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Second-order magnetic contributions to the hyperfine splitting
of the 58nd D2 states in Sr
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The hyperfine structure of 5snd D2 states in Sr was studied for principal quantum numbers
11 & n & 25 by Doppler-free two-photon excitation combined with thermionic detection. Based
on the more accurate data, compared to previous results, the hyperfine structure was analyzed by
second-order perturbation theory using multichannel quantum-defect theory wave functions. As a
result we find that the surprisingly large B factors obtained by fitting the data with the Casimir
formula do not reflect a quadrupolar interaction but rather consist predominantly of second-order
magnetic dipole contributions. Purther, inconsistencies in the King plot of odd-even isotope shifts
were removed by this type of analysis. The result demonstrates the importance of higher-order
effects in hyperfine splittings of excited states in atoms with two valence electrons, even when the
fine-structure splitting is large compared to the hyperfine splitting.

PACS number(s): 35.10.Fk, 32.80.Rm, 31.30.Gs

I. INTRODUCTION

Many problems in atomic physics can be treated using
perturbation theory. Normally for low-lying states with
large energy distances to neighboring levels the applica-
tion of perturbation theory in first order gives satisfying
results. However, the level spacing of high-lying states
(Rydberg states) is considerably smaller and higher-order
perturbation theory is required for correct treatment.

The electron configuration of excited states of the
alkaline-earth elements is determined by the two elec-
trons outside a core of closed electron shells. The ex-
istence of low-lying bound doubly excited states causes
configuration mixing and inHuences the coupling of the
two valence electrons (singlet-triplet mixing). The mul-
tichannel quantum-defect theory (MQDT) has proved to
be an efficient tool [1] for the description of such per-
turbed Rydberg states with only a small set of parame-
ters.

Particularly the atomic hyperfine structure (hfs) is sen-
sitive to admixtures in the wave function of Rydberg
states [2] and is therefore a most sensitive quantity for
investigating such phenomena.

For the evaluation of the hfs it is in most cases suf-
ficient to consider only the magnetic dipole and the
electric quadrupole interaction. Then it is possible to
parametrize the hfs splitting in first-order perturbation
theory by the hyperfine constants A and B, using the
Casimir formula. The hyperfine constants A and B mea-
sure the magnitude of the magnetic dipole and the elec-
tric quadrupole interaction, respectively. This kind of
evaluation and separation of the interactions assumes
that contributions of higher-order perturbation theory
are negligible. If that is not the case the hyperfine con-
stants lose their physical meaning.

Previously, the effects of higher-order contributions to
the hfs in Rydberg states due to neighboring fine struc-

ture levels have been observed in Hg 3—5], sHe [6], Ca
[7], Sr [2, 7—10], Ba [2, 7, 11—15], Sm [16, Pb [17], and Yb
[18]. For very high Rydberg states the energy spacing
of states with different principal quantum number n is
small enough to cause hyperfine-induced mixing [19—21].

In the present work we report on high-resolution laser
spectroscopic measurements of the hfs of 5snd D2 states
in "Sr and of transition isotope shifts of the stable iso-
topes Sr for principal quantum numbers 11 & n &
25. These measurements were done with enhanced ac-
curacy compared to previous results [22, 23], in order to
obtain sufBciently precise data for accurate comparison
of the hfs with the results derived from second-order per-
turbation theory. The hfs was calculated by means of
MQDT wave functions in first- and second-order pertur-
bation theory. We found that second-order contributions
need to be considered in the analysis of the hfs in order to
explain the unexpected large hyperfine constant I3 and
the shift of the hyperfine multiplet, which is responsible
for large deviations from the linear dependence in a King
plot analysis.

II. EXPERIMENT

The experimental setup used in the present work has
been described in detail in an earlier paper [24]. Briefiy,
it consisted of a cw narrow bandwidth ring dye laser
(Spectra Physics Model 380D) pumped by an argon-ion
laser (Spectra Physics Model 2045). Typical operating
conditions were uv pump powers of 2.5—3.0 W, resulting
with a stilben 3 dye in 200—400-mW single-mode power.
The dye laser is tunable between 410 and 470 nm. With
these wavelengths Sr I Rydberg levels above n = 8 can
be excited from the 5s So ground state by Doppler-
free two-photon excitation. A Michelson-type wave meter
(Burleigh WA 20) with 300-MHz accuracy was used for
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tipole moments of the nucleus, where the even magnetic
and the odd electric multipole moments vanish. In most
cases it is sufficient to take into account only the interac-
tion with the nuclear magnetic dipole moment pI ——giI
and the electric quadrupole moment Q. According to
Sobel'man [27], the Hamiltonian can then be expressed
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FIG. 1. Two-photon excitation spectrum of the 58 So —+

5812d D2 transition as a function of the energy detuning
relative to the signal of the isotope Sr.

II~ = -") r, -'C(') . Q('),

identifying Rydberg levels up to n = 200. For measuring
the hfs splittings the laser frequency was stabilized to an
external confocal cavity. This, in turn, was controlled by
an active molecular frequency standard with an accuracy
of better than. 100kHz, using several precisely known I2
levels combined with the frequency-offset-locking tech-
nique [25]. A computer (HP 21 MX-E) was employed for
real-time data acquisition and for scanning and control-
ling the laser frequency.

The Sr atoms were excited and, following collisional
ionization, detected with high eKciency in a thermionic
ring diode [26]. In order to improve the signal-to-noise
ratio, the retroreflected laser beam was chopped at a fre-
quency of 80 Hz for lock-in detection (EGkG PAR Model
5210).

A typical spectrum of the 5s12d D2 state is shown
in Fig. 1. To determine the line positions, Lorentzian
line profiles were fitted to the experimental data. The
accuracy of the line distances was enhanced by recording
and evaluating several spectra (up to 40) for each state.
The mean values of the transition frequency differences
with regard to Sr are listed in Table I.

III. THEORY OF HYPERFINE STRUCTURE

The hyperfine interaction describes the interaction be-
tween the electrons and the magnetic and electric mul-

K = F(F+1)—J(J+1)—I(I+1) . (6)

The hfs constants A and B describe the magnitudes of
the magnetic dipole and electric quadrupole interactions,
respectively. Due to the different dependence on I' of
the two terms in Eq. (5), it is possible to fit the Casimir
formula to experimentally determined hfs splittings and
to separate the contributions of the magnetic dipole and
the electric quadrupole interaction.

The measurement of the isotope shift (IS) is also pos-

and I, and s( ) are the single-electron angular-
momentum and spin operators, respectively. The ten-
sor C( } is connected to the spherical harmonics Yj by
C' = [4~/(2i+1)]'/'V, .

In first-order perturbation theory the hyperfine inter-
action yields an energy splitting

AE~~ ) ——(p JIFIHhf, IpJIF)
of a state with total angular momentum F = I+J. Here
I and J are the angular momenta of the nucleus and the
electrons, respectively. Evaluating this matrix element,
one obtains the well-known Casimir formula [28]

—',K(K+ 1) —J(J + 1)I(I + 1)
2 2I(2I —1)J(2J —1)

(5)

where

TABLE I. Mean values of the frequency differences with regard to Sr for the transitions ss So —+ ssnd D2 of the isotope pairs ( Sr, Sr),
(86Sr 88Sr), and (84Sr 88Sr).

11
12
13
14
15
16
17
18
19
20
25

F =5/2
iss.ss(4s)
634.105(95)
v99.2s(2o)

1268.92(67)
2O19.3(11}

-1844.34(65)
-1651.93(67)
- i4o4.ss(42)

-ios4.vv(is)
-811.90(20)

F = V/2

89.81(25)
395.214(82)
507.14(42)
821.63(71)

- 13V2.1(14)
-1299.56(56)
-1172.44(47)
-1019.48 (50)

-712.84(23)
-566.69(23)

&87 —v88 (MHz)

F =9/2
-33.67(65)
88.69(12)

133.57(28)
249.24(23)
523.41(80)

-598.83(26)
-sso.s6(2i)
-511.16(32)

-287.75(15)
-255.836(82)

F = 11/2
-179.95(28)
-285.218(84)
-320.94(25)
-439.12(24)
-543.91(73)
267.47(20)
217.64(27)
126.10(17)

212.58(14)
118.212(64)

F = 1S/2

-ss2. sv(29)
-724.297(87)
-854.17(48)

-1240.48(72)

1295.54(66)
1134.18(39)
904.67(26)

777.65(18)
sso. is(21)

v —v (MHz)

-244.99(21}
-248.7ss(sv}
-24o.vs(i i)
-241.03(18)
-246.54(83}
-242.60(18)
-234.36(14)
-230.05(15)
-22v, 9v(2s)
-226.23(14)
-222. 179(49}

I/ —v (MHz)

-511.50(49)
-521.06(13)
-so2.9s(26)
504.66(30)

-516.71(68)
-508.06(30)
-490.29(15)
-481.55 (24)
-4vv. os(42)
-472.68(29)
-464.76(18)
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sible since for first-order perturbation theory the cen-
ter of gravity of a hyperfine multiplet remains unshifted

[P~ AE~~'l (2F + 1) = 0].
The situation changes if one considers contributions

of second-order perturbation theory. The second-order
energy splitting of a state Ip JIF) is

(2) ) - 1(VJIFIHhrslv'J'IF) I'

(Q ~ Q, J, )
(0) I 7ta A0

l(l + 1)(l + -') n*3

3/2

l(l+ l)(l+ -,') qR

1

vrao g R~ )

(12)

Hence when second-order effects are not negligible, i.e.
when neighboring fine-structure levels with equal quan-
tum number E are lying close together, the energy split-
ting can no longer be approximated by the Casimir for-
mula. Then it is not possible to separate magnetic dipole
and electric quadrupole contributions from the experi-
mental hfs splittings, because the second-order contri-
bution of the magnetic dipole interaction has a similar
dependence on F as the first-order contribution of the
electric quadrupole interaction. This is especially impor-
tant when the hfs is dominated by the magnetic dipole
interaction.

The second-order energy splitting goes together with
a shift of the center of gravity, since the contribution
of each fine-structure level has a different I' dependence
(only states with equal F are connected). This has the
consequence that the IS of a perturbed hyperfine multi-
plet can only be extracted using second-order perturba-
tion theory.

To study the influence of the second-order contribu-
tions, one can calculate the hfs in first- and second-
order perturbation theory if the fine-structure splitting
is known. For a two-electron atom such as strontium,
the magnetic dipole and electric quadrupole interactions
can be written in terms of the one-electron matrix ele-
ments (al) and (bl) This h.as been worked out by Lurio,
Mandel, and Novick [29] for an sl-configuration. Explicit
expressions for a more general tqt2 configuration are given
in the Appendix of the present work. The one-electron
matrix elements depend on the expectation value of r
for l g 0 and on the probability density at the nucleus
Ig(0)I2 for s electrons. According to Sobel'man [27] (al)
and (bl) can be written in units of 1 Ry (R~) as

32m a0
(al+0) = gIOl Rnl Rnl Roo ~

mp r

where n* is the effective principal quantum number, e„~
the binding energy (in rydbergs) of the nl orbital, and Z
the effective nuclear charge.

IV. CALCULATION OF THE HYPERFINE
SPLITTING WITH MQDT WAVE FUNCTIONS

As shown in Ref. [1], the MQDT is a powerful tool
to describe perturbed Rydberg series of alkaline-earth
atoms. The empirical MQDT study by Esherick [30]
showed that the J = 2 bound-state spectrum of stron-
tium can be described by a five-channel MQDT model
which includes the recoupling of D2 and 3Dq channels
and the perturbation of the Gsnd D2 and D2 series by
the 4dn's D2, 4dn's D~, and Gpn"p D2 channels. Here,
n' and n" are the principal quantum numbers of the Ryd-
berg series converging to the 4d and 5p ionization limits.
Within the accuracy of that analysis it was found that it
is not necessary to include the 4dn"'d D2 channel.

Since there are only a few doubly-excited states be-
low the first ionization limit, the empirical MQDT study
cannot give the exact admixture of each doubly excited
channel to the levels, although the total amount of the
doubly excited channels can be well distinguished from
the singly excited ones. In particular Esherick's analysis
cannot be used to distinguish between the Gpn "p D2 and
4dn'"d D2 channels. On the other hand, multiconfig-
uration Hartree-Fock calculations performed by Aspect
et al. [31] and ab initio MQDT calculations of Aymar,
Luc-Koenig, and Watanabe [32] indicate that the 4dn'"d
component is twice as large as the Gpn"p one. Thus the
wave function of the even J = 2 bound states of Sr can
be written as an expansion of pure LS states with the
following terms:

I~J = 2) = zi I5snd D2) Ls + z2I5snd D2) Ls
+z3

I

4dn's D2 )I s + z4 I4dn's D2 )Ls

q alsi
(bigs)=2 —

~ R i
—

~
R ()R

0

+z, ( l5pn"p 'D2) I.s

+ l4dn"'d 'D2) I,s), (14)

(10)

(bi=o) = o

Here gr is the nuclear g factor, n the fine-structure con-
stant, m/rn„ the ratio of electron and proton mass, e
the elementary charge, B„~ the radial part of the one-
electron wave function, and a0 the Bohr radius. To a
first approximation, (R„lIao/r IR„l) and Ig(0)I can be
calculated using the formula from Ref. [27]:

where the z, are the mixing coefficients obtained by us-
ing Esherick's [30] MQDT parameter. The mixing co-
eKcients for the Gsnd D2 and Gsnd D2 states are
drawn in Figs. 2 and 3 for principal quantum numbers
11 & n & 25. The data show a strong singlet-triplet mix-
ing in the Gsnd configuration around n = 16. The main
contribution of the doubly excited channels in this region
of principal quantum numbers comes from the 4dn's con-
figuration, where also a singlet-triplet mixing occurs.

As studied earlier [22), the hfs of the 5snd iD2 and
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Dq states is dominated by the Fermi contact term of
the magnetic dipole interaction of the 5s electron and
depends strongly on the mixing coefficients z~ and z2.
The nt Rydberg electron has only a weak interaction with
the nucleus. For pure 58nd D2 Rydberg states the hfs
splitting should almost vanish and for pure 58nd D2 the
dipole constant A should be nearly as, /12. Only a weak
quadrupole interaction due to the small admixtures of
doubly excited channels is expected.

In the calculation of the hyperfine splitting of the
58nd D2 states in second-order pertubation theory,
states of different J and equal E enter the matrix ele-
ments [cf. Eq. (7)]. These are the fine-structure levels
Gsnd Di, D2, and Ds whereas the 5snd D2 and Dq
states are described by Eq. (14); the expansion of the
Gsnd Di and 5snd Ds states are taken from the two
channel MQDT analysis given in Ref. [33] in which the
mixing of the 5snd and 4dn's configuration have been
considered. Thus the wave functions of the J = 1 and
J = 3 states can be written as:

Iq~ =1) = »15snd 'Di)js+ ~2l4dn's 'Dl)Ls, (15)

The mixing coefficients n, and p, can be calculated with
the MQDT parameters given in Ref. [33].

The evaluation of the matrix elements is done here
without considering matrix elements between different
configurations l~l2. This is a reliable procedure because
these matrix elements vanish in most cases, especially
for the Fermi contact term, or are very small due to the
different effective quantum numbers. However, in spe-
cial situations [34] the off-diagonal configuration matrix
elements can be quite large.

Further, the energy differences between the 5snd D2
states and the other fine-structure terms are needed for
the calculations. These are listed in Table II and illus-
trated in Fig. 4. It can be seen that the energy differ-
ences of the three 6ne-structure terms change their sign
at different principal quantum numbers. As studied ear-
lier [10], the small difference between the 5snd iD2 and
5snd D3 series at n = 19 results in a large shift of the
respective hyperfine multiplets.

In the calculation of the one-electron matrix elements,
the experimental value of —1001(2) MHz from Ref. [39]
was taken as an a5, factor. The other one-electron matrix.
elements can be well approximated by introducing a5,
and substituting Eqs. (12) and (13) into Eqs. (8)—(10):[pJ = 3) = pi[5snd D3)i,s+ p2[4dn's Ds)I,s.
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FIG. 2. Admixtures of the pure IS states, according to
Eq. (14), to the Gsnd D2 Rydberg series of strontium calcu-
lated with the MQDT parameters from Ref. [30] as a function
of the principal quantum number n.

PEG. 3. Admixtures of the pure IS states, according to
Eq. (14), to the 5snd D2 Rydberg series of strontium calcu-
lated with the MQDT parameters from Ref. [30] as a function
of the principal quantum number n.
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11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

D2

44578.6890
44829.6648
45012.0249
45153.2785
45263.6196
45362.1272
45433.2717
45492.6101
45542.2955
45584.1831
45619.7872
45650.2617
45676.5325
45699.3308
45719.2336

Z (cm-'}
Dy

44616.05
44854.02
45028.55
45159,60
45260.84
45341.36
45414,43
45475.35
45527.10
45570.97
45608.37
45640.43
45668.11b
45692.08
45712.94

3D

44620.08
44s6o. o6
45o36.95b
45171.49
45276.65
45350.35
45420.84
45479.88
4553o. isb
45573.2sb
45610.07
45641.68
45669.O6

45692.90
45713.50

D3

44625. 1
44865.22
45043.79
45180.44
45286.53
45370.76
45439.08
45495.02
45542.23
45582.38
45616.80
45647.54
45673.10
45695.94
45715.80

Reference [35],
Reference [36].
Calculated value from Ref. [37].
Reference [30]~

Reference [38].

TABLE II. Level energies of bound 5snd D2, Dy, D2, and D3
states of Sr I (cf. Fig. 4).

values of the fine-structure components were used for the
5p and 4d orbits. For the quadrupole moment of s7Sr,
we used the value of 0.335(20) x 10 2sm2 from Ref. [40],
and for the dipole moment pl = gII = —1.089299(1)p~,
reported in Ref. [41]. The matrix elements in Eqs. (17)—
(19) were then introduced into the expressions listed in
the Appendix to yield the energy splittings.

The results of the calculations are shown in Fig. 5.
The second-order contributions of the electric quadrupole
interaction are less than 1kHz and will be neglected
here. It should be emphasized here that the Erst-order
electric quadrupole contributions are approximately 100
times smaller than the second-order magnetic dipole con-
tributions. The second-order contribution of the mag-
netic dipole interaction in the 5819d D2 state is not
shown here because of the small energy separation to
the 5s19d Ds state (= 2GHz). In that particular case
the contributions to the hfs are large in any higher order,
which means that perturbation theory is no longer ap-
plicable. This is discussed in detail in Ref. [10]. Due to
the strong Fermi-contact interaction of the 58 electron,
the calculated total hfs splittings for these states depend

(E'3/2

«(l+ 1)(t+ —,') «")
2000 — I

1000

3/2

&58

3q a5, 1 Enl
3/2

4aIa'gI /('+l)(t+2) (zs. (19)

According to MQDT, the binding energies of the 5s, 5p,
and 4d orbitals are assumed to be the same as those of the
corresponding 58, 5p, and 4d orbitals in Sr+. The addi-
tional binding energy of the nd, n'8, n"p, or n"'d electron
in a state can be approximately obtained by subtracting
the energy of the inner orbit (e.g. , 5s) from the energy
of the state lp J). The energies of the 5s, 5p, and 4d or-
bits in Sr+ were taken from Ref. [38], where the mean
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FIG. 4. n dependence of the energy differences between
the 5snd D$, 2,3 and the 5snd D2 states of strontium.

Principal Quantum Number n

FIG. 5. Calculated energy contributions to the hyperfine
splitting of the 5snd D2 states in Sr as a function of n (a).
Magnetic dipole interaction in first order, (b) magnetic dipole
interaction in second order (the very large contribution of the
5sl9d D2 is only indicated by the arrow and is discussed in
detail in Ref. [10]),and (c) electric quadrupole interaction in
first-order perturbation theory.
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almost entirely on the ~ixing coefBcients zi and z2 and
on the experimental value of the a5, factor.

V. COMPARISON WITH THE EXPERIMENTAL
DATA

A. HyperBne splitting

In Fig. 6 the calculated hfs splittings are compared
with the experimental data. The isotope shifts of the
experimental data are taken into account by shifting the
centers of gravity of the calculated hyperfine multiplets
to overlap with the experimental ones. Good agreement
between experimental and theoretical data is achieved.
The small deviations of the individual components can
be explained by the fact that the hfs is much more sen-
sitive to the mixing parameters in the expansion of Eq.
(14), especially to zi and z2, than to the energies of the
states which are used in the empirical MQDT analysis

(see Ref. [42]). To emphasize this point we have done a
least-squares fit of the theoretical line positions for each
state by varying the center of gravity of the multiplet
and the mixing coefFicients zi and z2 under the condition
z& + z2 ——const. With only small changes of the mixing
coefFicients, which cause large effects on the hfs splitting,
one can obtain perfect agreement between experimental
and theoretical line positions, as is shown in Fig. 7. The
optimized mixing coeKcients differ very little from the
MQDT mixing coefBcients except near n = 15, as can be
seen in Fig. 8 and Table III. Therefore, in the following
discussion it is suflicient to use the MQDT mixing coef-
ficients for the description of the main features of the hfs
splitting.

The need for considering second-order effects for the
hfs becomes evident when one tries to separate the mag-
netic dipole and electric quadrupole contributions by fit-
ting the Casimir formula (which contains only first-order
effects) to the measured and calculated hfs splittings.
This is shown in Figs. 9(a) and 9(b) and is listed in Ta-
ble IV. At the first glance excellent agreement between
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FIG. 6. Comparison between the measured and calculated
(in second order) hyperfine splitting of the Ssnd D2 states in

Sr. The isotope shift is taken into account by shifting the
centers of gravity of the calculated multiplets for agreement
with the experimental ones.

FIG. 7. Comparison between the measured and calculated
hyperfine splitting of the 5snd D2 states in Sr. Compared to
Fig. 6 the theoretical line positions are optimized by a least-
squares fit of the mi~ing coefBcients zz, zz, and the center of
gravity of the multiplet.
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experiment and theory is obtained. However, the large
t B in Fi . 9~b~ does not describe the electric

cond-quadrupole interaction and reflects mainly the secon-
order contribu ion o'b t' f the magnetic dipole interaction.
The contribution of the quadrupole interaction is very

deed and is determined by the admixture of the

'd d to firstthe electric quadrupole interaction is considered
order only.

B. Isotope shift

11
12
13
14
15
16
17
18
20
25

Z]

0.971(3)
0.966(5)
0.956(2)
0.923(2)
0.86(3)
0.81(4}
0.88(2)
0.943(6)
0.9667(9)
0.9847(2)

(a)
Z2

-0.09(2)
-0.14(3)
-0.195(9)
-0.309(6)
-0.46(5)
0.54(7)
0.44(3}
0.29(2)
0.220(4)
0.152(1)

zl
0.9732
0.9613
0.9540
0.9226
0.8252
0.7560
0.8771
0.9282
0.9614
0.9808

(b)
Z2

-0.0651
-0.1658
-0.2024
-0.3111
-0.5090
0.6174
0.4400
0.3361
0.2426
0.1753

TABLE III. Mixing coefBcients zy and z2 or tz or the 5snd D2 Rydberg
series of Sr I see q. a ca[ E . (14)j (a) calculated with the MQDT parameters

in of the theo-from Ref. [30] and {bl optimized by least-squares fitting o
retical line positions (see also Fig. 8).

Th '
fl nce of the second-order efI'ects on the IS can

plot procedure (see Ref. [43j) can be used for testing e
f th IS measurement in two transitions. t

allows the separation of the specific mass and t e e
shift of a transition, provided the specific mass and the
field shift are known for a reference transition. In a ing

plot, the mo 1 ed'fi d IS ~ ' of a transition i between two

is plotted against the modified IS ( ' of the reference

shift multiplied by the factor m~m~ /(m~ —m~), w ere
m~ and m~ are the masses of the isotopes:
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I
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I I I I ~ II I I I ~I I I I
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Principal Quantum Number n

FIG. 8. Comparison between the mixing coefficients zq

and z2 of the 5snd D2 states in Sr calculated with the MQDT
parameters from Ref. [30j and optimized by least-squares fit-
tin with the experimental hfs splitting. The error bars es-
timate the uncertainty in calculating the mixing coefficients
from the MQDT parameters.

Principal Quantum Number n

FIG. 9. H erfine structure constants A andand B for theyp
5snd D2 states in Sr as a function of n (see Table IV. In
a) and (b) A and B are determined by fitting the Casimir

formula to the measured and calculated line positions. (c)
heoretical prediction for B in first order. It s ou eld be noted

that the constant B in (b) does not reflect the amount of the
electric qua rupo ed l interaction but rather the second-order
magnetic contribution.
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TABLE IV. A and B constants and centers of gravity for the ssnd Dg states of "Sr determined by fitting
the Casimir formula to the measured and calculated line positions [see Figs. 9(a) and 9(b)]. The theoretical line
positions are calculated with the mixing coefBcients obtained from the MQDT parameters given in Ref. [30]. It
should be noted that the isotope shift is not taken into account for the theoretical values (Av& ).

i1
12
13
14
15
16
17
18
20
25

A (MHz)

-26.855 (20)
-67.895(57)
-82.605(26)

—125.217(37)
-194.02(18)
157.248 (34)
139.542(28)
115.29(13)
91.067(11)
67.954 (69)

Experiment
B (MHz)

4.49(57)
3.ss(is)
6.59(so)

24.01(79)
-75.0(32)
14.85 (75)
18.64(61)
45.96(43}

-so.62(2s)
-17.12(24)

(R —R ) (MHz)

-111.72(15)
-114.21(10)
-112.43(16)
-119.22(24)
-80.70(99)

-121.80(21)
-126.13(17)
-iso.29(13)
-29.so(io)
-56.78(10)

A (MHz)

-36.06
-55.50
-79.39

-124.50
-177.56
152.84
139.57
103.66
83.65
59.36

Theory
B (MHz)

2.2
3.2
5.6

23.1
-77.4
15.2
22.5
48.2

-47.1
-12.6

(Av ) (MHz)

-4.48
-6.11
-7.56

-13.96
22.74

-16.36
-22.54
-48.68
71.22
47.38

mA. mA'=bv, ' —me&i ~

mA~ mA
zero without second-order effects), the data fit a straight
line with excellent agreement.

0.5

0.4

~: uncorrected

a: corrected

0.3—
N
Z

0.2 88—84

—86 86-84

0. 1

0

0.05 0.1 0.15

(THz LJ)

88—87

I

0.2 0.25

Here m, is the electron mass and v, the transition energy.
In a King plot the points for different isotope pairs should
lie on a straight line.

For the transitions 5s So —+ 5snd D2 in Sr I this is
true only for the even isotope pairs. As an example, Fig.
10 shows a King-plot for the transition SrI 58 So ~
5817d 'D2. The transition SrII 58 S1~2 ~ 5p Pi~2 from
Ref. [39] was taken as a reference transition. Obviously
the points involving the odd isotope s Sr (which are cal-
culated using the center of gravity of the experimental
hfs splitting listed in Table IV) are far off the linear de-
pendence of the even isotope pairs. This effect was also
noticed in Ref. [18] for ytterbium, where the deviation
from a straight line was taken to determine the magni-
tude of the second-order contributions. If one corrects
the experimental IS of the Sr for the second-order con-
tribution to the shift, represented by the center of gravity
of the theoretical hfs splitting listed in Table IV (which is

VI. SUMMARY

Higher-order contributions to the hfs and to the IS
have been studied for Sr 5snd D2 states in the range
11 & n & 25. An enhanced accuracy, compared to pre-
vious experiments, made it possible to identify second-
order magnetic dipole contributions to the hyperfine
splitting and shift.

In parallel the hfs was calculated in second order pertu-
bation theory using MQDT wave functions. We demon-
strate that the knowledge of second-order contributions is
important for the determination of the quadrupole split-
ting and the IS, even when the fine-structure separation
is large compared to the hfs splitting. Neglecting the
second-order contributions in the hfs analysis of the ex-
perimental data leads to unrealistically large quadrupole
factors in the Casimir formula as well as to erroneous
positions of the centers of gravity which do not give the
correct IS.

In the investigated region of n of the 5snd D2 states, it
was shown that the second-order magnetic dipole contri-
bution to the hfs splitting is near n = 15 up to 100 times
larger than the first-order electric quadrupole contribu-
tion, which is determined by small admixtures of doubly
excited states. Because of the dominance of the second-
order magnetic dipole contributions it was not possible
to make any reliable predictions, based on experimen-
tal data, about the admixtures of doubly excited chan-
nels into the wave function of the 58nd D2 states that
could significantly improve the results of a MQDT analy-
sis. Evaluating the IS from the Sr spectrum, corrected
for the second-order contributions of the hfs to the shift,
leads to a value consistent with a King plot analysis.

FIG. 10. King plot for the two-photon transition j; Sr I
Gs So —+ 5s17d D2, The values for the reference transition
i: Sr II 5s Sq7z ~ 5p Pq7z are taken from Ref. [39j. The
shifts for the isotope pairs involving Sr are corrected by
an amount given by the center of gravity of the theoretical
hyperfine splitting listed in Table IV.
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APPENDIX: HYPERFINE INTERACTION MATRIX ELEMENTS

1. Magnetic dipole interaction

(l&laSLJIF~lII„)hlaS'I'I'IS) = (
—1) + + QI(1 + 1)(2I + I) ( I I, I )

2

x l, l,SLJ ) «[l(') —~iO(s(') x C('))(')]+a, e,, ,s(') l, l,S'I,'J' (A1)

2

l, l SLaJ ) ai ll' lil S'aI'I' =(—1) + + '+'1J(2J+ 1)( 2J+ 1)(2L+ 1)(2I'+ 1) (i=&

x (ai, )(—1) 1I 1|(l& + 1)(2li + 1) L, 1 1 j
+(aa)(—1) /la(4+1)(2la+1) (L 1 1 IS',S',I /21 (A2)

2

l)l2SLJ ) a[, (s x C )) '
lyl 2S'L' J'

t +l2
'SS'i'

= (—1) '+ ' Q(2J+ l)(2J'+ l)(2L+ l)(2L'+ 1)(2S+ l)(2S'+ 1) 2, g
2

& I L'2S'21

x («, )(—1)'+' (lillc"'Ills) L l, 2
+ («.)(—1)'+'(l~llc"'lll2)

l) l2SLJ ) a, bi,. Os( ) l)l2S'L'J' ( = (—1) + + + Q(2J+ l)(2J'+ 1)(2S+ l)(2S'+ 1)

S JL 2S2x J, S, 1 S, , 1 [(-1) (a„)61, () + (-1) (a„)bt, ]61. I- (A5)

2. Electric quadrupole interaction

(lil2SL JIFlHqllylgS'L' J'IF)

= (-1)'+I+F+i ("+')("+')('+') ' ', l, l,SLJ, q&-,;'C( ) l, l,S'L J4I(2I —i) (A6)

2

l, l,SI,J ~'q) ~, -'C(') l, l,SILIJI
l

= (
—1) + + + '+ *Q(2J + 1)(2J'+ 1)(2L + 1)(2L'+ I) (

x (lt, )(—i)' (l, llc(')lll') LI l 2 + (l„)(—i) (l, llc(' lll') L (A7)
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