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Tunneling through a one-dimensional potential barrier
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The exact transmission coefficient of a one-dimensional potential barrier,
V(x) = Vo(1 —[I1—exp(x/a)I /[1+c exp(x/a)] ]'), of which the Morse and the Eckart barriers are

special cases, has been obtained. Comparing the exact and WKB transmission coefficients, the limitation

of the semiclassical method has been quantified. Another branch of this potential (c &0) has been

shown useful in nucleus-nucleus fusion. Using the transmission coefficients, the exact energy eigenvalues

of the inverted ( Vo —+ —Vo) potential (oscillator) have been derived.

PACS number(s): 03.65.Nk, 25.70.Jj, 73.40.&k, 03.65.Ge

I. INTRODUCTION

The potential functions which are amenable to exact
analytic quantal solutions are rare. Rarer are the in-
stances where the one-dimensional potentials admit a
simple and tractable transmission coefficient [1—4]. In
this paper, we present analytic results on the transmission
amplitude r(k) and the transmission coefficient T(k) for
a one-dimensional potential barrier

V(x) = Vo(1 —[[I —exp(x/a)] /I 1+c exp(x/a)] ] ) .

From a more general standpoint this potential function
interpolates between the symmetric Eckart [2] and the
Morse [4] potential. This makes it especially suited to ap-
plications in chemical physics. For instance, the investi-
gation of the vibrational spectrum of a bond-stretching
diatomic molecule was carried out using this potential
function,

V(r)= Vo[I 1 —exp(r/a)] /I 1 —c exp(r/a)] ]2 .

The amenability of the corresponding Schrodinger equa-
tion was first suggested by Tietz [5]. Recently, Wei Hua
[6] has again utilized this potential to obtain analytic ex-
pressions for the energy eigenvalues. It may be remarked
that owing to the condition of regularity of the wave
function, g(r) at r =0, the radial Schrodinger equation
for this potential in r E [0, ~ ], even for the s wave, does
not provide an exact and simple expression for energy ei-
genvalues of the bound states. However, for this anhar-
monic oscillator, in Ref. [6] an approximate expression
for the s-wave eigenvalues was obtained. Furthermore,
an approximate expression for higher partial-wave eigen-
values was proposed.

The transmission coeKcient of a potential barrier finds
applications in the fields like nuclear fission [23], heavy-
ion fusion [6], and the phenomenon of tunneling in solids.
On the other hand, it provides a check for the other alter-
native methods like the path-integral technique [7] and
the Wigner function method [8]. It also offers a test of
accuracy for the approximate methods such as the WKB
[9] and the variable-phase method [10]which are used for
intractable potentials. It must be emphasized that when

a potential barrier does not converge asymptotically, the
calculation of the transmission coeKcient through nu-
merical integration of the Schrodinger equation is ren-
dered infeasible. Since the transmission amplitudes and
the transmission coefficients [4] contain information
about the energy eigenspectrum (bound states, metastable
states, and resonances) of the potential, the transmission
functions [r(k), T(k)] become the very ingredients of the
theory.

In this paper we also obtain the energy eigenvalues for
the bound states of the inverted potential (oscillator),

V(x) = —Vo(1 —[I 1 —exp(x /a)] /I 1+c exp(x/a)] ] )

from the transmission functions. These eigenvalues will
correspond to the solution of the Schrodinger equation
for x H [

—~, ~ ] subject to the boundary condition
Q(+ ~ ) =0.

The Schrodinger equation for the present potential
function is transformable to the Gauss hypergeometric
equation. This, therefore, suggests that this potential be-
longs to a broad class of potentials known as Natanzon
potentials [11]. Eckart potential [2] and Ginnochio's po-
tential [3] also come in this class of potentials. Some
more potentials of this class may be cited in Ref. [12].

The plan of this paper is as follows. In Sec. II we dis-
cuss the potential barrier and calculate the exact eigen-
functions, the exact and the WKB-approximated
transmission coeKcients are presented in Sec. III. An ap-
plication of a branch of this potential barrier in nucleus-
nucleus fusion is suggested in Sec. IV. The exact energy
eigenvalues of the corresponding oscillator potential are
extracted in Sec. V. Finally, we summarize our findings
in Sec. VI.

II. THE POTENTIAL BARRIER AND THE EXACT
EIGENFUNCTIONS

The present one-dimensional potential barrier is writ-
ten as

V(x) = Vo( 1 —[ [ 1 —exp(x /a) ] /I 1 +c exp(x /a) ] ] ),
O~c~ 1
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and the curvature of the top of the barrier is given by C0=2VO/[(1+c) a ]. When c =0, Eq. (1) gives the Morse bar-
rier, i.e., V(x) = Vo[2 exp(x /a) —exp(2x /a) ] and when c = 1 one gets the symmetric Eckart barrier, i.e. ,
V(x) = Vosech (x/2a). These potentials are displayed in Fig. 1. For (1), we write the Schrodinger equation

—(irt /2m) ' + Vo(l —[[1—exp(x/a)]/I 1+c exp(x/a)] ] )g(x)=i'8 (x, t) . a (x t)
Bx dt

Using the transformations z = —c exp(x/a) and it/(z, t) =p(z)/z' exp( —iEt/A') in (2) we obtain

d' (z) + [(p +q +—')/z +q (b +1) /(1 —z) +2q (b +1)/Iz(1 —z) j ]P(z) =0,

(2)

(3)

where we have used p =(E —Vo)/5, q = Vo/b, , f =E/b„b =1/c, and b, =A' /(2ma ). Comparing Eq. (3) with
one of the standard transformed forms of the Gauss hypergeometric equation [13]

d2
+[(1—k )/4z +(1—v )/I4(1 —z) ]+(I—1, +p, —v )/I4z(1 —z)] ]P(z)=0,

dz2
(4)

we get A, =2if (f =ka), i2=2is (s =k'a), and v =2ig,
where

y( )
1/2 —2./2(1 )1/2 —v/2IV(z)

and

[f2+(b2 1 )q2]1/2
W(z) refers to the Gauss hypergeometric function [13],
among 24 forms available for W(z); the following will be
useful in the sequel:

g = [q'(b + I )' ——']'"
Let us express k and k' explicitly as

IV, (z) =2F, (a, P, y;z),
W (z) =z' r F, (1+t2 —y, 1+P y, 2 y;z—), —

(6a)

(6b)

and

k = [2mE]' /1ri
and

W3(z)=(l —z) 2F, (a, y —P, a+ I —P;(1—z) ') . (6c)

k ' = [2m I E + ( b 1)Vo ] ]
'—/11i .

We can write the solutions of (4) as

The parameters of 2F1 are a= —,
' —if —ig —is, P= —,

' —if
—ig +is, and y = 1 —2if.

Using (6b) one of the solutions of (2) can be written as

it/(z, t) =( —1) ' (2f) '/ exp( —rrf )z' (1—z)'/ ' 2F1((—,'+if ig —is)—, ( —,'+if —ig +is), (l+2if);z)exp( —iEt /fi),

(7)

which behaves as exp[i (kx Et/A)] as x ~——~, denoting a wave (P; ) incident on the barrier, assuming the incidence
from left to right. Changing k to —k in (7), we obtain the oppositely traveling refiected wave (iti )

g(z, t)=( —1)'(2f )
' exp(~f)z ' (1—z)' ' 2F1(( —,

' if —ig —is), (
—
—,
' if —ig +is), (1——2if);z)exp( —iEt/fi) . (8)

Using (6c), one more solution of (2) can be written as

P(z, t)=( —I)'f(2s) ' exp( vrf)z ' (1 —z)"—+'

X 2F, (( —,
' —if ig is —), ( ,' if +ig —+is), (—1—2is ); ( 1——z) )exp( iEt /fi), —

which, in the limit x ~~, denotes a wave moving from left to right after being transmitted (g, ) through the barrier,
i.e., exp[i (k'x Et/Pi)]—

III. THE EXACT AND THE WEB TRANSMISSION COEFFICIENTS

In this section we calculate the transmission coefficients exactly as well as using the WKB approximation. Subse-
quently, we compare the two sets of results to reveal the limitation of the WKB method. Also, we shall be discussing
the results for the two interesting limits (the Morse and the Eckart barriers) hence presenting confidence and usefulness
of the derived results. It may be noted that 1tt;, g, and p, obtained in Sec. II satisfy the following the Wronskian rela-
tions:

[q,*,it, ]=i, [qp, q, ]=—i, and [it,*,q, ]=i .

By virtue of a standard analytic continuation property of the hypergeometric functions [13]

(10)
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=[[I'(&+a /3)1 (1 y) j/[I (1—/3)I (1+a—y)j ] F, ( a f3, yg)

+exp[i~(y —1)] [[I(1+a—/3)I (y —1)j/[I (a)I (y —/3) j ]g" r'2y', (()+a—y) (I+/3 —y) (2—y) g)

a desirable relation among g, , tf, and i/, can be written as

itt, +p(k)g =r(k)P, ,

where r(k) and p(k) are the transmission and the reliection amplitudes expressible as

r(k) =(s/f)' [[I ( —,
' —if ig——is)l ( —,

' —if +ig —is) j /[I (1—2is)I (
—2if) j ]

and

p(k)=[[I (2t'f)I ( —,
' —if —ig —is)I ( —,

—if +ig +is) j /[I (
—2if)( —,'+if +ig is)1—( —,'+if —ig —is)) ] .

(12)

(13a)

(13b)

With the help of the Wronskian relations (10), the transmission and rellectance coefficients get defined, respectively, as
T(k) =w" (k)r(k) and R (k) =p*(k)p(k). Employing the properties of the I functions, we obtain

and

T(k)=[sinh(2mf )sinh(2~s)]/[cosh[m(f +s+g) jcosh[m(f +s —g) j ]

R (k) = [cosh[~(f +g —s) ]cosh[sr( f —g —s) j ]/[cosh[a(f +g +s) ]cosh[sr( f —g +s) j ] .

(14a)

(14b)

In a special instance when c —+0, the present potential
barrier (1) becomes the Morse barrier [4]. For this case,
the eigenfunctions become the conAuent hypergeometric
functions. Also, we get (g —s)~q and (s+g)~~. In
these limits, (14a) degenerates to the transmission
coefficient of the Morse barrier [4]

and

b, '=i' /(8ma ) .

TM""(E)= 1 —exp( 4')—
1+exp [2vr(q f )j-

f = (E /b, )
' and q = ( Vo /5 )

' ~

The other special case is of the symmetric Eckart barrier
which can be obtained when c =1 in (1). For this case
(f =s), from (14a), we get

T '""'(E)=sinh (nf')/[sinh (nf')+cosh (mg')], (16)'
where

T(E)= [ I+exp[2'(g —s f) j]— (17)

which interestingly compares well with the expression ob-
tained by the semiclassical WKB approximation, i.e.,

In the limit when A'~0, (6' —+0) (14a) degenerates into
the classical limit of B(E—Vo) where 6 is the Heaviside
function; another interesting limit is the semiclassical
one, i.e., when 6 is very small but finite. For E )6 and
Vo ) b, (14a) gives

TwKs(E) = [1+exp(2'(gwKa —s f) j]-
gwva=q(b+1) .

(18a,)

C3
ll

I

'I LO

Note the disappearance of —
—,
' in gwK&.

We observe that 5 sets the lower limit on energy above
which the WKB approximation would work well provid-
ed Vo )A. The condition, E )6 interestingly comes to
that of the de Broglie wavelength of the incident particle
being less than that of the size of the "obstacle" i.e.,
A, d (2vra, where 2~a is a length scale found in the poten-
tial. Instances when A, d ) 2ma the tunneling becomes
more and more quantal and hence the semiclassical ap-
proximation becomes poorer. Equation (18a) yields the
WKB transmission of the Morse barrier [4],

FIG. 1. The potential barriers (1) with a =d/(1+c), when
d =1.0 and c is verified as c =0.0, 0.25, 0.50, 0.75, and 1.0. We
get the Morse and the Eckart barrier for c =0.0 and 1.0, respec-
tively.

For the symmetric
= Vosech (x/2a), it yields

Eckart

TwKB (E)=[1+exp[2rr(q —f) j ]

barrier,

(18b)
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TwKB" (E)= [ I +exp I 2'(q ' f—')
I ]

/gi )
1/2

(18c)

The poor performances of the WKB approximation at
low energies (E ) b, ) can be assessed from the fact that
the exact transmission coefficients, viz. , (14a), (15), and
(16) vanish at E =0, whereas the WKB expressions, viz. ,
(18a), (18b), and (18c) yield a finite value for zero-energy
transmission. E = Vo is another interesting point where
the WKB transmission coefficient, irrespective of the po-
tential profile, inherently becomes one-half; the exact
transmission coefficients show a deviation from this
value.

IV. AN APPLICATION TO NUCLEUS-NUCLEUS
FUSION

V&(r) = D[r& ri/(r, +—rz) ]exp[ h(r —
(r&

—+rz)]
+Z, Zie /r+(A' /2m)l(l+I)/r (19)

where b =1.333 fm ', D is prescribed for different nu-
clei, for instance for ' 0+' C it is 100.87 MeV/fm.
Here, r, =R, —1/R;, R;=(1.283 +0.8/A, '~ —0.87),
where i =1,2. In this expression, A denotes the atomic
weight of a nucleus. At the origin this potential entails a
strong singularity; then, there is a well (potential pocket)
attached to a barrier. In Fig. 2 we show, by open circles,

4—

3—

1

~(

1(

j (

I,
r

I „
I (&

t

il i I

8
il

16

f(tm]

I

24 32

FIG. 2. The solid line represents our barrier model Eq. (24),
the open circles denote the actual fusion interaction barrier
given by Eq. (19), and the dashed line presents the parabolic fit.
The arrow denotes the C',oulomb barrier. The fitting parameters
are Acoo= 2.37 MeV, Vo =7.53 MeV, and Co = 1.03.

In the fusion of two nuclei the fusion reaction rates are
calculated employing the philosophy of barrier penetra-
tion [14]. This method consists of obtaining the penetra-
bility (transmission coefficient) of the fusion interaction
barrier. The barrier is formed due to the nuclear attrac-
tion and Coulomb plus centrifugal repulsion. A generally
accepted phenomenological form for this potential is
given [15] as

the typical s-wave interaction barrier for the fusion of ' 0
and ' C nuclei. The maximum of the s-wave interaction
(19), Vo is called the Coulomb barrier. In the theory of
nucleus-nucleus fusion, the height of the Coulomb barrier
is a very important parameter, as the physical mecha-
nisms that give rise to fusion are different below and
above the Coulomb barrier [16]. Also, we will find that
the calculational schemes are different below and above
this threshold. The barrier penetration method or model
consists in ignoring the pocket and calculating the pene-
trability through this barrier for each partial wave. The
fusion rates are then determined by

o. (E)= (m /k ) g (2l + I ) T( (E) .
I

(20)

A convenient and common way [14] is to fit a parabolic
barrier

V(r)= Vi mcus(r —ri) —/2 (21)

to the fusion interaction barrier; the parameters V& and
iiico& are then used to calculate the penetrability, Ti(E)
employing the exact transmission coefficient formula of
parabolic barrier (Hill-Wheeler formula [1])

Ti(E) = [I+expI2ir( Vi E)/ficoi]—] (22)

Note that the parameter rI is redundant since the
transmission through a barrier is independent of its posi-
tion. For a given partial wave, VI is the maximum of the
function given by (19). The parameter fico& determines
the top curvature of a barrier, i.e.,

d Vi(r)
hanoi= (h /m)

d7"
(23)

This curvature parameter is also called the Hill-Wheeler
frequency. In Fig. 2 we have shown the actual s-wave
fusion barrier arising from (19) (open circles) and the par-
abolic fitting to the same. Excepting the barrier top, the
parabolic barrier renders a very poor fit; the tail part of
the barrier especially is quite off. Now the question
whether the tail part affects the fusion rates arises. Our
potential barrier has got the distinction of admitting vari-
ous tails (see Fig. 1), as the parameter c is varied between
0 and 1, by keeping the height and top curvature fixed
(see Fig. 1). To this end, we set in (1) a, =d, /(I+c~),
x =(r r&). Once again—, for positive values of c&, the fits
of these barriers to the actual fusion barriers are bad.
Yet, recently, we have shown [17] that if the fitting bar-
riers (parabolic or the present barrier) entail the same
height and top curvature, the fusion rates at energies
above the Coulomb barrier (E ) Vo) are hardly affected.
Therefore, at these energies, the parabolic, the Morse, the
Eckart, and the present barrier work very satisfactorily.
However, we must emphasize that at subbarrier energies
(E) Vo ) these barrier models render wrong results.

In the calculation of fusion rates the usage of WKB
penetrability was introduced surprisingly late in 1980 [15]
whereas this barrier penetration model or method is as
old as 1959 [14]. Moreover, the application of this ap-
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proximation was suggested rather wishfully, without a
justification. It must be emphasized here that the coin-
cidence of the exact and the WKB penetrability of the
parabolic barrier is a peculiar (nongeneric) feature. The
justification of the goodness of the WKB penetrability is
still due. The present barrier elicits this justification very
neatly. In Sec. IV, as we have seen that the smallness of
b&=R /(2ma& )=[Ace&(1 —CI)] /V&(bI ((l MeV) en-
sures the goodness of the WKB method at energies,
E & 6&. Even in the worst case, for instance, for the
' 0+' C system, %coo=2. 37 MeV and the Coulomb bar-
rier Vo=7. 53 MeV gives 6=0.18 MeV. The experimen-
tal fusion rates are measured [18] at energies E ) 4 MeV,
that is much larger as compared to A. Therefore, the
WKB penetrability renders accurate results. For bigger
nuclei, the Coulomb barrier ( Vo), which roughly goes as
Z&Z2/( 3 I~ + 2 z~ ) MeV is much larger and therefore,
the values of 6 will be much smaller, consequently, the
WKB approximation would work much better. In the
light of the present facts the nucleus-nucleus fusion is ad-
judged to be a semiclassical event. One problem with the
WKB penetrability lies in the fact that above the barrier
energies, the turning points become complex. Finding
the complex roots of a real equation (turning points) is a
cumbersome and nonstandard exercise. One therefore,
avoids the use of the WKB method energies greater than
the Coulomb barrier. In this regard, the parabolic
method and the WKB method are practically comple-
mentary to each other.

It is here that we invoke another branch of the poten-
tial barrier (1) by making c negative, and we suggest a
new parametrizing potential barrier which admits a sim-
ple WKB penetrability factor. We suggest that the fusion
barriers obtained by the aforementioned interaction
should be fitted to the three-parameter potential profile
(VI, d, , and C, )

V ( r ) = VI ( 1 —[ [ 1 —exp(x ) ] / I 1 —C,exp(x ) ] ]'), (24)

where x =(r& —r)/[d&(1 —C~)]. It may be reemphasized
that the position of the barrier top r

&
is a redundant pa-

rameter for penetrability calculations. By finding the
maximum of (19) and the position of the maximum value
we get VI and y&, respectively. Next, using (23) we obtain
AcoI. Owing to a good familiarity of the curvature param-
eter A'coI (the Hill-Wheeler frequency of parabolic barrier)
in fusion literature, we would like to retain it in our mod-
el. We, therefore, connect RcoI and d& by comparing the
top curvatures of the parabolic and present barrier (24).
Using (23) we get dr=[(fi /2m)(4V&)/(A'co&) ]'~. We
then vary CI to fit the Coulomb tail; for a better fit one
may have to change the obtained value of Ac@I slightly.
The variations in CI are generally from 1.4 to 0.5 as one
goes from lower to higher partial waves. The situation of
CI =1 is to be avoided and this may require a slight ad-
justment in the value of ficoI. It is very important to
know the asymptotic distance up to which one has to fit
the Coulomb tail. For this, one should see the lowest en-
ergy at which the fusion rates are to be obtained. The
asymptotic distance should be fairly sufficient to find the
turning point at the lowest energy. Our barrier model

TI(E)= [1+exp(2metK& ) ]

where

K, =(E/b, )'~ —[(E/DI )+(BI 1)VI/—b, ]'~

+(BI—1)( VI/b, t
)'

e, =sgn(C, —1),
b, i=(A'coi) (1—Ci) /(4V~),

(25)

and

Bi=I/CI .

Note that the value of CI being between 1.4 to 0.5 the pa-
rameter, 6 will get reduced and the WKB approximation
will become more accurate here. Our calculations of
fusion rates using this barrier (24) and the penetrability
factor (25) and their comparison with the experimental
data have been reported in Ref. [19]; the detailed results
are also to appear elsewhere. Presently, our aim is to
demonstrate the accuracy of our parametrizing barrier
and the utility of its simple penetrability factor that
works at both the energies below and above the Coulomb
barrier. To this end, we have calculated the s-wave pene-
trability for fusion of ' 0 and ' C nuclei, using the fitted
parameters Vo and %coo. In Fig. 3 the dotted line
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FIG. 3. The solid line is our penetrability formula (25) for an
s wave, the open circles denote the WKB-approximated pene-
trability, calculated numerically at sub-barrier energies. The ar-
row denotes the Coulomb barrier.

essentially consists of three parameters, viz. , VI, Acth, and
CI. In Fig. 2 we have shown the fitting of the actual s-
wave barrier with the barrier given by (24). An overall
good reproduction of the geometry of the fusion barrier
using the present barrier (24) is remarkable. For the sake
of comparison the equivalent parabolic barrier is also
plotted in this figure.

The parametrizing barrier (24) entails a singularity
(C&=1) at negative energies. However, this singularity
being away from the turning point, we can use the WKB
approximation legitimately. We get the WKB penetrabil-
ity
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V. THE ENERGY EIGENVAI. UES OF THE INVERTED
BARRIER (OSCILLATOR)

Now our aim is to extract the discrete energy eigenval-
ues of the present anharmonic oscillator [inverted barrier
(1)] using the obtained expression of ~(k) (13a) and T(k)
(14a). To this end we use the simple poles of ~(k) lying
on the upper half of the imaginary line in the complex k
plane (physical sheet) which are known to represent the
possible bound states of a potential [4]. For the bound
states of the inverted potential, we change Vo to —Vo
and define G =[q (b+1) + —,']'~, S =[F„+(b
—1)q ]', where F„=if=ik„a. We locate the positive
poles of F„ in Eq. (14a) and get

F„=G—S —N, N =n + —,
' (26)

Note that these poles will be positive if and only if
N ((G —S). Therefore this oscillator entails only a finite
number of bound states. By setting E = —i' F„/(2@a ),
the exact eigenvalues of the present anharmonic oscilla-
tor are obtained,

E„= b, [q (b 1)—(G——N) ] /[4(G——N) ] . (27)

For the case of the Morse oscillator [4], c =0(b = ~ ) and
also (G —S)=q, on using (15) or (26) we get

E„=—b, [(V /b. )'~ (n+ —,')]—
For the case of the Eckart oscillator [2], c =1 and F =S,

represents the parabolic approximation (the Hill-Wheeler
formula) results, the solid line is due to our Eq. (25), and
the open circles show the WKB approximated penetrabil-
ity calculated numerically at subbarrier energies only.
The Hill-Wheeler formula overestimates the subbarrier
penetrability; to emphasize again, this is due to a poor
reduction of the geometry of the fusion barrier by a para-
bolic barrier. As per our claim, at energies above the
Coulomb barrier, all the three penetrabilities coincide. A
good match between the numerical WKB penetrability
and the one calculated using our analytical WKB pene-
trability via the barrier (24) testifies to the closeness of
our parametrization of the fusion interaction barrier.
Thus, our barrier penetration scheme facilitates an im-
provement over the well-known parabolic barrier
penetration method at subbarrier energies. At energies
above the barrier energies our penetrability formula by-
passes the calculation of complex turning points for the
WKB calculations. It may be remarked here that the
earlier attempts [20] to improve the parabolic barrier
model, at subbarrier energies, have not worked at ener-
gies above the Coulomb barrier. This is the reason why
on several instances [21] the fusion reaction rates have
been calculated avoiding the barrier penetration method.
Having adjudged the nucleus-nucleus fusion to be semi-
classical, we claim that our barrier penetration method
renders accurate estimates of penetrability and hence the
fusion rates at both the energies, below and above the
Coulomb barrier.

Eqs. (16) or (26) yields

E„= b, '[[—Vo/5'+ —,
' J'~ —(n + —,

' )] (29)

In an earlier work [4], we have suggested a general
method of extraction of the eigenvalues of the bound
states of an inverted potential from the transmission
coefficient T(k) of the corresponding potential. Since
one generally knows the transmission coefficient [T(k)
not r(k)], therefore extraction of eigenvalues from T(k)
is more important. It can be checked that Eqs. (27), (28),
and (29) can be neatly obtained by an analysis of the sim-
ple positive poles in k plane (14a), provided we use the
fact that this oscillator can, unlike harmonic oscillator,
support only a finite number of bound state [4].

Similar analysis of the semiclassical T~KB, given by
Eqs. (18), yield the eigenvalues of these oscillators con-
sistent with the semiclassical Bohr-Sommerfeld quantiza-
tion law. We notice that for the case of the Morse oscil-
lator the semiclassical and quantal eigenvalues coincide.
For the Eckart and the other oscillators (0(c (1) both
kinds of eigenvalues differ only slightly, i.e., the semiclas-
sical eigenvalues of the Eckart oscillator are same as (29),
excepting a term, "+—,

'". Similarly the semiclassical ei-
genvalues for these instances will still be given by (27),
wherein G =q (b + 1).

VI. SUMMARY

To sum up, in this paper we have presented the exact
(14a) and the WKB (18a) transmission coefficients of a
general one-dimensional potential barrier which are use-
ful in the fields such as nuclear fission, fusion, and tunnel-
ing in solids. We have discussed the limitation of the
WKB penetrability. Using our results we have obtained
a criterion that enables us to ascertain the validity of the
WKB-approximated transmission coefficient. We have
argued that the nucleus-nucleus fusion is semiclassical
due to which the use of the WKB penetrability in calcula-
tion of fusion rates is justified. Hitherto, a potential bar-
rier which parametrizes the full geometry (the Coulomb
tail for all partial waves) of the fusion interaction barrier
and also admits a simple penetrability factor has been
elusive. To this end, a branch of our potential (24) has
been shown to be particularly useful in nucleus-nucleus
fusion. Notably, our barrier penetration method (25)
works at both the energies, below and above the Coulomb
barrier. Our barrier can also be useful in parametrizing
the charged particle barrier formed in the event of a-
decay. The penetrability formula (25) can then be used to
calculate the u-decay rates. Currently, in heavy-ion nu-
clear reactions, new kinds of resonances are being dis-
cussed. These are called the barrier-top resonances [22]
which entail the complex energy eigenvalues embedded in
the positive-energy continuum. We would like to men-
tion here that the present barrier is a suitable candidate
for studying such resonances with the help of Eq. (13a).
Also, we believe that the exact eigenvalues of the inverted
potential (oscillator) presented here (27) shall be useful in
the studies on the dynamical aspects of the one-
dimensional quantal integrable systems.
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