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A photoionization cross-section calculation of atomic tungsten is performed in the formalism of
many-body perturbation theory for photon energies ranging from the ionization threshold of tungsten to
150 eV. Nonrelativistic orbitals are used in the basis set and relativistic corrections are included. We
consider excitations from the 4f, 5s, Sp, Sd, and 6s subshells. The etfects of the strong 5p65d ~Sp'Sd'
and 4f ' Sd ~4f "Sd' transitions are included as resonant contributions to the Sd partial cross section.
Our results indicate that the 5d partial cross section dominates the total cross section below 100 eV.

PACS number(s): 32.80.Fb

I. INTRODUCTION

A photoionization cross-section calculation of an
open-shell atom can be dificult to perform when there
are many strongly interacting, singly excited channels
available to an outgoing electron. Typically, a large
amount of computer time can be required in order to ob-
tain a meaningful low-order result. In this work, we
make use of two recently developed techniques to treat
nonresonant and resonant interactions in complex, open-
shell atoms. Our goal is to reduce the amount of comput-
er time that might be needed for a photoionization cross-
section calculation. The techniques that are discussed in
this paper are developed from the perturbation expansion
of the dipole polarizability [l].

We consider atomic tungsten, which has the LS cou-
pled ground-state configuration ([Xe]4f' 5d 6s ) D. The
label kl will denote a continuum electron orbital with
linear momentum k and orbital angular momentum I in
what follows. For transitions from the 5d subshell, there
are two ionic cores: (5d ) P and (5d ) F. There are five
dipole-allowed channels that contribute to the
5d ~Sd3kf partial cross section and that are accessible
from the (Sd ) P and (Sd ) F ionic cores:
((5d ) P;kf) F, D and ((5d ) F;kf) F, D, P. Like-
wise, there are four dipole-allowed channels that contrib-
ute to the 5d ~5d kp partial cross section:
((5d ) P;kp) D, P and ((Sd ) F;kp) F, D. We expect
that there will be strong Coulomb interactions between
the final channels that have the same LS couplings but
that have different ionic-core couplings [2]. For the
5d ~5d kl channels with a given l value, we are able to
include a large portion of these effects into the potential
function of the lowest-order Hamiltonian. Previously,
this type of potential (the "effective single-particle poten-
tial" for open-shell atoms [2]) has been used in photoion-

ization calculations of chlorine [2], yttrium [3],and sulfur
[4].

In addition to the class of interactions that are men-
tioned above, we include the effects of the strong
5p 5d ~Sp 5d and 4f' 5d ~4f' Sd transitions in
tungsten. There are nine dipole-allowed 5p 5d LS chan-
nels that are accessible from the Sp (Sd ) DJ o initial
state. The spin-orbit interaction mixes these nine dipole-
allowed channels among a total of 32, 5p 5d LSJ chan-
nels. Likewise, there are 46, 4f ' 5d LSJ channels that
are accessible from the 4f ' (5d ) DJ o initial state
through the actions of the dipole operator and the spin-
orbit operator. From the 5p Sd and 4f ' Sd resonant
channels that are described above, we consider 43 LSJ-
coupled autoionization channels each for the
Sp 5d ~Sp 5d kf, kp and 4f' Sd ~4f' 5d kf, kp
transitions. Our aim in this work is to include the major-
ity of electron-correlation effects in as simple a manner as
possible given the large number of resonant channels and
final channels. In order to accomplish this we use the
"generalized resonance" technique of Garvin [5]. This
work represents the first explicit use of this technique.

There are three photoabsorption measurements of
tungsten that are available for comparison with our cal-
culation. These experimental results include an optical-
absorption measurement of tungsten in the solid by
Haensel et al. [6]; a similar measurement by Weaver and
Olson [7]; and a photoabsorption measurement of laser-
generated tungsten vapor performed recently by Costello
et al. [8]. The measurements of Haensel et al. [6] extend
over the energy region from 25 to 500 eV. The measure-
ments of Weaver and Olson [7] and of Costello et al. [g]
focus on the energy region of the 5p 5d —+5p 5d excita-
tions in tungsten from 30 to 60 eV.

The formalism of many-body perturbation theory
(MBPT) will be used throughout this paper. Section II
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contains a short introduction to MBPT, a review of the
efFective single-particle potential, and a review of the gen-
eralized resonance theory. A description of the calcula-
tion and our results are presented in Sec. III. Con-
clusions are presented in Sec. IV.

II. THEORY

%'e consider the following Hamiltonian for an atom of
nuclear charge Z consisting of X electrons:

al angular momentum, respectively, of the continuum
electron in the final state. The incident photon energy is
represented by ~, c is the speed of light, and iV' is a nor-
malization factor that is calculated perturbatively [12].
The ionization threshold for the final channel l%f ) is
represented by the variable If, and 5(x) is a Dirac 5 func-
tion.

We are also interested in the P asymmetry parameter in
the dipole approximation, which is defined through the
relation

H =Ho+Hc+Hso

with

(la) do(co) o(co) 3 cos2(0) —1

and

+2

2

z——+V, =gh, ,
i=1

N

IIso = X g(r, )l, .s

N

Hc=g —gV;,
ij =1 ij i=1
(i &j)

(lb)

(lc)

(ld)

In Eq. (5), 6 is the angle between the polarization direc-
tion of the incident light and the direction of the ejected
electron. The explicit definition of the P asymmetry pa-
rameter in terms of the dipole matrix elements
(0'flz, ~l%'o) will be given in Sec. IIC.

We will concern ourselves with the length and velocity
gauges of the dipole operator Z, . In the length gauge,
the dipole operator is the sum of the single-particle coor-
dinate values z;:

We choose the normalization of our continuum orbitals

Pi, &
such that the radial part Rk&(r) behaves asymptotical-

ly as

&„,(r) I „„——cos kr + —ln(2kr)
1

L r

——(L+1)+5i (3)

with V Zlr ——ql—r as r~~. Denoting the many-
particle dipole operator by Z, , the photoionization cross
section for linearly polarized radiation and single-particle
excitations has the following form [10,11]:

o(co)=N'g J dk 5(k —+2' 2If)—
f

(4)

In Eq. (4), 0'f and 4'0 are the exact many-particle eigen-
states of the total Hamiltonian of Eq. (la) for the final
and initial states, respectively. The variables k and l in
Eqs. (3) and (4) represent the linear momentum and orbit-

Atomic units will be used throughout this paper except
where noted otherwise. The variable V, in Eqs. (lb) and
(lc) is a single-particle Hermitian potential that approxi-
mates the Coulomb repulsion between the electrons in the
system. The expression in Eq. (ld) approximates the
spin-orbit interaction, and g(r;) is the effective spin-orbit

g parameter that is defined by Blume and Watson [9].
We take Ho =++, h; as our unperturbed Hamiltonian
to generate our basis orbitals P and single-particle ener-
gies c:

(2)

(6)

Alternatively, we can express Z, in terms of the momen-
tum operator

(+flz., l+o)= (+f X +o)

+0 Ef —Ep
2 (7)

where Ef and Ep are the energy eigenvalues of 4f and Pp
with respect to the Hamiltonian H. Equation (7) approxi-
mates the velocity gauge. The dipole operator in the ve-
locity gauge, in the presence of the spin-orbit interaction
Hs, equals a term that is proportional to a gradient
operator plus an additional term that will be neglected in
this work. In Appendix A we demonstrate that the addi-
tional neglected term is O[(Ef Eo)l(c )]. Therefo—re,
for the largest value of the photon energy ~=Ef EQ
that we consider, the neglected term is approximately
0.03% of the dipole matrix element. A necessary, but not
sufficient, condition that the bra and ket vectors in Eqs.
(6) and (7) are exact eigenfunctions is for the length and
velocity gauges of the dipole matrix elements to agree. In
our perturbation calculation, we will obtain approximate
solutions for l%'o) and l'Pf ) and Eq. (7) will not be
satisfied to within the terms indicated by
O[(Ef Eo)/(c )]. Neve—rtheless, it is customary to as-
sociate the accuracy of the calculation with the extent of
the agreement that is obtained between the length and ve-
locity versions of the cross sections.

We mill apply the many-body perturbation theory of
Brueckner [13] and Goldstone [14] as it is extended to
atoms [15,16] in order to correct the dipole matrix ele-
ments with respect to the correlation Hamiltonian Hc
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and the spin-orbit Hamiltonian Hso given above. The di-
agrammatic representations of some of the 1ow-order
contributions to the perturbation expansion are shown in
Fig. 1. The diagrammatic notation that is used in this pa-
per is as follows: The vertical solid lines with arrows and
labels indicate orbitals in the basis set [these orbitals are
the solutions to Eq. (2)], the horizontal dashed lines that
end in open circles indicate dipole matrix elements, and
the horizontal dashed lines that connect two sets of verti-
cal arrows indicate Coulomb matrix elements.

Figure 1(a) represents the lowest-order dipole matrix
element between the core orbital indicated by the index
"a" and the excited orbital indicated by the index "r."
The diagrams given in Figs. 1(b) and 1(c) are time-
ordered perturbative corrections to Fig. 1(a) with respect
to the Coulomb interaction. For the purpose of "time or-
dering, " time proceeds from the bottom of the diagrams
in Fig. 1 to the top. All of the diagrams in Fig. 1 contrib-
ute to a final state that contains one net unoccupied unex-
cited orbital "a" and one net occupied excited orbital
"r." Figures 1(d) and 1(e) are peculiar to atoms that con-
tain open subshells in their initial states, since the ex-
istence of both the hole orbital "a" and the particle orbit-
al "a" indicates that the n, l, subshell is not completely
filled in the initial state.

In the mathematical analogs to Figs. 1(b)—1(e) there
are energy denominators that are associated with the in-
termediate virtual excitations. If the virtual excitation
occurs "before" the dipole interactions, as in Figs. 1(c)

where the variable N h represents the number of
particle-hole pairs that occur in the intermediate state,
cz is the single-particle energy of the ith hole orbital, and

1

c, is the single-particle energy of the ith particle orbital.
l

If the virtual excitation occurs "after" the dipole interac-
tion, as in Figs. 1(b) and 1(e), then the general form of the
energy denominator D is

~Ih
D= g (Eh —E„)+co, (9)

where co is the energy of the incident photon. For exam-
ple, in Fig 1(c.), the form of the energy denominator that
is associated with the first-order virtual excitation is
(E, +Eb —E„—E, ), and in Fig. 1(b), the form of the energy
denominator that is associated with the first-order virtual
excitation is (Eb —E, +~). We notice that the energy
denominators D that occur "after" the dipole interaction
in Eq. (9) can vanish. These denominators are evaluated
according to the rule

lim (D+i7)) '=P(D ') —i~5(D),
q —+0

(10)

and 1(d), then the general form of the energy denomina-
tor D is

~ph
D=g (Eh —c, ),

i=1

(a)

a,

(c)

where P represents a principal-value integration and 5(D)
represents a Dirac 6 function. The limit as g —+0 is tak-
en in order to satisfy boundary conditions. Specifically,
the limiting procedure arises from the requirement that
the external electric field, which ionizes the atom, be
turned on in an adiabatic manner from to= —~ to full
strength at t =0 and then oF again at t = oo [17].

(d) (e)
A. The effective single-particle potential

FIG. 1. A selection of low-order Brueckner-Goldstone dia-
grams that contribute to the dipole matrix element for photo-
ionization. The time ordering of these diagrams proceeds from
the bottom to the top. The solid lines with arrows refer to the
orbitals in the basis set, and the direction of the arrow signifies
the occupation status of the respective orbital. In the initial
state of the system, all of the core orbitals are occupied and
none of the excited orbitals are. An arrow pointing down indi-
cates an unoccupied core orbital and an arrow pointing up indi-
cates an occupied excited orbital ~ A dashed line connected to a
small circle indicates a dipole interaction. A dashed line that
connects two sets of arrows indicates a Coulomb interaction.
The class of diagrams where a Coulomb interaction occurs after
the dipole interaction in a time-ordered sense, as in Figs. 1(b)
and 1(e), are referred to as "final-state correlation" diagrams.
The class of diagrams where a Coulomb interaction occurs be-
fore the dipole interaction in a time-ordered sense, as in Figs.
1(c) and 1(d), are referred to as "ground-state correlation" dia-
grams.

For an atom that contains an open subshell in its initial
state and is coupled to some total orbital angular momen-
tum LAO, there does not exist a unique LS-coupled po-
tential for the excited orbitals in the final state [2]. An al-
gorithm for constructing an averaged final-state potential
based on MBPT was suggested by Qian, Carter, and Kel-
ly [2]. This algorithm is based on the cancellation of the
first-order many-body diagrams that appear in Fig. 2.
The dashed line that is connected to a circle enclosing a
bold "X" in Fig. 2 indicates an interaction with an arbi-
trarily defined single-particle Hermitian potential for the
excited orbitals: —

VF~I~. The subscript "F(I)"is used to
identify the LS-coupled final channel that is shown below
in Eq. (11c). In Ref. [2], Qian, Carter, and Kelly imposed
the requirement that the first-order terms, which contrib-
ute to the "(corrections), " should sum to zero. This re-
quirement fixes the definition of VF~I]. Specifically, we
obtain
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r + (corrections)
with

lG(M )&=l(n, l, ) 'a, L,S,M, M (1 lb)

lF(I) &
= l((n, l, )

' atLtSt;k„l„)a~,LF,S~,Mt, Ms &,

(1 lc)

FIG. 2. The diagrams that contribute to the effective single-
particle potential discussed in Sec. II A. The dashed line that is
connected to a circle enclosing a bold "X"indicates an interac-
tion with this potential. We require that the first-order terms,
which contribute to the "(corrections), " should cancel. The
final averaging procedure is given in Eqs. (12) and (13).

& F(I) l V~(t)(na l&& k l„)lF(I) &

F(1& x ~;,
' F(J&)(F(J&lc((G(Mt&&I

(i (j)
& F(I) I C() I G(M ) &

(1 la)

and Co is the spherical tensor operator appropriate to the
dipole interaction [16]. In Eq. (1 la) we have explicitly
factored out the radial dependence of the dipole operator
Z,~. In Eq. (11c) and throughout this paper, we use
tildes over the angular momentum quantum numbers of a
state in order to indicate an intermediate parent coupling.
The additional I subscripts on the parent couplings that
are shown in Eq. (11c) denote all of the parent states that
will contribute to a final state with a total coupling I.F.
We use the variable "q;" to indicate the occupation num-
ber of the ith subshell n,. l, in the initial state. Equation
(1 la) determines the angular coefficients that are associat-
ed with VF(t)(n, l„k„l„).

%'e remove the dependence of the matrix elements

& F(I) l V~( t) ( n, I„k„l„)l F(I) &

on the final channels by averaging with respect to the di-
pole matrix elements in the following manner:

y &G(ML) Co(IF(I)&&F(I)IVF(t)(n. i. , k, l, )IF(I)&&F(I)leo(IG(Mg)&

& V,„(n,l„k„l„;M ) &
=

g & G(Mg )
I
co' IF'(I') & & F'(I')

I
co(l G(Mg ) &

F', I'

(12)

In order to remove the ML dependence of & Vts„(n, l„k„l„;ML) &, we define the average potential for the excited-state
orbitals as

g & V,„(n,l„k„l„;M ) &

& V,„(n,l„k„l„)&=
(2L + 1)

(13)

A more detailed description of this potential is given in Ref. [2]. Using projection-operator techniques [18],we combine
the potential in Eq. (13) for the excited orbitals with a separate potential for the core orbitals into a single Hermitian
potential over all of the basis orbitals. The potential that we use for the core orbitals is the restricted LS-coupled
Hartree-Fock potential [16].

B. The generalized resonance technique

In this section we describe a method of incorporating the efFects of resonant transitions. The resonant transitions
that are of interest are indicated by the following two-step process:

4l~+ 2 41b+1 q +1~~+I((n, l, )
' 0,0;(n, l, ) 'aLS)aLSJ &-l((n~lb) ' l~, ,';(n, l, )

'—a~L~S~)azL,S,J, &

41~+2
l(((nblb ) 0,0;(n, l, ) ' aFLFS&)aFLFSF,'kFlF)aFLFSF JF & . (14)

The n, l, orbitals comprise an open subshell. The nblb orbitals comprise a subshell that we take to be closed
(qb =41(, +2) and that have higher binding energies than the n, l, orbitals. The k~lF orbital represents a continuum-
electron orbital with linear momentum kF and orbital angular momentum /F. As before, we use tildes over the angular
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momentum quantum numbers to indicate an intermediate parent coupling. Additionally, we use tildes under the angu-
lar momentum quantum numbers in order to indicate an intermediate resonant-state coupling. We also have the identi-
ty JR=J~.

For the remainder of this paper we will use the following notation for the basis vectors of the ground state IG(GS) ),
the Rth resonant channel IR ' '(RS) ), and the Fth final channel IF(FS) ):

and

IG(GS) ) = I((nblb )
' 0,0;(n, l, ) 'aLS )aLSJ ),

IR' )(RS))= I((nblb) '
lb, ,','(n, l,—)' aJ(LI(SR)aI(L+S+ JI( ),

F(FS))=l(((nblb) '"+
0,0;(n, l, )

' 'a„LFSF)aFL„SF;kFlF)aFLFSFJF &l,

HO I
G(as) & =E,"'IG(as) ),

H()IR' '(RS)) =EII 'IR' '(RS)) =(EG ' Eb+—e, )IR' '(RS)),

, )
(kF)'

HOIF(FS) ~ =EF IF(FS) ) = EGO'+ —E, IF(FS) ) .

(15a)

(15b)

(15c)

(15d)

(15e)

(15f)

The labels (GS), (RS), and (FS) stand for, respectively, ground state, resonant state, and final state.
As a generalization of the interacting resonance technique of FliAet and Kelly [19],we consider the geometric series

that is shown diagrammatically in Fig. 3:

with

—T(0)+T(()+y V(2) T(0)+ T(i)+y V(2)[T(o)+. . . ]
J M

(16)

T~( '=(F(FS)IZ, IG(GS) ),
D(o) —(E(o) E(0)+~)

(17a)

(17b)

F(Fs) x r„' )(' '(Rs))(R' '(Rs)lz, p(G(( s))
1)J

T(&)—F =X D(0)
R R

(17c)

and

I(FS)

V(2) —y

R'0'(RS) R'+(RS) x r;,
'
J(FS))

1$J l, J
(i (j) (i &j)

D (0)
R

(17d)

TF = (F(FS)IZ, I
G(GS) ) +(corrections) . (17e)

Following the example of Wendin [20], we have denoted
the contribution from the Dirac 5 function im5(D) in-
the diagrams shown in Fig. 3 by a solid horizontal line.
The imaginary contribution arises from the boundary
conditions that are presented in Eq. (10). In Eq. (17e),
the term "(corrections)" refers to the infinite-order
corrections that are contained within the geometric series
of Eq. (16). In Eq. (17d), the variable VIJ' is purely imagi-
nary and the variable kJ is the linear momentum of the
continuum electron in the

I
J(FS)) final channel.

Equation (16) can be rewritten by multiplying on the
left with gl Vs(1) and subtracting from the original series
to obtain the equation

Equation (18) is a matrix equation, and each term is
known except for TJ. Therefore, we can solve Eq. (18)
for TJ and correct the lowest-order dipole TJ ' to infinite
order within this class of interactions. This is the basic
generalized resonance equation that was introduced by
Garvin [5]. The additional corrections that can be incor-
porated into Eq. (18) include the spin-orbit splitting of
the resonance states, and various real energy shifts in the
denominator DR '. The inclusion of these corrections is
discussed below.

We begin by discussing the spin-orbit splitting of the
resonance states. We use the basis set of LSJ-coupled
states that span the configuration

g [5(I,J) V' ']T =T' '+ T"—' .
J

(18)
and that were introduced in Eqs. (15b) and (15e):
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IR' '(RS)&=l((nblb) ' 'l(„—,', (n, l, )
' a+I.+S, )a+1.,S,Jz & (19)

&a& =&I"'(Rs)lalJ (Rs) & . (21)

We are interested in forming linear combinations of the
states IR' '(RS) & that are diagonal with respect to the
&a&JJ matrix of Eq. (21). We will use the variable yJ '

to denote the mixing coefIicients and we will replace the
superscript "(0)"with the superscript "(1)"on the indices
of the resonant states in order to denote our diagonalized
resonance states: IR "'(RS)&. Therefore,

IR'"(RS)&=+ IJ' '(RS)&y' (22)

We solve for the mixing coefticients yJ(
' and the energy

eigenvalues (E„' '+E~(") such that

y &a &
y(J() —(E(0)+E(())y(11) (23)

or

&R"'(Rs)lal J"'(Rs) & =(E,"'+E,"')~(R,J), (24)

I

a, lR'"(Rs) & =E,'"IR'"(Rs) & .

Using the total Hamiltonian H=Ho+H~+Hso from
Eq. (la), we define the following matrix elements with
respect to the lowest-order basis IR' '(RS) & of Eq. (19):

where 6(R,J) is a Kronecker 5 between the indices "R"
and "J." The eigenstates IR"'(RS) & form an orthonor-
mal set spanning the same space as the old basis set
IR' '(RS)&. We mention that the states IR("(RS)& are
also eigenvectors of the unperturbed Hamiltonian.

Using the diagonalized energies ER '+E~, we define
the following corrected energy denominator:

D (1)—(E(0) E(0) E(1)+~)R 6 R R (25)

In our calculation, we replace the states IR ' '(RS) & with
the diagonalized states IR'"(RS)&, and we replace the
values of Dz ' with the corrected values Dz" in Eqs.
17(b)—17(d). We will denote the matrix elements TJ(" and
VrJ' that are corrected in this manner with bars: Tr"' and

(2)
VrJ . When we use diagonalized resonance states and en-

ergy denominators, we have included terms in our pertur-
bation expansion that correspond to final-state correla-
tion interactions among the resonance channels [17].

In Eq. (16), we considered only the imaginary contribu-
tion —i)r5(D) to VJ(J) when we formed the matrix opera-
tor in Eq. (18). In order to complement this, according to
Eq. (10), a principal-value portion P(D ) can be includ-
ed in lowest order by calculating the real co-dependent
resonant energy shifts to the denominators D&". The
lowest-order form of the real co-dependent resonant ener-

gy shifts will appear as

b.ll ( CO ) =g —P J
2

kr

dkr I FS rjiR RS R RS rij I FS
I)J 1)J

(I' & j) (l &j)

(kJ)
E, +COa

(26)

where P denotes a principal-value integration. When we perform a simple geometric sum of this term, we obtain a
shifted denominator of the form [19]

D(1 e)) D(1) g (~) E(0) E(0) E(1) g (~)+~ (27)

Finally, we introduce an additional energy shift into the denominator which is a function of the total J value of the res-
onant states:

D(l, e),J) E(0) E(0) E(1) g ( ) g(rel)(J)+ (28)

The superscript "rel" is used to indicate that this number represents an absolute energy shift that is due to relativistic
eifects. The determination of b,z'""(J) will be discussed in Sec. III B. Therefore, defining

T,"'=&r(FS)lz„lG(GS)&,

D()coJ)—[E(0), E(0) E(1) g (~) g(re))(J)+~]

(29a)

(29b)

F(FS)

T( l, e), J)

r'R''~(RS))(,R~' tRSl~lZ. , IG(GSl)
E) J

(i &j)

D (1,co)J)
R

(29c)
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D(l, co,J) (29d)

and

T~= (F(FS)lZ, lG(GS) &+(corrections), (29e)

the final form of the generalized resonance equation that we solve in this work is

y. [5(I,M) —V"""]T =Z'"+T"IM M I I
M

(29fl

A more detailed derivation of Eq. (29fl and a specific identification of the MBPT diagrams that will be accounted for by
solving Eq. (29f) for the column vector TM can be found in Hoyle [17].

C. The P asymmetry parameter

In this section we present the explicit form of the P asymmetry parameter of Eq. (5) in LSJ coupling for photoexcita-
tion transitions that leave behind the ionic core l (n, l, ) aLS & [17]:

l, l~ 2
'{30I:lill:l2)[Li][L2][Ji][J21) 0 0 0

l),L),S),J)
'2 L2 Jz

l', L ),Si,Ji
M*{l',,L'„S', ,J', )M(l', ,L', ,Si,J'i )

with

L& 2 J2 Ji 2
X

l& lz L 1 1 Jo

J, J, 2
M(l i, L'i, Si,Ji )M*(l 2L~, S„J )z,

1 2 1

(30a)

. l.
M(l JL, ,S,J JJ)=( i)'ex—pIi(5i )I

[x]=2x+ 1,

(F~{FS)lZ I G(as) &

Jo J.
Jo ~o

(30b)

(30c)

"(FS)&= l((n. l. )' MLS;kl, )a,L,S,J,.M, &, . (30d)

lG(GS) &
= l(n, l, ) 'aoL S J M (30e)

+ (corrections) = a il +a i( +I 7"

b a

We have included the additional indices "1"and "2" on
the final channel in order to indicate an independent sum-
mation over the fina1 orbital angular momentum values of
the continuum electron l l, +1 l, where l, is the orbital an-
gular momentum of the ionized electron in the initial
state. The variable 5& is the total phase shift that appears
in Eq. (3). The sign of the phase shift 5& that appears in
Eq. (30b) is chosen to be consistent with the incoming-
wave boundary condition. Specifically, we require that
the final state

l(n. l. )' 'nLs&ll; —,'m, &

satisfy the boundary condition that at a large distance r it
has the form of a plane wave plus incoming spherical
waves [21]. It is important to notice that the boundary
condition that was used in Eq. {10)is consistent with the
boundary condition that is used in Eq. (30b) [17,22].

+aii +

s()

FIG. 3. The diagrams that contribute to the generalized reso-
nance series that is discussed in Sec. IIB, The exchange ver-
sions of these diagrams, although they are not shown here, are
included in the calculation. Following the example of %'endin
[20], we use a solid horizontal line drawn through a segment of
an MBPT diagram to indicate that we are including only the
imaginary contribution —i+6(D) from that segment of the dia-
gram. The imaginary contribution —i+5(D) arises from the
boundary conditions that are presented in Eq. (10).
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III. CALCULATIONS AND RESULTS

A. The nonresonant contribution

The ground state of tungsten contains 74 electrons dis-
tributed among 14 orbitals,

1$2$2p 3$3p 3d 4$4p 4d 4f i 5$5p Sd 6$

with the open 5d shell coupled to D (LS coupling). We
expect I.S coupling to dominate the angular momentum
character of the Sd and 6s orbitals. In order to describe
the 5p and inner-core orbitals accurately, the use of jj-
coupled states is necessary. We took into account this as-
pect of the calculation by generating all of our basis or-
bitals in a nonrelativistic I.S-coupled manner and then
using parameters that were calculated relativistically for
the inner-core states when it was possible. These parame-
ters included the spin-orbit g parameter and an overall
relativistic energy shift for the binding energy of a given
inner subshell.

We considered the following photoelectric excitations
into the continuum:

~1) = (Sd )J=O, M =0),
i2) = i((Sd3/z)J=O'(Sds/z )J=O)J'=0 MJ=0)

and

(32a)

(32b)

shells are equivalent to the usual LS-coupled potentials
for transitions from closed subshells.

The thresholds for the partial photoionization cross
sections were calculated by taking the difference between
the self-consistent-field (SCF) calculations of the total en-

ergy of the ground state and the total energies of the ions
(b,SCF). The b,SCF energies for the 4f, Ss, and 5p sub-
shells were calculated using the multiconfiguration
Dirac-Fock (MCDF) code of Grant et al. [24] and there-
fore include relativistic corrections. The remaining
ASCF energies were calculated using the MCHF77 code
mentioned above. The results that we obtained for the
ASCF energies are shown in Table II.

The initial state in jj coupling should be treated as a
multiconfiguration state. For the calculation of the rela-
tivistic ASCF energies, we assumed the initial state con-
sisted of the following configurations:

6s ~kp; 5d ~kp, kf;5p ~ks, kd; 4f~kd, kg; Ss —+ kp . 13& = l((Sd3/z)J=2;(Sds/z)J=2)J=O, MJ =0) . (32c)

(31)

Our core orbitals were generated using the MCHF77 com-
puter code of Froese Fischer [23].

The continuum orbitals were calculated using the
eff'ective single-particle potential ( VI$,„) that was dis-
cussed in Sec. II A and defined in Eqs. (11)—(13). The
contributions to the potential ( VL$,„) involving the 5d
subshell are shown in Table I. The contributions to the
potential ( Vis,„) involving the Ss, Sp, 4f, and 6s sub-

lt & =aI"I»+az" I2&+a"I3 & . (32d)

The MCDF code operated in "optimal-level" [24] mode
yielded for the ground state:

(aI', az', a3') =(0.768 93, —0.33007,0.547 54) . (33)

Therefore, for the purpose of calculating the ionization
thresholds in jj coupling, the initial state of tungsten had
the following form:

TABLE I. The 5d subshell contribution to the eftective single-particle potential. The potential
( Vrs, „) was discussed in Secs. II A and III A. The contributions to the potential from the remaining
subshells are equal to the usual LS-coupled potentials for transitions from closed subshells. The angu-
lar coefficients that are shown in this table were averaged in an MBPT manner and an LS-coupled
manner independently as a check on their accuracy. The radial operators correspond mathematically
to

(k& l Jsd lkz ) =f fRsd(r, )Rsd(r] )Rk (rz )Rk (rz )r'& /r'&+'r, dr
&
rzdrz

(k& i&cd'lkz ) = f fRsd(ri )Rk (r, )Rsd(rz)Rk (rz)r' /r'+'r, dr, rzdrz,

where r & (r & ) indicates the lesser (greater) of r& and r~.

Radial

operators ( VL$,„(Sd,kf)) ( VLs,„(Sd,kp) )

Angular coefficients to the radial operators

Jsd(0)

Ksd(I)

&sd(33

~sd(4)

Ksd(s)

131 501
307 125

5912
34 125

396456
2 764 125

86 361
1 216215
143 935
891 891

23
875

867
6125

13 557
42 875
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TABLE II. The ESCF thresholds. The thresholds for the 6s ~ kp and the Sd ~kf, kp channels were calculated in a nonrelativistic
LS-coupled manner using the McHF77 [23] code. All of the other thresholds were calculated in a relativistic jj-coupled manner using
the McDF [24] code. The ionic-core couplings shown for the thresholds that were calculated relativistically indicate the largest con-
tributor to the relativistic multiconfiguration ionic core at that energy. In the "ionic-core-coupling" column, the notation
((nl, '.j,)J=j indicates the ionic coupling ((nl,-')J=j;(5d3/2)J=2)J=j (5dg/2)J=2)J=j that is discussed in Sec. IIIA. The
coefficients (k, ) discussed in Sec. III A are also shown in this table.

n, l, ~k„l„
6s —+ kp
6s ~kp

Sd~kf, kp
Sd~kf, kp
4f~kg, kd

4f~kg, kd

5p~kd, ks

Sp ~kd, ks

5p ~kd, ks

5p ~kd, ks

5p~kd, ks
5s —+kp
5s ~kp
Ss ~kp

Transition channel

Ionic-core coupling

((5d ) D;6s) D
((5d )'D;6s) D

(Sd')'r
(5d )P

(4f7n'Sd3n»= —',
(4f ', »,.Sd4„)J=
( p3/27 3/p )J

((5p3/2):j, = —', )J=—',

((5p )/2 ):j =
~ )J=

(5p & /» 5d 3/2 )J=
2

((5p1/2):js =-', )J=-,'
(5s»z, 5d 3/2 )J—

2

((5s I/2 ):j =
2
)J=

2

(( i/p):js= 2 )

ASCF (a.u. )

—0.1900
—0.2495
—0.3692
—0.4206
—1.3865
—1.4794
—1.6611
—1.9012
—2.0685
—2.1847
—2.2798
—3.2839
—3.3476
—3.4205

0.99
0.99
0.95
0.04
0.50
0.48

0.01
0.95
0.03
0.03

Hartree-Fock

energies of "n, l, " (a.u. )

—0.2248

—0.4464

—2.1997

—1.8451

—2.9212

If we consider the excitations from the 4f, 5s, and 5p sub-
shells, the states i 1) and i2) in Eqs. (32a) and (32b) will
have only one jj-coupled ionic core apiece. This is be-
cause all of the subshells are coupled to J =0 for those
two initial states. The state i3) in Eq. (32c) poses a
difhculty, however, since two of the subshells within this
state are coupled to J =2. This implies that there will be
a variety of ionic-core states arising from state i 3) that
will diff'er in the intermediate coupling between the J cou-
pling of the ionic core under consideration and the

I

If'"& =p, ilfi &+p,2lf2&+ & p„lf, &,
s =3

(34a)

with

(Sd3&2)J=2 subshell. If we denote the 4f, Ss, and 5p
subshells in a general manner by the variable nl, then we
can denote the final-state relativistic configurations for
the channels nl ~kj„as

if, ) = i(((nl J)J=j;(5d3iz))J=j;(kj„)J=j, )J=1,M =0),
if2) =i((((nl J)J=j;(Sd3i2)J=O}J=j;(Sd&&2)J=O)J=j;(kj„)J=j„)J=1,M =0),

(34b)

(34c)

if, ) = i((((nl )JJ=j;(Sd i 3)J2=2}J=j, ;(Sd iz5)J=2)J=j;(kj„)J=j„}J=I,M =0) .
(s &3)

(34d)

The variable n denotes the principal quantum number of the subshell we are considering excitations from and the vari-
able l denotes the orbital angular rnomenturn quantum number of this subshell. The subscript j on the variable l
denotes the jj angular momentum value of the nl subshell and the superscript (q =2j) denotes the occupation number
of the subshell. The variable kj„denotes a continuum-electron orbital with the jj angular momentum value j„. The p;i
are the mixing coefBcients that are determined from the self-consistent calculations of the multicon6guration ionic core
and are associated with a given ionic threshold energy. Finally, the variable j, in Eq. (34d) denotes a possible intermedi-
ate coupling between the J=j state of the nl core, and the J=2 state from the Sd3/2 subshell. The subscript "s"on
the variable j, acts as an index over the range of couplings that are possible. It is important to notice that the total jj
coupling outside of the Sd subshell should match the total jj coupling inside of the 5d subshell for the state

i f, ) in Eq.
(34d). This condition originates from the requirement that the 5d subshell should act as a bystander for the first-order
excitations from the other subshells. The number of possible values there are for j, is the number of ionic cores that are
available from the i 3 ) state. It is shown in Appendix B that

1/2

$=3

2js+ 1

5(2j+ 1)
(35a)
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or 5 I I I
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(35b)

Therefore, the photoionization cross section appropriate
to a given relativistic ionic threshold will be weighted by
the factor (A, , ) . For simplicity, we rounded the values of
(A, , ) to the nearest 0.01, which amounts to neglecting
terms of the order 0.5%%uo. The variables (li, , ) are shown
in Table II. Also shown in Table II are the nonrelativis-
tic Hartree-Fock single-particle energies used in the per-
turbation expansion. The P; coefficients and the corre-
sponding ionic-core thresholds were obtained from the
McDF code operated in "average-level" [24] mode.

Figure 4 shows the lowest-order 5d partial cross sec-
tion. This result is for the Sd ~5d kf and Sd "~Sd kp
transitions. The results that are shown in Fig. 4 include
the corrections that are associated with using the
effective single-particle potential shown in Table I and
the corrections that are associated with using the 5d ~kl
ASCF energies shown in Table II as the ionization
thresh olds.

Figure 5 shows the 5d partial cross section with some
first-order ground- and final-state correlation corrections
added to the Sd ~kf dipole matrix elements. The
ground-state correlation effects that have been included
in Fig. 5 are Fig. 1(c) with

(n, l„k„l„)=(5d,kf )

lid line

broken line

0 s

0 20

1 ~ ~ ~ I ~ s

40 60 80 100 120 140 160

photon energy (eV)

and Fig. 1(d) with

(n, l„k„l„)=(Sd,kf) .

FIG. 5. The lowest-order 5d partial cross section with some
additional first-order ground- and final-state correlation effects.
The correlations that are included in this result are associated
with the Sp~kd, 4f~kg, and Sd~kf channels and are item-
ized in Sec. IIIA. The length form of the cross section is the
solid line and the velocity form of the cross section is the dashed
line.

(nb lb, k, l, ) =(5d, kf ), (4f, kg ), (5p, kd ),
The final-state correlation effects that have been included
in Fig. 5 are Fig. 1(b) with

(n, l„k„l„)= (5d, kf )

and

25 & I a I I I I 1 I I I 1 I ~ I I
I

~ I I I I f I
I

I ~ (nblb, k, l, )=(4f,kg), (5p, kd)

and Fig. 1(e) with

(n, l„k„l„)=(5d,kf ) .

a 15
0

~ ~
V
Q

~ 10

V

line

0 I s

0 20

I ~ ~

40 60 80 100 120 140 160

photon energy (eV)

FIG. 4. The 5d partial photoionization cross section of
tungsten in lowest order for this calculation. The solid line is
the cross section that is obtained from the length gauge of the
dipole operator Z,~ and the dashed line is the cross section ob-
tained from the velocity gauge. The e8'ects that are included in
this result are the correlations that are associated with using the
e6'ective single-particle potential from Table I and the correla-
tions that are associated with using the 5d —+kl hSCF energies
from Table II as the ionization thresholds.

The appropriate exchange versions of all of the MBPT di-
agrams that are mentioned above were also included.

The nonresonant P asymmetry parameter for the 5d
subshell is shown in Fig. 6. The MBPT corrections that
have been included in this calculation involve all of the
corrections that are discussed above for Fig. 5.

The total nonresonant cross section is shown in Fig. 7.
The higher-order effects that have been included in this
result are the corrections that have been mentioned above
for the Sd ~5d kf transitions and the corrections that
are associated with using the hSCF energies as the ion-
ization thresholds for the remaining partial cross sec-
tions. The 6s, 5p, Ss, and 4f partial cross sections that
are included in Fig. 7 do not incorporate any additional
correlations.

One aspect of Fig. 7 which is noteworthy is the fact
that the 5p partial cross section is small in comparison
with the 5d partial cross section. Using the Thomas-
Reiche-Kuhn sum rule [25], we would expect that the
value of the total oscillator strength for the transitions
from the n =5 level should be 12. (This number includes



PHOTOIONIZATION CROSS-SECTION CALCULATION OF. . . 4821

2 I 5 I I 0
I

I I ~ I I I ~ I I I ~ I I I I
I

~ ~ ~
I

I ~ I
I

I I 'l2

20—

0

-1
0

I I I I I I I I I ~ I I I I I I I I I I I I I I I I I I I

20 40 60 80 100 120 140

photon energy (eV)

I

160

g15-
0

~ W

0
V

rI) 10—
rh0
V

5—

0
0 20 40 60 80 100 120 140 160

photon energy (eV)

l

II

ld i I I i ~ I I I I I I I I I I I I I I I I I I I I I I ~ i

FIG. 6. The nonresonant P asymmetry for the 5d subshell.
The MBPT corrections that have been included in this calcula-
tion involve all of the corrections that are included in Fig. 5 and
are discussed in Sec. III A. The length form of the P parameter
is the solid line and the velocity form of the P parameter is the
dashed line.

both the bound and continuum transitions from the n = 5
subshell. ) In our nonresonant calculation, approximately
five units are contained in the 5d partial cross section,
two units are contained in the 5p partial cross section,
and one unit is contained in the Ss partial cross section.
This leaves us four units of oscillator strength short.
Since there is not much contribution to the oscillator
strengths from the Sp —+ kl transitions even though the Sp
subshell contains the most electrons that are in the initial
state for the n =S level, we assume that a great deal of
oscillator strength will be contained in the bound transi-
tions from the 5p subshell. The most significant bound
transitions from the 5p subshell are the set of
5p 5d —+Sp Sd transitions. Therefore, we would expect
that the effects of the Sp 5d ~Sp 5d resonant transi-
tions on the 5d ~5d kl transitions would affect the
cross section shown in Fig. 7 appreciably.

B. The resonant contribution

For this portion of the calculation, we considered in-
termediate coupling in the initial state of tungsten over
the five L,SJ states

FICi. 7. The total nonresonant cross section in the length
form (solid line) and the velocity form (dashed line). The 5d
partial cross section that is shown in this figure includes the
correlations that are discussed in Fig. 5. The remaining partial
cross sections use the ASCF energies from Table II as the ion-
ization thresholds with the appropriate weighting factors (A, , ) .
The 6s, Sp, 5s, and 4f partial cross sections that are shown in
this figure do not include any higher-order correlations.

and

I» =l(Sd')'D, =,&,

I2&=l(Sd )',& =,&,

I3& = l(sd'),'~, =,&,

14) = l(Sd')P, =,),

IS) = i(Sd'),'S, , & .

(36a)

(36b)

(36c)

(36d)

(36e)

Therefore, our initial state of tungsten had the following
form:

~i ) =a '~1)+a"~2)+a '~3)+a' ~4)+a' ~5) . (36f)

The presubscripts in Eqs. (36a)—(36e) are Racah seniority
numbers. When we diagonalized the states in Eq. (36)
with respect to the total spin-orbit Hamiltonian of Eq.
(1), H=Ho+Hc+Hso, we obtained the following mix-
ing coefBcients for the ground state of tungsten:

(a", ,a2', a3', a4', a5')=(0.925 19, —0.27473, 0.24907, —0.04549, 0.06662) . (37)

We used a spin-orbit mixed initial state in this portion of
the calculation in order to balance some of the correla-
tions that are included by using the spin-orbit mixed reso-
nance states of Eq. (22): ~R"'(RS)). From the mixing
coefficients that are shown in Eq. (37), we can see that the
order-of-magnitude correction to the Sd [ DJ Q] cou-—

pling by using the spin-orbit mixed initial state is

100% X [ 1 —(0.925 ) ]= 14%

The resonant transitions that we consider in tungsten
are the set of 5p Sd ~Sp Sd and 4f' 5d +4f' 5d—
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transitions. There are 32 J=1 L,SJ 5p Sd channels and
46 J= 1 I.SJ 4f ' 5d channels that are accessible
through the dipole interaction from the J=0 initial state:

ed in Eq. (28):

D(&, co, J)—E(0) E(0) ~(1) g ( ) g(rel)( J)+ (38)

iG(GS)) =iSd [ D, P, I', (')S, 'S] ) .

The L,SJ couplings that are mentioned above for the
Sp 5d and the 4f ' 5d states are used in the diagonali-
zation of the total spin-orbit Hamiltonian (H )tJ accord-
ing to the description that was given in Eqs. (19) to (25).
The specific itemization of the L,SJ couplings of the reso-
nant states has been given by Boyle [17].

The excited 5d orbitals and the re1axed 6s orbitals that
are calculated within the Sp 5d and 4f ' 5d
configurations will be denoted, respectively, by Sd(*5p),

Sd(4f) and 6s('5p) 6s(4f) The L,SJ coupling in which we
chose to generate our 5d (*5 ) and 6s (*5p) orbitals was
[Sp;(Sd ) G] Fz „with the Sp and inner-core orbitals
kept frozen from the ground state. The L,SJ coupling in
which we chose to generate our 5d(4f) and 6s(*4f) orbitals
was [4f';(Sd ) G] D~ „again with the 5p and inner-
core orbitals kept frozen from the ground state. The 5d*
and 6s' orbitals that are mentioned above were generated
using the MCHF77 code [23]. We found the overlap in-
tegrals to be

( Sd (*s~) ~
Sd ) =0.9998,

&6.,*„,~6s & =0.9995,

& Sd t".f1 lsd ) =0.9963,

and

(6st*4ft ~6s ) =0.9991

These overlap effects will be neglected in our calculation.
The Hartree-Fock single-particle energies were found to
be —0.4526 a.u. for the Sd(*5p) orbital and —0.5099 a.u.
for the 5d(*4f) orbita1. We recall that the single-particle
energy of the Sd orbital is —0.4464 a.u. , which was
shown in Table II.

There was a noticeable discrepancy between the Sp g
parameter that we obtained using nonrelativistic orbi-
tals and the 5p g parameter that we obtained from orbit-
als which incorporated relativistic corrections. The Sp g
parameter that we obtained from the MCHF77 code was
g(Sp) =0. 1699 a.u. , while the Sp g parameter that we ob-
tained from the RCN35 code of Cowan and Griffin [26]
operated in relativistic mode was g(Sp)=0. 2292 a.u. A
fact that is pointed out by Cowan [27] and also in Ref.
[26] is that the Blume-Watson technique [9] of obtaining
the g parameters is sensitive to the effects of relativistic
corrections on the radial orbitals. By using the RCN35
code in relativistic mode, we introduce the Darwin and
mass-velocity terms into the nonrelativistic Hamiltonian
[26]. The g parameters that we used in the calculation
were obtained from the RCN35 code of Cowan and Griffin
[26] operated in relativistic mode.

We used the MCDF [24) code in this portion of the cal-
culation in order to determine the absolute energy shifts
of the resonant states. The absolute shift will be con-
tained within the variable b, i' t""(J) in the manner present-

In order to obtain a value for the variable b,it"'(J), we
performed a self-consistent-field calculation over the set
of (5p 5d )J 0 and (5p 5d )z=, states and a separate
self-consistent-field calculation over the set of
(4f ' Sd )J 0 and (4f ' Sd )&, states in tungsten using
the MCDF code operated in "extended-average-level" [24]
mode. We generated the lists of the oscillator strengths
for the 5p 5d ~Sp Sd transitions and the
4f' 5d +4f' —5d transitions from the results of the
MCDF [24] calculation. One set of oscillator strengths for
the Sp 5d ~Sp 5d transitions that we obtained from
the MCDF [24] code is shown in bar-graph form in the
lower portion of Fig. 8 and is labeled as "MCDF Babush-
kin gauge. " The overall energy positions of these oscilla-
tor strengths are also those provided by the MCDF [24]
code. In the nonrelativistic limit, the Babushkin gauge
goes over into the length gauge [28]. The lists of the os-
cillator strengths that we obtained from the MCDF [24]
code were compared with the oscillator strengths that we
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FIG. 8. Oscillator strengths and energy positions of the
5p 5d ~5p'5d' transitions in tungsten. The lower portion of
the figure shows the oscillator strengths that were obtained
from a fully relativistic treatment (the MCDF [24] code) and the
upper portion of the figure shows the oscillator strengths that
were obtained from MBPT with spin-orbit mixed nonrelativistic
orbitals. In the nonrelativistic limit, the Babushkin gauge goes
over into the length gauge [28]. The overall energy positions of
the oscillator strengths in the lower portion of the figure are
those obtained from the McDF [24] code. The energy splittings
of the oscillator strengths in the upper portion of the figure are
determined from the diagonalization of the total spin-orbit
Hamiltonian H =Ho+H&+Hso. This figure demonstrates
how the overall relativistic energy shift Az"'{J) was determined
for the 5p Sd —+ 5p '5d ' transitions. We required that the ener-
gy eigenvalue of the first large peak in the oscillator strength
distribution of our calculation should match the corresponding
energy as provided by the McDF [24] code. These peaks are in-
dicated above by the arrows and occur at an energy of 1.4620
a.u. =39.8 eV.



47 PHOTOIONIZATION CROSS-SECTION CALCULATION OF 4823

obtained from the eigenvectors of the diagonalized spin-
orbit Hamiltonain ( H & rJ of Eq. (21). The corresponding
set of oscillator strengths for the 5p 5d ~5p 5d transi-
tions that we obtained using the spin-orbit mixed reso-
nant states 1R"'(RS)) and our spin-orbit mixed initial
state 1i ) from Eqs. (36a)—(36fl and (37) is shown in bar-
graph form in the upper portion of Fig. 8 and is labeled
as "MBPT length gauge. " The energy spli tti ngs of the
MBPT oscillator strengths were those obtained from the
energy eigenvalues (Ez '+Fz") of Eq. (24). The qualita-
tive structure and energy splittings of the oscillator
strengths shown in Fig. 8 agree very well between the ful-
ly relativistic treatment (lower portion) and our approxi-
mate spin-orbit treatment (upper portion). The only
large discrepancy appears to be the relative magnitude of
some of the oscillator strengths in the 42 —44 eV region.
We mention that the sum of the MCDF [24] oscillator
strengths shown here is 4.1 1, while the sum of the MBPT
oscillator strengths shown here is 5.25. Because of the
good qualitative agreement, it was possible to make a
one-to-one correspondence between the large peaks that
occurred in both lists. In order to determine the overall
relativistic shift b, (z")(J) that we should include in our en-
ergy denominator Dz' ' ', we simply required that the
absolute energy position of the first large peak in our cal-
culation should match the absolute energy position of the
same peak as given by the MCDF [24] code. The remain-
ing energy positions in our calculation are determined by
the diagonalization of the spin-orbit Hamiltonian as de-
scribed in Sec. II B. For the 5p 5d ~5p Sd transitions,
the reference peak in the oscillator strength distribution
occurred at a photon energy of

1.4620 a.u. =39.8 eV

and is the large peak indicated by the arrows in Fig. 8.
For the 4f '~Sd ~4f ' 5d transitions, the reference peak
in the oscillator strength distribution occurred at a pho-
ton energy of

0.9213 a.u. =25. 1 eV

The complete identification and itemization of all of the
resonant energies that were used in this calculation have
been given by Boyle [17].

The transitions into the continuum that we include in
this calculation are the Sd ~Sd kf and 5d «Sd kp
transitions. Due to the spin-orbit mixing of the resonant
states 1R'"(RS)&, there are 24 J=1 LSJ Sd kf channels
and 19 J= 1 LSJ 5d kp channels that are accessible from
the J=0 initial state.

The total cross section including a generalized reso-
nance calculation of the 5d partial cross section with
respect to the intermediate-coupling initial state

1G(GS) &=15d [ D, P, P, ('yS, 'S],=, &
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FIG. 9. The total resonant cross section in the length form
(solid line) and the velocity form (dashed line) for
the intermediate-coupling initial state 1G l CxS ) )
=15d ['D,2P, 4P, P', &S]J=0). The resonant transitions that are
considered here are the 4f ' 5d ~4f ' 5d' transitions (from 20
to 30 eV) and the 5p 5d ~5p 5d transitions (from 35 to 60
eV).

( n, I„k„l„)= ( 5d, kf )

(nblb, n, l, ) =(Sp, Sd(*s~) ), (4f, Sd(*4f) )

The ground-state correlation corrections that have been
added to the 5p ~5d (5p) dipole matrix elements in Fig. 9
are Fig. 1(c) with

(n, l„n„l„)=(Sp, Sd(s~) )

plus

(nblb, n, i, ) =(Sp, Sd(sq) )

(nblb, k, l, )=(Sd, kf )

dipole matrix elements, and the first-order ground- and
final-state correlation corrections to the 5p ~5d [ 5 ~

and
4f~5d(4f) dipole matrix elements that are believed to be
the most important with respect to all five initial states

15d [ D, 2P, 4P, P', 4S]J=o& .

The additional ground-state correlation corrections that
have been added to the Sd ~kf dipole matrix elements in
Fig. 9 are Fig. 1(c) with

is shown in Fig. 9. Aside from the corrections that are
incorporated into the generalized resonance Eq. (29f), the
MBPT corrections that have been included in this result
involve all of the corrections that are discussed in Sec.
III A for the nonresonant contributions, additional first-
order ground-state correlation corrections to the 5d ~kf

The ground-state correlation corrections that have been
added to the 4f ~Sd ~4&) dipole matrix elements in Fig. 9
are Fig. 1(c) with

( n, l„n„l„)=(4f, 5d (4f) )
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plus

(nblb, n, l, }=(4f,5d(4f) }

(nblb, k, l, )=(5d, kf) .

(nbl„, k, l, ) =(5d, kf ),
and the final-state correlation corrections that have been
added to the 4f ~5d(gf) dipole matrix elements in Fig. 9
are the principal-value portions of Fig. 1(b) with

(n, l„n„l„)=(4f, 5d(*4f) )

(nblb, k, l, )=(5d, kf ) .

The exchange and potential correction versions of all the
diagrams that are mentioned above have also been in-
cluded.

In order to solve Eq. (29fl and obtain the 5d subshell
contribution to Fig. 9, we inverted a 43X43 matrix for
1650 photon energy values between 10 and 150 eV. The
dimensions of the matrix 43 X 43 result from the number
of final LSJ channels that are considered: 24 5d kf
channels plus 19 5d kp channels. We multiplied the in-
verted matrix against five sets of LSJ-coupled column
vectors Tz~ '+ TI' ' ' [there is one column vector associ-
ated with each I.SJ-coupled initial state that is itemized
in Eq. (36)]. The resulting five sets of solution state
column vectors TM, according to Eq. (29fl, were then
weighted by the mixing coefBcients a" that are shown in
Eq. (37).

An interesting aspect of the cross section that we
would like to point out is the dip that occurs at approxi-
mately 35 eV. This dip does not appear in the non-
resonant cross section that is shown in Fig. 7. In Fig. 9,
we observe that the 4f ' 5d ~4f ' 5d resonant transi-
tions introduce structure in the cross section from 20 to
30 eV, and the 5p 5d "~5p 5d resonant transitions in-
troduce a large amount of oscillator strength into the
5d~kl transitions from 35 to 60 eV. In the 5d partial
cross section that is contained in Fig. 9, there are now ap-
proximately 9.5 units of oscillator strength, which is ap-
proximately 4.5 units of oscillator strength greater than
the nonresonant 5d partial cross section shown in Fig. 5.
The resonance structure in the calculated 5d partial cross
section in the region of the 5p 5d —+5p 5d transitions
can be described as two peaks separated by approximate-
ly 7 eV with the lower peak occurring at approximately
40 eV. There also appears to be a shoulder on the high-
energy peak starting at approximately 43 eV. The domi-
nance of two peaks in the resonance structure can be at-
tributed to the spin-orbit splitting of the 5p subshell, and

The final-state correlation corrections that have been
added to the 5p ~5d~*5&] dipole matrix elements in Fig. 9
are the principal-value portions of Fig. 1(b) with

(n l n l„)=(5p 5d(s ))

15d [ D, iP, 3P, p', ~S]J o~

is shown in Fig. 11 for the photon energy values ranging
from 30 to 60 eV. Also shown in Fig. 11 are the experi-
mental photoabsorption measurements of tungsten in the
solid of Haensel et al. [6] (the triangles) and of tungsten
in the atomic form of Costello et al. [8] (the circles).
The solid-state data (triangles) are given in absolute units
and the atomic data (circles) are given in relative units.
The scale for the atomic data is given to the right of Fig.
11. The normalization of the atomic data was chosen so
that the experimental results above 51 eV and below 32
eV would coincide roughly with our calculation. The
photoabsorption measurements of tungsten in the solid
that were performed by Weaver and Olson [7] and that
were mentioned in the Introduction show good quantita-
tive agreement with the solid-state measurements of
Haensel et al. [6] displayed here (the triangles).

There are some qualitative similarities between our cal-
culation and the photoabsorption measurements of
tungsten in the solid (the triangles). These similarities in-

I
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FICr. 10. The P asymmetry parameter for the 5d subshell of
tungsten including resonant effects in the length form (solid line)
and the velocity form (dashed line) for the intermediate-
coupling initial state 1G(CsS})=15d ['D, zP, 4P, +,4S j~=p&.
The MBPT corrections on the 5d partial cross section that have
been included in this figure are the same as those corrections
that are included in Fig. 9.

the existence of the two distinct jj-coupled resonance
channels 5p, /z ~5d3/2 and 5p3/p ~5d3/~, 5dq/2.

In Fig. 10 we show the results of the 5d P asymmetry
parameter according to Eqs. (30a)—(30e) for the
intermedia)e-coupling initial state

/

15d'['D „'P,4'P, P'', 4'S], ,)

discussed above. The MBPT corrections that have been
included in Fig. 10 are the same as the corrections that
are discussed above for Fig. 9.

An expanded plot of the total cross section for the
intermediate-coupling initial state
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FICx. 11. The total resonant cross section in the length form
(solid line) and the velocity form (dashed line) for
the intermediate-coupling initial state

~
G(CxS) )

= ~Sd ['D,2P, 4P, OS', &S ]1=0) for photon energies from 30 to 60
eV. The circles represent the atomic data of Costello et al. [8]
and the triangles represent the solid-state data of Haensel et al.
[6].

elude the existence of two dominant peaks. However,
these peaks do not have the prominence of our calcula-
tion or of the atomic measurements. The second peak in
the solid-state data also occurs at a slightly higher energy
than either our calculation or the atomic measurement.

In Fig. 11 we can see more qualitative similarities be-
tween our calculation and the photoabsorption measure-
ments of tungsten in the atomic state (the circles). These
similarities include the extreme dip that occurs at =34
eV and the two dominant peaks that are separated by = 8
eV, as well as the shoulder on the high-energy peak
occurring at =43 eV and the rapid drop-o8' of this peak
beginning at 46.3 eV and continuing to = 50 eV. Howev-
er, the main disagreement between the two results occurs
in the overall position of the first peak with respect to the
second peak and its overall magnitude with respect to the
second peak.

IV. CONCLUSIONS

A photoionization cross-section calculation of atomic
tungsten has been performed for photon energies ranging
from the ionization threshold of tungsten to 150 eV and
considering excitations from the 4f, 5s, Sp, 5d, and 6s
subshells. The e6'ects of the strong 5p 5d ~5p 5d and
4f ' 5d ~4f ' Sd transitions have been included as res-
onant contributions to the 5d partial cross section from
the intermediate-coupling initial state

lsd'['D„'P„'P, p''„'s]J =0) .

In the energy range that we considered, the 5d ~5d kl
photoionization transitions dominated the total cross sec-
tion. Additionally, we observed a significant dependence
on the 5p 5d ~5p 5d transitions.

One of the purposes of this work was to take a complex
open-shell atom and obtain a photoionization cross sec-
tion for this atom with a minimum of computer time. In
the case of the J =0 to 1 transitions in atomic tungsten,
the linear system of equations that had to be solved for
was contained in a 43X43 matrix. Using the techniques
that are described in this paper on an arbitrary atom, one
would invert a matrix whose dimensions would be the
number of final LSJ channels that are considered. A
comparable calculation that uses our coupled-integral-
equations technique [29] would involve solving a linear
system of equations similar in form to Eq. (29f). Howev-
er, the size of the linear system for the J=O to 1 transi-
tions in tungsten would have been roughly two orders of
magnitude larger than the size of the linear system that
we solved in this work (1884X1884 versus 43X43).
Since we would have been inverting the matrix mentioned
above for 1650 photon energy values, the techniques that
are discussed in this work correspond to a substantial
savings of computer time. Moreover, by including the
real co-dependent energy shift of Eqs. (26) and (27), we
have approximated, to first order, the type of coupled-
equations calculation that is mentioned above [29,17].

When we compare our calculated results with the ex-
perimental results, the main discrepancy is the absence of
a strong transition in our calculation that occurs at =37
eV consistent with the data of Costello et al. [8] Above
=43 eV, we can reproduce the qualitative nature of the
atomic measurements fairly well using the spin-orbit
mixed initial state

~
Sd [ D qP4P, cS,4S ]

The fact that we reproduce, in a general way, the struc-
ture occurring above 43 eV in the atomic data signifies
that the J =0 to 1 transitions are being observed in the
experimental measurements of Costello et al. [8]. It is
unclear to us, however, what type of transitions are pro-
ducing the strong peak in the absorption spectrum at 37
eV.

In order to account for the discrepancy between our
calculation and the atomic measurements, it was suggest-
ed that some of the tungsten atoms in the laser-ablation
experiment might have been initially prepared in higher-
lying J levels within the (5d ) DJ coupling [8,17,30]. Ac-
cording to Moore's [31] table of atomic energy levels, all
of the LSJ terms of tungsten with the couplings
5d [ Dz 0, z 3 4] are within 0.77 eV of each other. This
possibility was investigated by Boyle [17],who calculated
a generalized resonance cross section, according to Eq.
(29f), for each of the J values of the initial state (Sd ) D~
ranging from J =0 to 4. The resulting cross sections
were then summed together according to their statistical
weight (2J+1). According to this averaging procedure,
the J =0 to 1 transitions would be weighted the least
( —,', ), while the J =4 to 3 —5 transitions would be weight-
ed the most ( —,', ). The resulting cross section does not
display the hoped-for peak at 37 eV, however. The gen-
eral effect obtained in the calculation of Boyle [17] was a
reduction and broadening of the two dominant peaks. It
is interesting to point out, however, that the positions of
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the two peaks in the calculation of Boyle [17] coincide
with the positions of the peaks obtained in the solid-state
measurements of Haensel et al. [6] and the solid-state
measurements of Weaver and Olson [7]. That is, the two
peaks in the statistically weighted calculation by Boyle
[17] (2J+1) (Sd ) DJ become separated by =12 eV and
are shifted in energy so that the higher-energy peak
occurs at =53 eV.

There is also the possibility that other configurations
might be present in the atomic sample under investiga-
tion [8]. According to Moore's [31] table of atomic ener-

gy levels, the [Sd ( S)6s] SJ 3 state lies 0.366 eV above
the Sd [ DJ o] state. Also, according to the Thomas-
Reiche-Kuhn sum rule [2S], the Sd 6s initial state would
contain one more unit of oscillator strength for transi-
tions from the n =5 level than the 5d 6s initial state.
However, we did not investigate the possibility of this in
our paper.

We hope that the availability of the measurements of
Costello et al. [8] and our calculation will stimulate fur-
ther investigations over this energy region. In closing, we
feel that the techniques that are discussed in this paper
will be useful when performing calculations on complex,
open-shell atoms and should be able to provide meaning-
ful results with comparative ease.
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APPENDIX A

and

(q NR~R ~q NR)

1 g(NR
(ENR ENR )2 f ~ (jf 0 j J

qyNRrJ 0

(A2c)

In the equations that are shown above, the variables Ef
and E0 are the exact energy eigenvalues of the wave
functions %'f and %0 with respect to the nonrelativis-
tic Hamiltonian HNR. The expression that is presented
in Eq. (A2a) defines the length form of the radial matrix
element, the expression that is presented in Eq. (A2b)
defines the velocity form of the radial matrix element,
and the expression that is presented in Eq. (A2c) defines
the acceleration form of the radial matrix element.

We consider the introduction of the spin-orbit interac-
tion HsQ into the Hamiltonian that is shown in Eq.
(Ala). Rather than using the form of the spin-orbit in-
teraction that is shown in Eq. (ld), we will write the
spin-orbit operator as [32]

(A3a)

The variable V,. in Eq. (A3a) represents the approximate
central potential of electron i due to the nucleus and the
other electrons. Because we are concerned primarily
with order-of-magnitude estimates in this appendix, we
will approximate V; as a local central potential with a
screened nuclear charge Z*:

forms of the radial operator R, [21]:

( r/rNR lR l

@NR ) —@NR X @NR) (A

( q/NR~R
~

q/NR ) — q/NR y p q/NRf OP 0 (gNR gNR )
ff 0 J

(A2b)

In this Appendix we derive the form of the dipole
operator in the velocity gauge that is presented in Eq. (7).
We begin by reviewing different forms of the radial
operator that have been used in nonrelativistic calcula-
tions. Using Eqs. (lb) and (lc), we define a nonrelativistic
Hamiltonian

@NR l ~ @NR

0 qyNR

ar,

—Z
(A3b)

HNR —H0+H~, (Ala)

with

and

z——+V; =gh;
i=1

(A lb)

(VflR plier) I+f X rr 0'r)
J

(A4)

As pointed out by Huang and Starace [33], the coupling
with an electromagnetic field in the length gauge remains
unchanged from the nonrelativistic form in the presence
of the spin-orbit interaction:

N
1 N

V, .
i,j=1 iJ i =1
(i &j)

(A1c)

For matrix elements of exact solutions to the nonrela-
tivistic Hamiltonian HNR, we can itemize the following

In the equation shown above, W0 and +f are now the ex-
act eigenfunctions of the total spin-orbit Hamiltonian
HNR +HsQ In order to construct the velocity form of
the radial operator, we evaluate the commutator of the
radial operator and the Hamiltonain of Eq. (la):
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(+f X r/'HNR+ So @0)
J

=i EIIf P %p
J

Equation (A5a) can be rewritten as

(A5a)

In Eq. (A5b), the variables Ef and E0 are the eigenvalues
of the total spin-orbit Hamiltonian with respect to the
eigenfunctions (Ilf and %0. In Eq. (ASc), the matrices
correspond to two-component spinor operators, and the
variables C' are spherical tensor operators [16]. In
terms of the radial unit vector

r= ( —C,' )+ (C', )+z(C' ),(2)(/2 (2)(/2

we have the identity

(@flR &lpo&= 'pf Xp& 'po)
f 0 j R' ' .R' '=r .r=1 (A6b)

+ 1

(8)'/2c 2(zf —z, )

(so)x%f R,
j J

(ASb)

Therefore, in an order-of-magnitude sense, we would ex-
pect the following relationship to hold:

O(&l'm(' —,(m,'~R' '~lm„—,(m, &)

with =O(&l'm(', ,'m, '~realm—(, —,'m, &) . (A6c)
—&ZC,'

'

C1

—C 1 01

X iy
v'2C0 C',

—C11

~(go) x ly
2

0 C',
+Z

1

(A5c)

Next, we consider the radial integrals that are needed in
order to evaluate the second term on the right-hand side
of Eq. (ASb). We will make use of the approximation
that is given in Eq. (A3b), which involves replacing the
potential Vj with a screened nuclear charge. With this
substitution, Eq. (A5b) becomes

&+flk, I'p0&= ~ E +f gp 'po +J (g)(/2c2(g
0 %f R, +p (A7)

We wish to relate the second term on the right-hand side
of Eq. (A7) to the acceleration form of the radial matrix
element that is given in Eq. (A2c). In order to accom-
plish this, we make the assumption that the exact radial
matrix element with the spin-orbit interaction in the full
Hamiltonian is roughly equivalent to its nonrelativistic
counterpart in the acceleration gauge,

o &efia.,ie, &

o &efia.,ie, &

1
O

(E —E )'
L

(Agb)

Finally, if we replace Z in Eq. (A8b) by its screened coun-
terpart Z" and use Eq. (A6c), we obtain

o &efia.,ie, &

1

(~NR ENR )2f 0

r

g g gpNR
Br

qg NR
p

~o ('P~ X R' 'P
)

(Agc)

(A8a) Therefore, Eq. (A7) can be written as

Furthermore, we assume that if we change the wave func-
tions and eigenvalues used on the right-hand side of Eq.
(Aga) to exact solutions of the spin-orbit Hamiltonian,
then we remain within this order-of-magnitude estimate,
or

( Pr I
R

&
I Po &

= (Pf X p& % 0)

(Ef E(&)—+ f „, ', o &of~a..„~+0&
( g )(/2c 2

ol

(A9)
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(+flR pleo&=
& & @y XPq +0)f 0 j

+0 Ef —Eo
c

(A10)

li &
=a"

I
1 & +a"

I
2 & +a"13 & (8 la)

cross section when we use a jj-coupled
multicon6guration initial state and a jj-coupled
multiconfiguration ionic core.

Using the notation that is introduced in Eq. (32), we
have

Notice that, due to the magnitude of the speed-of-light
factor c in relation to the photon energies co=Ef —Eo in
Eq. (A9), the assumptions made in Eqs. (A3b) and
(A8a) —(A8c) could vary by a factor of 10 but the terms
involving the commutator with the spin-orbit interaction
would still be sufticiently damped as to be negligible in
our work.

APPENDIX 8

with

ll&=l(5d ~ )J=O,M =0&,

I2& = l((sdz»zJ=O;(5dz„z)J=0)J=O, M, =O&,

and

(8 lb)

(8 lc)

If'"& =0,(lfi &+Pzlfz &+ & l3„lf, &,

I3&=l((5d3~z)J=2;(5d~qz)J=2)J=O, M~=0& . (Bld)

Using the notation that is introduced in Eq. (34), we have

In this appendix we derive Eq. (35a). This equation
determines the form of the weighting factor (A, , ) for the with

$=3

lfi &=l(((nlj'j)J=j;(5d3,z))J=j;(kj„)J=j„)J=I,M+=0&,

Ifz & =I((((nl )J=j;(5d3&z)J=O)J=j;(5d &
)J=O)J=j;(kj„)J=j„)J=1,M =0&,

(82b)

(82c)

If, &
= l((((nl )J=j;(5d3&z )J=2)J=j, ;(5d~&z )J=2)J=j;(kj„)J=j„)J=1,MJ=0& .

($ ~3)

It is easy to see that

&f, I C,'I l &
= &f, I c,'I2&

=
& ((nl j)J=j;(kj„)J=j„)J=I,MJ =OICO I(nl j+')J=O,MJ=0& .

(82d)

(83)

In Eq. (83), we have used Co as the spherical tensor operator appropriate to the dipole interaction [16]. In this formula
we are concerned primarily with the angular dependence of the dipole matrix elements. We rewrite the state I3 & as

I3&= g & jz=2, mz;j4=2, m4lj=O, m =0&l(nl j+')j, =O, m, =O&l(5d z3)zj =z2, mzl&(5d, &z)j„=2,m~& .
/tip, m4

In Eq. (84) the &j,m, ;jzmz I jm & are Clebsch-Gordan coefficients. In terms of 3j symbols, we can write [34]

jj& j2
=( —1) ' ' (2j+1) '~

&j,m„'jzmzljm & .
m) m2

If we use the identity [34]

j j O j —m,=( —1) '(2j+1) '~ 6(m, , —mz),
m& m&

m2, P24

Likewise, we will have

& j,m 5,
' j6 =2, m 6 I j„m 7 & & j„m7,

' js =2, m s Ij,m9 & &j,m 9,j„,m io Iji i
= 1,m'i i

=0 &

mg, m6, m7

028, m9, mIP

x l(nl")j, m& & l(5d3~z)j, =2, m, & l(5ds~z)js=»ms &l(kj. )j. mio&

then Eq. (84) can be rewritten as

I3& = g (5) '
( —1) '5(mz, —m4)l(nl j+')j, =O, mi =0&l(5d3&z)jz =2, mz &l(5dz& )jazz=2, &m.4

(BSa)

(85b)

(86)

(87a)
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In terms of 3j symbols, Eq. (87a) can be rewritten as

Js Js J J
If, &=

m5'm6'm7'

m8, m9, m&O

( —1) ' " ' '+3(2j, + 1)(2j+1)
m5 m6 m7 m7 m8 m9 m9 m)p 0

X l(nl' )j m6 &I(5d3/2)j6=2 m6&l(5ds/2)js=2 m8 & I(kj. )j. m&o& .

Using Eqs. (86) and (87b), we obtain

m2, m4) m5, m6,

m7, ms, m9, m )()

X((nl ~)j, m5;(kj„)j„, m, oI CoI(nl~ J ')j, =O, m, =O&

X( —1) ' " ' ' '5lm —m )(5) ' +3(2' +1)(2 +1)
J 2 2 j j 1

T

JsJs
X

m5 m6 —m7 m7 m8 —m9 m9 m]Q 0

Since

d3/2 )j6 2)Pl6I( d 3/2 )'j2 2&m2 & ~(m6&m2)

((5d3/2)j8 —2, m8I(5d6/2)j4 2 m4& 6(ms, m4),

and also using 5(m2, —m„), Eq. (88) can be written as

((5d'3/2)j6=2, m6I(5d'3/2)j2=2, m2&((5ds/2)j8=2, msl(5ds/2)j4=2 m4&

(87b)

(89a)

& f, I c.'I3 &
=

m&) ms)
m7, m9, m

&O

( —1) ' ' ' ' '(5) '/ +3(2j +1)(2j+1)

X ((nl ~)j, m6,'(kj„)j„,m&oICoI(nl 1+')j& =O, m
&
=0&

J 2 2 J JJsJs
X

mg m2 m7 m7 m2 m9 m9 m)p 0 (810)

JsJs 5(m9, m5)

(2j+1) (811)
my m2

m2) m7

and the fact that j +m9 must equal an integer to obtain

3(2j, +1)
(f, Ic,'13&= y ( —1)' '

m9, m )0

((nl ~)j,m9;(kj„)j„,m, o I Co I(nl / ')j, =O, rn, =0& .
m9 m&p 0

(812)

Using Eq. (85a) we obtain

Using the fact that m 5+ m 2
—m 7

=0 from the first 3j symbol which appears in Eq. (810), we obtain
( —1) ' '=( —1) '. We also use the relation I34]

J 2 2 J

(f, lc,'I»= y (
—1)' '

m9, m )O

& j,m„j„,miolj» = l, m» ——o&

X ((nl Jj),m9;(kj, )j„m,oI Co I(nlJ. /+')j, =O, m, =0& . (813a)

Finally, using Eq. (83), we obtain

&f, lc'I»=( —1)' ' 2;+1
(((nl J)j;(kj„j)„)jii= l, mi& =OIC I(nol ~+')j Oi., mi =0&,

5 2j+1
(813b)
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2j, +1

5 2J+1
Therefore, we obtain the final form of Eq. (35a), using Eqs. (81)—(83) and (813c):

(f'"~Co~i & = (f, ~Co ~1& &, ttz", +&2az'+ & A, ct3
5 2j+I

(813c)

(814a)

(814b)
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