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Doubly excited ridge states of atoms are states in which two electrons reach high and comparable ex-
citations. Our goal is to calculate sequences for some of these states by using a wave function that treats
the pair of electrons as a single entity in solving the two-electron Schrodinger equation in hyperspherical
coordinates: R, a, 0». For double escape of slow electrons, the so-called Wannier theory predicts that
the wave function will be concentrated in the region a=~/4, 0»=n (that is, rl = —r2) and we expect
something similar for the ridge states. By expanding the Schrodinger equation around these points and
retaining the first nontrivial quadratic dependences in o, and 0», we seek a solution in which the form of
the wave function in these two variables is analytically determined as in the Wannier theory. The R
dependence of this wave function is then handled numerically and differs from the double-escape solu-
tion only in the exponential decay appropriate for bound states. For L =0 a polynomial in R is includ-
ed, giving the proper number of nodes for the solution. Numerical eigenvalues for autoionizing ridge
states are calculated and compared with available results.

PACS number(s): 31.50.+w, 31.20.Tz, 31.90.+ s, 31.10.+z

I. INTRODUCTION

The understanding of the structure and properties of
doubly excited states of atoms is one of the central prob-
lems in atomic physics today. An important motivation
for their study is that they are prototypes of correlated
systems. Doubly excited states of H and He have been
subjected to extensive study in the past twenty years,
most of it in the language of the independent-electron
model. This model regards each electron as moving in
the combined field of the nucleus and the field of the oth-
er electrons. The total wave function of a doubly excited
state is then taken as a product of two one-electron wave
functions. A single product is normally inadequate, so
that a sum of such products (each one called a
configuration) is taken to represent the wave function.
At high excitations, the number of products of individual
electron wave functions needed increases, making this
description unwieldy and unsatisfactory due to the large
number of configurations that need to be superposed.
Our aim in this paper is to describe a subclass of high
doubly excited states in which both electrons have com-
parable excitation, called doubly excited ridge states [1],
through an alternative procedure which employs "pair"
(two-electron) quantum numbers and a wave function for
the electron pair [2,3]. Experimental data available for
such states are very sparse [4] and conventional numeri-
cal configuration-interaction calculations in atomic phys-
ics are usually limited to a few members of a family of
such ridge states [5,6].

One modification of a multiconfiguration Hartree-Fock
scheme has given energy values in the He and H sys-
tems out to the first ten members counting from below
[7]. Another theoretical approach, which works with
joint coordinates called hyperspherical coordinates of the
pair of electrons, has been applied to study doubly excit-
ed states [8,9]. Even though this approach has been suc-
cessful in classifying such states and studying the nature
of angular and radial correlations, it suffers from limita-

tions of not being free itself from independent-electron
pictures; its numerical calculations, based on an adiabatic
approximation as the starting point, are restricted to low
members of the family. The coupling of hyperspherical
adiabatic channels beyond about 8 makes the numerical
effort prohibitive [10]. A description of doubly excited
states as eigenstates of a diabatical potential [11]has re-
ported the 'S' sequence of resonant states in H and He.
This simple procedure can be extended to high excita-
tions with no difhculties, but its generalization for
nonzero total angular momentum (L) has not been re-
ported yet. A study [12] which liberates itself totally
from the independent-electron picture was applied to the
double escape of two slow electrons, which is the counter-
part of our problem on the other side of the double-
ionization threshold. This study and later elaborations,
which are known in the field as the Wannier theory for
electron correlations, provide the framework for our ap-
proach to high doubly excited states. Our goal is to
derive Rydberg sequences of doubly excited states direct-
ly from the Wannier theory, extending previous studies
[13]. The Schrodinger equation is analyzed with a wave
function for the electron pair, and pair quantum numbers
are used for the description of the correlated two-electron
pair [2,14]. Rydberg sequences of 'S' and ' P' states are
calculated and compared with similar previous calcula-
tions [3] and accurate numerical calculations where avail-
able [7,10,15].

II. TWO-EI.ECTRON SCHRODINGER EQUATION
IN HYPERSPHKRICAI. COORDINATES

The hyperspherical coordinates are defined as

R =(r2+ 2)1/2P'
i P'2

a=arctan(rz/r, ),
H, ~=arccos(r, .r~) .
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where

=Eg, (2)

In atomic units (iii=m, =e = 1) the Schrodinger equation
for the pair is

& + —", C(a, 8, )+
2 Rs/2 BR2 R2

(I.) and spin (S) angular momentum in the Wannier
theory have been fully treated elsewhere [16], and will be
incorporated into our study at the end of Sec. III. But,
for studying the essential features of angular correlations
between electrons, it is sufFicient and advantageous to re-
strict ourselves first to the simplest values, L =S=O.
When all terms in Eq. (5) are expanded in powers of y
and p around the saddle region, we have

C(a, 8,2) =— Z
cosa

Z 1

(1—sin2a cos8,2)'
(3)

B2

BR

1 B 1

R dP 4

A — +
cos a sin a

1 B2
sine cosa —4 .

sinu cosa B~2 +4(1+4P ) +B' 1 y B

By2 y 3 By

A
4

y =~-0,2 .
(4)

In Eq. (2) the expression in square brackets represents the
kinetic energy of the electron pair. As in the single-
electron problem in polar coordinates, where the kinetic-
energy operator is separated into radial and centrifugal
parts (both inversely proportional to the squared radial
coordinate r ), here the kinetic energy of the pair can be
separated into radial and centrifugal parts, replacing r by
R and I by A; A is called the grand angular-momentum
operator.

C(a, 9i2) in Eq. (2) allows us to see radial and angular
correlation aspects independent of R. This potential has
a Aat saddle at ca=~/4, 0&2=~, and drops away from
a=rr/4, having deeping valleys at a=0 and ~/2. The
valleys correspond to very unequal excitations of the two
electrons. Doubly excited ridge states (with E (0), where
both electrons have similar excitations can occur only if
the system stays in the vicinity of the saddle point. One
expects a wave function highly concentrated in this re-
gion to describe such states. This is the motivation for
expanding the potential in Eq. (2) around the saddle, with

——
I ZO+ Z p' —Zey'I +2E p(R, p, y ) =0,2

with

$(R,P, y)=R i (1 2P )P(R—, P, y),
Zo =2&2(Z —

—,
' ),

Z =3&2(Z —
—,', ),

v'2

16

The parameter Zo is an effective charge for the motion in
R, whereas Z and Z & have dual roles as effective
charges (because of the 1/R they multiply) and as
harmonic-oscillator spring constants (because of the p
and y they multiply).

By inspecting the potential in Eq. [13], we see that it
consists of a harmonic-oscillator term (y /R ) and an
antiharmonic-oscillator term (

—P /R ) and a Coulomb
form in R. Based on the ground-state wave function of
the first two potentials and the zero-energy wave function
of the Coulomb potential [13], the solution of Eq. (7)
should be of the form

For states with 'S' symmetry, where I, = l2, Eq. (2)
simplifies to

—+R ( AP +By +C) (10)

B2

BR

1 B 1

B' 4

4
sin 2n sinOi2

B
sin|9)2

12

This form is the key structure in Wannier theory describ-
ing the escaping pair and also will be adopted in the dou-
bly excited ridge state study. The constants 3, B, and C
are fixed through the requirement that all terms involving
1/R are accounted for when Eq. (10) is substituted into
Eq. (7), leaving behind only terms of higher order of
smallness in R

C(a, 8,~)+2 —2E 'P(R, a, 9,~)=0, III. CONSTRUCTION OF THE WAVE FUNCTION

with

P(R, a, 9i2)=R sin(2a)g(R, a, 9,~) . (6)

A. 'S'states

The term C(a, 8i2) is the combined Coulomb potential of
the three charges and P(R, a, 8i2) is a scaled version of
the wave function ll(R, a, 9iz), designed to remove first-
derivative terms in R and in a in Eq. (5). We are using
atomic units and first we will restrict ourselves to 'S
states. Symmetry aspects of other values of total orbital

As a first step in this calculation, we next consider that
the wave function must include a power of R (1—2P ).
This is a phase-space factor introduced for eliminating
first derivatives in R, so that all wave functions have a
multiplicative factor

rir2=R cosa sina=-R (1—2P2) .
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TABLE I. Values of energy of 'S' doubly excited ridge states in H obtained from Eq. (17) (wave
function including a polynomial in R) and Eq. (13) (nodeless wave function) compared with a similar
previous calculation [3] and with accurate numerical calculations [7,15] for manifolds v=4 to 11.

—E; (a.u. )

4
5
6
7
8

9
10
11

Eq. (17)
(with nodes)

0.040 69
0.025 08
0.01698
0.012 24
0.009 24
0.007 21
0.005 79
0.004 74

Eq. (13)
(no nodes)

0.040 26
0.026 08
0.018 02
0.013 11
0.009 94
0.007 78
0.006 25
0.005 13

Ref. [3]

0.032 72
0.021 79
0.015 43
0.01146
0.008 83
0.007 02
0.005 69
0.004 71

Ref. [15]

0.039 64
0.025 70
'0.018 01
0.013 32
0.01028
0.008 13

Ref. [10]

0.039 92
0.026 02
0.018 21
0.013 53
0.01042
0.008 27

The simplest choice, therefore, for a bound state would
build in the above two ingredients and an exponential
falloff. On the other hand, if we consider lower-lying
bound states of two-electron atoms, a reasonable zero-
order wave function is

exp I
—Z'[(r, + r2 ) In ]},

but, as is well known [17], such a function does not give
binding in the negative ion H . One way to proceed to
get this binding is to include explicitly the coordinate r, 2

through, for instance, a factor exp(Ar&z), s,o as to intro-
duce radial correlation between the two electrons.
Translating this structure to the hyperspherical-
coordinate system, we have exp[R(ap +by )] Combin-.
ing, therefore, this structure as suggested by the lower
end of the spectrum with the earlier structure suggested
by Wannier theory for double escape, and, therefore, for
the higher end of the spectrum, we choose as our basic
ansatz:

P(R,P, y)=[R (1 —2P )]' 'e

Xe ~R(AP2+By2+c)eR(aP'+by')

In this expression v is a principal quantum number, con-
jugate to R (just as n goes with r in a one-electron prob-
lem), and Ro is a variational parameter that gives the
effective radial extent of the doubly excited state.

The coefficients 3, B, C, a, and b are Axed analytically
by substituting the wave function given by Eq. (11) into

A =+i (Z ——')+
2 2 2

i &Z 1

4 8 2Ro

1a=
2Ro

1

8R

5

24

17 1

4 Ro
1/2

1/2

(12)

For the range of R o, in which E has a minimum, 3 and B
are imaginary. Using these values, we multiply by g*
and carry out the integration over the three hyperspheri-
cal coordinates, obtaining

( )
4v —1 1

2(4v+1) R~
2Zo 1

(4v+1) Ro

9
16

5 13

(4v —1)(4v+ 1) R 2

the Schrodinger equation expanded around the saddle,
Eq. (7) and canceling consistently all terms involving 1/R
(including terms like P /R and y /R) and P and y,
leaving behind terms in higher power of 1/R. Several al-
ternatives were explored and the best choice is

C=O,

TABLE II. The same as Table I, but for He.

5
6
7
8
9

10
11

Eq. (17)
(with nodes)

0.2215
0.1365
0.0924
0.0666
0.0503
0.0393
0.0315
0.0258

Eq. (13)
(no nodes)

0.2192
0.1421
0.0983
0.0716
0.0543
0.0425
0.0341
0.0280

Ref. [3]

0.1861
0.1226
0.0863
0.0638
0.0490
0.0388
0.0319

Ref. [15]

0.2010
0.1294
0.0903
0.0638

Ref. [10]

0.2012
0.1303
0.0908
0.0675
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g,(R,P, ) )

2v —1= g a(i, )R' +' '(1 —2P )

—R!Ro—+R (AP +By +c)+R(aP +by )Xe
2v —1= g a(i, v)F(i, v), (14)

This expression has a minimum for Ro ———(2v —
—,
' )/Zo.

Evaluation of this minimum for different manifolds is
shown in Tables I and II, for Z=1 and 2, respectively.
These results are compared with accurate numerical cal-
culations [10,15] and with previous similar work [3] that
did not include a and b.

These wave functions are fairly successful for calculat-
ing some of the energies of these ridge states, but the ab-
sence of nodes in the variable R makes them unsuitable
for describing the whole family of states for a given L and
S. This is similar to calculating the energy levels of the
hydrogen atom with only the spectral sequence 1s, 2p, 3d,
etc. , that is, with no nodes in r. Although the energies
are correctly obtained, the wave functions do not de-
scribe the s state sequence of hydrogenic states ns. A
better wave function can be built by including a polyno-
mial in R, of degree 2(v —1), which has the proper num-
bers of nodes for such states.

Maintaining the same angular structure, the improved
wave function is

Equation (17) represents a generalized eigenvalue prob-
lem, where 0 and S are known, and its solution will give
(2v —1) values for F., and their respective a,. The
highest of these eigensolutions is the one which corre-
sponds to the energy of the manifold with principal quan-
tum number v. Its corresponding eigenvector contains
the coefficients for the different powers of R in the poly-
nomial. For each manifold (v), F. is numerically mini-
mized through the variational parameter Ro. The result
of this work is also included in Tables I and II for H
and He, respectively.

B. L =1 states

In dealing with LAO states the complexity increases
both in the structure of the wave function and in the
Schrodinger equation. In this approach of working with
R, p, and y in the saddle, the increased complexity for
the wave function is reduced to the introduction of a mul-
tiplicative factor f(P, y ), acting on the expression given
by Eq. (11). This multiplicative factor gives the symme-
try characteristic of the [L,S,~] state. The study of
these multiplicative factors, in the context of the Wannier
theory, has been done [16] for different symmetries of
continuum states. Similar considerations apply for bound
states because continuum and bound states share the
same angular and spin behavior. For symmetries of in-
terest to us, the factor f(p, y ) is [3]

with

—R jRO —+R ( AP +By +C)+R(aP +by )Xe (15)

1 for P'(3 =+)
y for 'P'(A =+) and P'
P f 'P'(A = —)

f(R, )= '

Py for 'P' and P'( A = —
) .

(19)

where 3, 8, C, a, and b are determined analytically, in
the same way as before, to satisfy the leading 1/R depen-
dences in the Schrodinger equation. For this new form
g,(R,p, y) in Eq. (14), it is not possible to get a simple
variational expression for E (Ro) like the one given by
Eq. (13) in the previous step. For solving the eigenvalue
problem

With regard to the modification of the two-electron
Schrodinger equation for non-L =0 states, the mixing of
the Euler angles with the coordinates r, , ~2, and 0,2,
leads to extra terms in the Schrodinger equation (5). This
extra contribution to the Schrodinger equation in the sad-
dle region has been calculated by Wong [3] and he re-
duced it to an additional term C3/R in Eq. (7), with

HP (R,P, y)=E, Q (R,P, y), (16)

it is necessary to evaluate the a(i, v) values in the polyno-
mial. This is done by transforming the eigenvalue prob-
lem of Eq. (16) into a generalized eigenvalue problem, ex-
panding g (R,P, y) in terms of F(i,v), multiplying by
F*(j,v), and integrating,

C3 = —4(1 —4p ) +—1 1

2 3
for P'

C3 =4(1—2p+4p ) ——— —12 1 y B

3 By

(20)

Hg„(R,P, y)=E g (R,P, y),
2v —1 2v —1

g H(j, i)a(i, v)=E g S(j,i)a(i, v),
(17)

+4(1+2P+4P ) —+—2 1

y 6 By

«r P'( & =+) and 'P'( A = + ) .

with

H(j, i)=(F(j,v), HF(i, v))= JF*(j,v)HF(i, v)dr,
(18)

S(j,i ) =(F(j,v), F(i,v)) = fF*(j,v)F(i, v)dr .

The extension to non-L =0 states can be accomplished by
adding the above term, given by Eq. (20), to the two-
electron Schrodinger equation [18], modifying the L =0
wave function by the multiplicative factor f(P, y ), given
by Eq. (19), and proceeding with the same methodology
used in the 'S' calculation.
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IV. RESULTS AND DISCUSSION

[2&2(Z —
—,
' —cr ) ]'

2(v+ —,
' —p)

(21)

Sequences of ridge states calculated with these pair-
basis wave functions are presented in Tables I—IV where
they are compared with available results. In Fig. 1,
E ' is represented as a function of v for states 'S' and' P'( A =+ ) for H . This graph shows that these ener-

gy values conform well with the six-dimensional Rydberg
formula that has been suggested for the Wannier ridge
states [19],

thereby providing a theoretical justification for this for-
mula and a physical significance for o. which is seen to
rellect the P and y dependences in Eq. (7).

For 'S' states, we have calculated these sequences
twice. The first one, with a nodeless wave function in R,
is a simple calculation that gives us an analytical expres-
sion, Eq. (13), for the energy as a function of the principal
quantum number (v). Thus, the energy for doubly excit-
ed states with high v values can be evaluated with no ex-
tra complications. This advantage is shared with Wong's
calculation [3], which is similar to ours but does not in-
clude the exponential term e '~ + ' and has a different
selection of the constants 3, B, and C generating energy
values less deep than ours. Our results in the second cal-
culation, when we introduce the polynomial in R, shows

TABLE III. Values of energy for L =1 doubly excited ridge states in H obtained from equations
equivalent to Eq. (13) for each symmetry and compared with previous similar calculations and accurate
numerical calculations.

4
5

6
7
8

9
10

This work

0.0352
0.0234
0.0165
0.0122
0.0093
0.0074
0.0059

Ref. [3]

'P'( A =+)
—E (a.u. )

0.0332
0.0224
0.0160
0.0119
0.0092
0.0073
0.0059

Ref. [15]

0.0372
0.0246

Ref. [10]

0.0374
0.0246
0.0174
0.0130
0.0101
0.0080

4
5

6
7
8

9
10

'P'( A = —
)—E, (a.u. )

0.021
0.015
0.012
0.009
0.007
0.006
0.005

0.0104
0.0081
0.0067
0.0055

4
5
6
7
8

9
10

P'( A =+)
—E (a.u. )

0.028 85
0.0193
0.0138
0.0103
0.0080
0.0064
0.0052

0.03251
0.02163
0.01538
0.01141
0.00881
0.00699
0.00056

4
5
6
7
8
9

10

P'(A = —)
—E. (a.u. )

0.0242
0.0181
0.0138
0.0107
0.0084
0.0068
0.0056

0.03228
0.02150
0.01526
0.01132
0.00876
0.00695
0.00566



QUINTIN R. MOLINA 47

good agreement with elaborate calculations —assumed
the most accurate calculations available [7,15]. In this
calculation, the energies for each manifold are obtained
through the solution of the generalized eigenvalue prob-
lem, given by Eq. (17). Here we calculated the simplest
cases (L =0, 1) as a part of an attempt to provide a new
basis for calculating pair ridge states. In the future, to
continue with this study we must extend similar calcula-
tions to other states with higher angular momentum
(L ) 1) and we have to improve the wave function, in the
same way as we did for zero angular momentum, intro-
ducing a polynomial in A as a part of the structure of the
wave function. With a more reliable wave function and
having extended these calculation to states [L,S,~I in
general, we can then expect to calculate matrix elements
of the electric dipole operator between the pair wave
functions to obtain transition rates between these states.

We have developed a consistent pair description of
doubly excited states, as states converging to the double-
ionization limit. There is fairly good agreement between

0
4 10 12

FIG. 1. The inverse of the root squares of the energy (E '
)

of doubly excited ridge states in H is represented as a function
of the principal quantum number (v) for several symmetries:
[A ='S', X='P'(A =+), CI='P'{ A =+ )].

TABLE IV. The same as Table III, but for He.

4
5
6
7
8

9
10

This work

0.1915
0.1274
0.0898
0.0663
0.0508
0.0401
0.0324

Ref. [3]

'P'(3 =+)
—E. (a.u. )

0.1887
0.1268
0.0892
0.0661
0.0508
0.0401
0.0324

Ref. [7]

0.1948
0.1267
0.0890
0.0659
0.0507
0.0402
0.0327

4
5

6
7
8

9
10

'P (W= —)—E (a.u. )

0.113
0.084
0.064
0.050
0.040
0.032
0.027

0.0439
0.0422
0.0325
0.0287

4
5

6
7
8
9

10

P'( A =+)
—E (a.u. )

0.1571
0.1050
0.0750
0.0562
0.0436
0.0439
0.0285

5

6
7
8
9

10

P'(3 = —)—E. (a.u. )

0.1316
0.0987
0.0749
0.0580
0.0459
0.0370
0.0304
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our results and elaborate numerical calculations at low
excitations. Our study was not designed to compete in
numerical accuracy with these calculations, but rather to
develop a different basis based on a pair description,
which becomes more appropriate at high excitations for
ridge states. Conventional numerical calculations are
much more quantitatively accurate at lower excitations,
but cannot be readily extended to higher states because of
an explosion in the number of configurations that need to
be included. The pair description is adapted to describ-
ing this region near the double-ionization limit because it

explicitly builds in analytically the angular and radial
correlations that dominate in this limit.
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