) can be accounted for by a quantum-
mechanical basis transformation from the molecular to
the laboratory frame [14]. It has thus been possible to de-
scribe the interconversion of energy between rovibronic
and electronic degrees of freedom in the preionization of
H2 [13].

There have previously been mainly two types of theory
which aim at including dissociative processes in the
MQDT framework. First, Giusti-Suzor [15] developed a
perturbative treatment of competing ionization and disso-
ciation processes. In this method a second body-frame

interaction parameter is introduced, in addition to the
quantum-defect function, to account for the electronic
coupling between the Rydberg and dissociative valence
states. This coupling is then treated perturbatively to
lower orders. This method has been successfully applied
to describe dissociative recombination and associative
ionization processes for several molecules (Hz, Oz, and
Naz) [3] in which the electronic coupling is only
moderately strong. However, it encounters convergence
problems in the case of strong coupling.

Somewhat later one of us proposed a nonperturbative
eigenchannel R-matrix method to explain how the ioniza-
tion and the dissociation compete in H2 photoabsorption
[2]. It has been shown that the same quantum-defect
function as used in the ionization processes also contains
the necessary information to deal with dissociation. This
treatment is thus formulated in terms of exactly the same
parameters as those used in the MQDT of rovibronic
coupling in molecular Rydberg states [8]. Although this
approach is accurate, it involves determining iteratively
at a given total energy a complete set of short-range
eigenstates, each of which has a constant eigenphase in
both ionization and dissociation channels. This iteration
procedure has thus been shown to be di%cult to imple-
ment in numerical calculations. Robicheaux, in his treat-
ment of H2 vibrational excitations and dissociative at-
tachment by electron collision [16], reformulated the R
matrix method of Greene and Jungen [17] into a noni-
terative version. The disadvantage of his approach, how-
ever, is that the Born-Oppenheimer approximation is as-
sumed throughout the reaction region where the R-
matrix calculation is performed. This assumption is not
generally valid in dissociative processes in which the
non-Born-Oppenheimer coupling may even play a role
within the reaction zone.

The purpose of this work is to develop a nonperturba-
tive approach to treat ionization and dissociation without
invoking iteration. In this paper, we present the initial
step towards this goal, i.e., the description of predissocia-
tion of Hz in the 3@~ Rydberg state by the lower-lying
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electronic states 3po. , 2p~, and 2po. belonging to the
same Rydberg channel. The rovibrational levels of this
state are strongly predissociated even above the ioniza-
tion threshold [7], whereas for higher npA, (n ~ 4, A, =0, 1)
states ionization is dominant. Thus we neglect the ion-
ization process entirely in the present study. Open ion-
ization channels will be included in future studies. In
what follows, we first describe the physical processes in-
volved to give an overall view. The eigenchannel itera-
tive treatment [2] will then be summarized. After that
our noniterative formulation will be given in detail. We
will finally present our results of predissociation line posi-
tion and widths for the v =3—11 levels of the 3p~D 'lI„+
(J =2) state and compare them with the experimental re-
sults determined by Glass-Maujean, Breton, and Guyon
[7] and the theoretical calculation of Julienne [18].

II. DESCRIPTION OF THE PROCESSES

Figure 1 shows several potential-energy curves of H
+ 2

and that of H2 relevant to our study, along with the vi-
brational energy levels associated with these states.
These Rydberg states are members of the p-wave ioniza-
tion channel which is accessible from the ground state of
H2 by absorption of one photon. Above the dissociation
limit H(ls)+H(2s, 2p), in addition to the direct dissocia-
tion of the 2po (not shown in the figure), 2p~, and 3po.
states, higher bound states can also be predissociated by
these lower-lying members of the same Rydberg channel.
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FIG. 1. Potential-energy curves of H2 and H2+ relevant to

this study. Also drawn are the rovibrational energy levels.
These "box" levels are calculated by requiring that the wave
functions vanish at R o.

Julienne and others have shown some time ago that
predissociation of the 3p~ state is induced by a transition
into the 3po. vibrational continuum, caused by Coriolis
interaction [18]. Herzberg [19] has further shown that a
progression of typical Beutler-Fano profiles occurs in the
photoabsorption cross section as a result of the interfer-
ence between the direct photodissociation into the 3po.B'
state and the indirect dissociative process via the quasi-
bound 3p~D levels v. The interaction of the 3p~ state
with the 2p~ and 2po. states is weaker by orders of mag-
nitude. The reason is that all coupling occurs at short in-
ternuclear distances. The 3pn and 3po. states approach
the same electronic configuration He(3p) in the united
atom limit. The potential curves of the two states are so
close to each other at short internuclear distance that
they can interact very effectively [7]. The 2pvr and 2po
states, on the other hand, are so far away that their in-
teraction with the 3p~ state becomes weak. The coupling
to the 2p~ state is about two orders of magnitude weaker
than the coupling to 3po. , while the coupling to 2po. is
even weaker and is thus neglected entirely in this calcula-
tion.

In the theoretical treatment of Julienne [18], an l-
uncoupling operator —

( I/2p~R )(J+L +J L+ ) is
used. Here p& and R are the reduced nuclear mass and
internuclear distance, respectively. J denotes the total
angular momentum operator of the system. L refers to
the total electronic angular momentum. Those with "+"
and "—"are raising and lowering operators. This opera-
tor is responsible for the breakdown of the Born-
Oppenheimer approximation and thus induces dissocia-
tion. The predissociation lifetime is obtained from
Fermi's "golden rule" by calculating the electronic ma-
trix elements between the initial bound state 3p~ and the
final continuum state 3po. coupled by the coupling opera-
tor. This treatment, as we will see later, yields linewidths
in fairly good agreement with the experimental results of
Glass-Maujean, Breton, and Guyon [7], but a discrepancy
still remains.

Instead of introducing an operator to treat the interac-
tion between different states, we describe the coupling
here as a channel mixing. In Rydberg states, one of the
electrons is able to move far from the remaining molecu-
lar core. In this region of space, the Rydberg electron is
no longer constrained to follow the rovibrational motion
of the nuclei adiabatically, but instead becomes decou-
pled from the core motion. As a result the Born-
Oppenheimer separation of electronic and nuclear motion
can no longer serve as a good approximation. The good
quantum numbers are now the rovibrational quantum
numbers of the core and the outer-electron angular
momentum quantum number [8]. Only when the elec-
tron is in the vicinity of the core will the strong interac-
tion reassure the validity of the Born-Oppenheimer ap-
proximation.

The frame transformation [14], in conjunction with the
MQDT [12,13],provides a natural framework to incorpo-
rate these nonadiabatic effects resulting from large
electron-core distances. When the electron is anywhere
outside the molecular core (r ~ ro with ro denoting the
size of the core), the wave function of the system at ener-
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gy E can be written as an expansion in terms of the com-
plete set of eigenstates of the core P + +(co) (co denotes
all the coordinates except the radial coordinate of the
outer electron r), multiplied by the outer-electron radial
functions [8]
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A similar expression holds for S with cos replaced by sin
in the above expression. In Eq. (2) the coefficients U"~
are the rotational frame transformation matrix elements
connecting different angular momentum coupling
schemes relevant at short and long range [14]. For a
given electron orbital momentum l and a total angular
momentum J, the matrix U has dimension 2l + 1 and it is
unitary. The integration over R amounts to transforming
the R-dependent body-frame quantum-defect function
pz(R ) (A refers to the electronic angular momentum
component of the molecule along the internuclear axis)
into laboratory-frame measurable quantities. The super-
position coefficients B +, +, are chosen so that the solu-

V

tion in Eq. (1) satisfies the correct physical boundary con-
ditions at large r. For a bound state, for instance, one re-
quires that the wave function vanish at r~~, which
leads to the following linear system:

Here y'+ is the ground electron wave function of H2+

(A is the electronic angular momentum component of
the core along the internuclear axis), y + +(R)/R is the
vibrational wave function (with energy F. +&+) in this

V

electronic state (v+ and X denote the vibrational and
rotational quantum numbers, respectively), and
C&J'M '(r, R) is an eigenfunction of the total angular
momentum operators of the electron-core system J and
J, [14]. The functions (f,g) are the regular and irregular
p-wave Coulomb functions evaluated at the channel ener-
gy e + +=E—E + +. The Cand Smatrices can be ob-

tained by matching the laboratory-frame expansion Eq.
(1) valid everywhere outside the core to the Born-
Oppenheimer wave function valid in the vicinity of the
core as follows [8]:

[sin(harv + +)C +&+ +,~+,
+i ~+i

+cos(7rv ~ ~ )S +~+ +,~+, ]+ + ~+ (3)

III. EIGENCHANNEI. R-MATRIX TREATMENT

The nonadiabatic effects arising in the large electron-
core distances have been studied using MQDT in the ion-
ization processes for some time [8]. The iterative eigen-
channel R-matrix treatment [2] provides an initial at-
tempt to include dissociation within Rydberg channels.
In this approach the dissociative process is assumed to be
along a well-defined Born-Oppenheimer potential curve
only at large nuclear separation. This is well justified for
a dissociation proceeding relatively slowly. The process
in the initial stage (small internuclear distances), howev-
er, is rather complicated. One expects nonadiabatic cou-
pling between different states due to the large nuclear ve-
locity.

Two degrees of freedom are essential to describe the
dissociation in the Rydberg channel: the distance r be-
tween the Rydberg electron and the remaining molecular
core, and the internuclear distance R. The nonadiabatic
effects discussed in the previous section arise to the extent
that the probability amplitude of the Rydberg electron
far from the core is large. Thus the higher the principal
quantum number of the Rydberg state is, the stronger
this class of nonadiabatic behavior will be. On the other
hand, these couplings are most effective within a small-R
region to induce the dissociation process. Thus the inter-
conversion of energy between electronic and nuclear
motion takes place predominantly in the small-R and
large-r region.

+ ——Z/Q —2s + + is the effective principal

quantum number in channel U+N+, and with Z the net
charge of the molecular core.

The quantum defect pz(R) (with A=O and 1 for a p
channel) can be obtained either from a short-range ab ini-
tio calculation (within the Born-Oppenheimer approxima-
tion) or by fitting to the experimental data. This function
provides sufficient information about the short-range in-
teractions. It can be seen from Eq. (2) that channels or
Rydberg series associated with different ionization
thresholds (E + +) are mixed, i.e., the off-diagonal ele-

ments C + + +, +,WO. The R and A dependences of
V N, V

p~(R) are responsible for these couplings. Notice that if
p does not depend on A or R, the elements of Eq. (2)
reduce to cos(m.p)5 + + +, +, owing to the unitarity of
the [ U] and [y]. The rovibrational energy levels shown
in Fig. 1 are calculated from the MQDT scheme [Eq. (3)].
Each one of the levels is still predominantly Born-
Oppenheimer in character owing to their low principal
quantum numbers, but with the coupling to all other
states in the Rydberg channel included. In other words,
the tedious evaluation of adiabatic and nonadiabatic
correction terms like (y"~Vzq' ) (where ~y", ) is the
electronic eigenfunction) is avoided in MQDT, these
corrections being included implicitly by solving the linear
system [Eq. (3)].
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In order to describe the complicated interaction within
this reaction region, Ref. [2] defines a two-dimensional
configuration space spanned by the radial coordinate r of
the Rydberg electron and the internuclear distance R.
An eigenchannel R-matrix calculation [20] is then set up
in the reaction zone (denoted by II) bounded by the sur-
faces X„(r=r2 surface) and Xz (R =Ra surface) to ac-
count for the nonadiabatic coupling. Beyond r2 (Ro), all
relevant bound electronic (vibrational) wave functions are
negligible. Specifically, r2 should be taken large enough
to include not only the molecular core, but also the entire
electronic state responsible for dissociation (3pcr in this
study). On the other hand, Ro is chosen such that the
relevant Born-Oppenheimer levels of the predissociating
state (3pm. in this case) are well confined within this re-
gion.

The potential-energy curve and level diagram in Fig. 1

can be used to illustrate the iterative procedure of Ref.
[2]. The aim of this procedure is to find for each
preselected total energy E a molecular eigenstate which
has a constant logarithmic derivative all over the reaction
zone surface. The treatment starts by giving an arbitrary
logarithmic derivative on the surface Ro and calcul-
ating the complete set of vibrational states g + +(R)
of the molecular core. One particular choice is
b(RO)= —y'+ +/y + +=+~ for all u+X+ (where the

prime refers to the derivative with respect to R). One can
distinguish two types of vibrational core states. The first
type consists of states which do not reach out to Ro and
are just the bound states of H2+, the lowest levels of this
type are drawn to scale at the top of Fig. 1. The second
type of levels are those extending beyond R o and
represent a discrete subset of the H2+ vibrational contin-
uum, defined by the particular logarithmic derivative
chosen at Ro. These levels are ofF the scale of Fig. 1.

Then the multichannel expansion solution of the sys-
tem at large r [Eq. (1)] can be formed by calculating the
rovibrational frame transformation matrices C and S [Eq.
(2)]. We consider here the particular case where all ion-
ization channels are closed, i.e., the total energy E of the
system is lower than the ionization threshold H2+
(u+=0)+e (cf. Fig. 1). Solving the linear system Eq. (3)

yields a set of eigenstates. The energy diagram in Fig. 1

is just one particular set of the eigenstates with b =+~,
i.e., p +&+(Ro)=0. In general, none of the energy levels

will equal the preselected total energy E. Therefore, an
iteration procedure is necessary whereby the logarithmic
derivative b at Ro is varied until one of the eigenvalues
coincides with E. The set of logarithmic derivatives re-
sulting from this procedure [ b p ] then embodies all
relevant information about electronic and nuclear cou-
pling within the reaction zone R ~Ro at total energy E.
They are finally used to propagate the eigensolutions
from the reaction zone to the asymptotic regions where
the molecule is dissociated [2).

The wave function of the system at large R can be writ-
ten as

0'p=g P„A[F„„(R)I„~p G„~(R—)J„A p], R ~RO .
n, A

Here P„A denotes the dissociative electronic Born-
Oppenheimer eigenstate and (F, G) are independent vibra-
tional continuum solutions solved in this Born-
Oppenheimer potential curves. The coefticients I,~ 13

and
J„z& can thus be obtained by connecting the above solu-
tion to the R-matrix eigenstates.

IV. NQNITERATIVE EIGENCHANNEL
R-MATRIX TREATMENT

In the eigenchannel R-matrix method described in the
previous section one varies the logarithmic derivatives of
the solution in order to find the correct values corre-
sponding to the given total energy E. This procedure is
bypassed in this work with the help of the variational
eigenchannel R-matrix approach [21]. This noniterative
treatment can be derived directly from the usual Ritz
principle, or from Schrodinger s equation. In what fol-
lows, we first give a brief summary of the noniterative R-
matrix method [21]. We will then describe our treatment
using this formulation.

The well-known Ritz principle for energy can be recast
in the following form using Green's theorem:

b(E)=
V~%'*.V~%' — V, %* V„4+2%*(E—V)'0 den

p~ pe

I %*%der~ + I %*%do„
p X~ p X

(5)

where the parameter b is the logarithmic derivative on
the reaction zone surface:

' +bc =0
8pl

on X„,X~. In the above equations, —V~ /2p~ is the nu-
clear kinetic energy (p,& is the reduced nuclear mass),—V, /2p, is the sum of kinetic energies of all electrons
(p, is the mass of the electron), and Vis the potential en-

ergy between all particles in the system. 0 and X refer to
the volume and surface of the reaction zone. It can easily
be shown that Eq. (5) is a variational expression for b

[21].
To proceed, this treatment first represents the trial

function 4 in Eq. (5) in terms of a set of basis functions

'p =g3'u cI
k
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the volume integral in Eq. (9a) reduces to an orthonor-
mality integral. Furthermore, both vanishing at large r,
none of these functions will contribute to the surface in-
tegrals in the last term of Eqs. (9a) and (9b).

One can identify the energy levels in Fig. 1 as the
closed-type states [E; ] with b =+~. Equation (11)
yields a set of open-type states [Ed ] with b =0. To de-
scribe the dissociation by 3po. and 2pvr states, we select
from this open-type basis set two states, one for each
symmetry near the energy of interest. Figure 2 shows
contour plots of the two open-type basis functions used to
evaluate the predissociation level U =3. The fact that the
nodal lines are nearly parallel to the r and R axes indi-
cates that the adiabatic approximation is still quite
justified. One can identify the states as the U =6 and 10

"box" levels (Ro=4 a.u. ) of the 3pcr and 2p~ states, re-
spectively. However, it is the small nonadiabatic cou-
pling which is not perceptible in the figure that gives rise
to the predissociation. The closed-type states jy;], to-
gether with the two open-type states y&, constitute our
variational basis. These two sets of states will be coupled
in the R-matrix calculation (I;d%0 when i =3pvr and
d =3po. , for instance) leading to the predissociation.

The F' and the A matrices are evaluated as follows. We
first expand the open-type basis function y& in terms of
the dissociative electronic states P„z (nA=3po, 2p7r) on
the surface R =Ro. This is valid since we assumed the
validity of the Born-Oppenheimer approximation beyond
R =Ro [cf. Eq. (4)]. The Projection coefficients are given

by the following expression:

a„g d J P ~ydJCTg

X g [cos[~p~(Ro)]S'~ ~ ~, +, —sin[vrp~(Ro)]C'P ~ ~, ~, ]8'~,~~,
+i~+i

(12)

—g, (r)sin[up~(R)]] . (13)

In deriving Eq. (12) we have made use of the fact that the
dissociative electronic Rydberg state P„~ can be ex-
pressed at 1arge r as

~+X'�'(r ', R )

XJV„~[f, ( r)cos[~p~(R ) ]

I;;.=2(E E; )5;;—

E.—E ~ „~pa~a
i d

I dd =2(F Ed)5dd, —

A;;=0,

A;~ =A~, =0,

(15a)

(15b)

In this expression, XJM '(r ', R ) is the eigenfunction of the
total angular momentum of the system and of the elec-
tronic angular momentum component along the internu-
clear axis A. It is related to @J~ ' by a geometric rota-

(nv+)tional frame transformation X+M '= g +@&M 'U "~+

The quantum defect p, ~(R ) and the electronic energy
s„~(R ) are related by the R-dependent Rydberg formula:

2

K„A(R)= U„A(R) —U (R)=— (14)
2[n —p~(R)]

By;
~nw, i

= J 4nw BR
~~R .

BR
(12')

In terms of the coefficients a„~;, and a„~ &, and with the
specific boundary conditions at R =Ro chosen for the
functions y; and y&, the I and A matrices reduce to the
following simple forms:

where U„~(R ) and U+ (R ) are potential-energy curves of
Hz and Hz . A'„z=(n —pz) is the normalization
constant of the electronic state P„~ [2]. These electronic
states vanish at r=r~, and the Wronskian of f and g
equals 2/m. A similar expression can be obtained when
we project By;/BR onto p„~ at R o:

J„z~=[F„'~(Ro)+b&F„~(Ro)]g a„~ dcd& . (16b)

The eigenvalues of the reaction matrix J I ', tan~6p,
give the eigenphases from which the positions and widths
of predissociation levels are extracted.

V. RESUI.TS AND DISCUSSION

In our calculations we have used the quantum-defect
curve for A=O (4pcrB" state) and A= 1 (3pvrD state)
from Jungen and Atabek [8]. We typically include about

Add =g Qn~ da„P d
n, A

At each total energy E, the generalized eigenvalue sys-
tem Eq. (8) yields a complete set of R-matrix eigenstates
which are superpositions of our variational basis
0'&=+;y;c;&+gdydcd& and have constant logarithmic
derivatives b& at R =Ro. The wave function Eq. (4) of
the system at large R can then be matched to these R-
matrix eigenstates on the surface R =R o. The result is
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25 closed-type basis functions y;. They are selected ac-
cording to their energies E; which cover a range in the vi-
cinity of the 3pm level v (cf. Fig. 1). We also include two
open-type basis functions yd (one of 3pcr character and
the other of 2pm character). The values X+ = 1 and 3 are
taken in the expansion in Eqs. (10) and (11) as required by
the angular momentum coupling for a p electron when
J=2. Up to 30 vibrational basis functions (for each N+)
are used in the expansion. We have varied the R-matrix
radius Ro in order to ascertain that the calculated level
positions and widths do not depend on it. The largest
value used in the calculations is RO=6. 8 a.u. For the
levels 3p~, v =3—6 all ionization channels are closed (cf.
Fig. 1). For v ~ 7 the 3pmD state is also subject to weak
preionization; however, we have neglected this decay
channel by simply eliminating all open ionization chan-
nels v+N+ from the basis. In the course of the calcula-
tions we found that for the lowest predissociating 3pm.

level, u =3, convergence was not obtained as easily as for
the higher levels u. The reason is that this level is very
close to the dissociation limit H(ls) +H(2s, 2p).

We have evaluated the predissociation level positions
and widths for v = 3 —11 of the 3p ~ state for J=2. As an
example, Fig. 3 shows the eigenphase sum for the v =3
level along with the partial eigenphases in the 3po. and
2pm channels. It is seen that as a function of energy, the
eigenphase in the 3p o. channel displays a resonance
profile, whereas that in the 2p~ channel does not. This
behavior confirms that the coupling to the 2p~ state is
much weaker than that to the 3po channel, and the reso-
nance arises purely from the predissociation to the 3po
continuum state. By fitting the resulting resonance
profile of the eigenphase sum to the Breit-Wigner reso-
nance expression we finally extracted the level position
and width for each level.

Table I lists the experimental energies E„„,of the
v =3—11 levels of the 3pmD 'H„+ state with J=2 accord-
ing to Takezawa [22j along with our calculated resonance
energies E„, and widths I „,. Also given are the level

TABLE I. Predissociation level positions and linewidths

(cm ') for 3p~D 'll„+ state (J =2).

3
4
5
6
7
8
9

10
11

Eexpt

119320.5
121 160.5
122 879.2
124 476.4
125 959.3
127 321.0
128 563.4
129 681.2
130673.1

Eres

119318.5
121 156.0
122 876.5
124 475.2
125 956.5
127 319.1
128 561.0
129 679.0
130669.5

—1.7
1.6

—2.1

3.0
—2.7
—1.4
—2.8
—0.6

0.1

14.1

14.2
14.1
11.9
11.3
10.3
10.0
9.1

8.8

I (cm-1)

shifts AE induced by predissociation. These correspond
to the difference between the resonance energies and the
energies of the hypothetical discrete levels 3pm, u calcu-
lated from Eq. (3) by restricting the vibrational basis to
values v+ ~ u+3, whereby the dissociative 2p~ and 3po.
levels are eliminated (cf. Fig. 1). Notice that these hy-
pothetical discrete levels have no strict physical mean-

ings; in fact, unlike the predissociation calculations, they
depend somewhat on the numbers of the basis functions
included. Nevertheless, it can be seen that the level shifts
are much smaller than the widths. This indicates that the
effective coupling leading to predissociation depends only
weakly on energy. Note also that Takezawa has not
made a proper line profile analysis, while Glass-Maujean,
Breton, and Guyon do not give the resonance positions.
Therefore, the energies E„,and E„, in Table I are not
strictly comparable.

In Fig. 4 we compare our calculated level widths for

1.0

o.e—

M
0.6—

M
C$

C4 04
(0
bg)

0.2—

12

9
0

)C
tl

O

0.0 —. . 6
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119300
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E (cm '}

I

119330 119340

FICx. 3. Eigenphase sum (solid line) and partial eigenphases
in the 3po. channel (dashed line) and the 2@~ channel (dotted
line) as functions of energy for the 3pmD 'H„+ (v =3,J=2) level.

FICz. 4. Predissociation widths I" of the J=2 levels of the
3p~D 'll„+ state plotted as a function of the vibrational quan-
tum number v. Asterisks refer to the theoretical Fermi
"golden-rule" calculations of Julienne [18]; circles are our
MQDT calculations; error bars represent the experimental mea-
surements of Cxlass-MauJean, Breton, and Canyon [7].
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v =3—11 with the experimental results of Glass-Maujean,
Breton, and Guyon [7] and the theoretical results of Juli-
enne [18]. It can be seen that while the previous Fermi
"golden-rule" calculations gave the correct overall
behavior of the widths as function of vibrational quantum
number, our present results account now qualitatively for
the details of the observations up to v =11. The reason
for the overall decreasing trend of the width with v is that
the Coriolis coupling is roughly proportional to I/R
[18]. The maximum deviations between our values and
those of Julienne are of the order of about 15%%uo. They
arise because our calculations include higher-order in-
teractions affecting the Rydberg states, as has been point-
ed out above. For instance, Fig. 1 shows that for v =6—8
the 3pm levels are in close resonance with the levels
v =4—6 of the 4po.8" state, which tends towards the
same dissociation limit. It is indeed in this region that
the "golden-rule" results deviate most markedly from the
MQDT results.

For v=11 the experimental level width starts to rise
again, but this rise is reproduced neither by the previous
calculations of Julienne nor by ours. Glass-Maujean,
Breton, and Guyon [7] conjectured that this rise may be
due to the coupling of the 3p~ and 4po. states. Interact-
ing with the 4fo -state, the 4po. state has in fact a
double-minimum potential curve which intersects 3p~
near R =5.5 a.u. The outer turning points of the
3pm. , v ~ 10 levels are near the intersection point. These
levels then have some amplitude in the potential barrier
(not shown in Fig. 1) and thus reach farther out. The vib-

ronic coupling at large internuclear distances would thus
be responsible for the additional broadening of the v =11
level. The reason that we are not able to account for this
effect at large v is that the information about the interac-
tion of 3p~ and 4po. is not included in our quantum-
defect function pA(R) (cf. Ref. [8] for details). Put anoth-
er way, the potential-energy curve 4po. generated from
our quantum-defect function with the Rydberg equation
(14) does not intersect the 3p~ curve. Another reason for
the discrepancy may be the fact that the 3p~, v = 11 level
lies close to the v+ =3 ionization threshold and is embed-
ded in the dense Rydberg manifold associated with that
limit.

Above the ionization threshold H2+(v+=0)+e, ion-
ization and dissociation are in competition. It is the goal
of our future work to describe the complicated processes
in this region following the same lines as given in this
work. We are also aiming at incorporating processes in-
volving electronic channel interactions in addition to the
rovibrational channel interactions considered here. The
resulting "grand" treatment will be able to account for a
great variety of decay phenomena observed in small mol-
ecules.
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