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Quantum interference and determination of the traversal time
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The tunneling-time problem is shown to be analogous to the interpretation of the two-slit interference
experiment. A measurement assuming an arbitrarily small interaction between a particle and a clock is
shown to contradict the uncertainty principle and leads to complex times. A real non-negative traversal
time is obtained in a measurement which selects Feynman paths that spend in the barrier a known
amount of time; this, however, strongly perturbs the tunneling. The Larmor clock demonstrates both
types of behavior.

PACS number(s) 03.65.—w, 73.40.Gk

I. INTRODUCTION

The question "Can one determine the amount of time w

a quantum particle spends in a specified region of space
0?" remains open, despite having been discussed for
more than five decades (for reviews, see [1]). Quantally
the traversal time, like every other quantity, should be
described by a wave function, i.e., the amplitude distribu-
tion for its possible values ~. In this paper we show that
its measurement obeys the usual quantum rules based on
the uncertainty principle. We also show that previous at-
tempts to determine the traversal time have contradicted
the principle, which have led to the present confusion
about its status. Consequently, the solution to the
tunneling-time problem is not to be found in seeking an
"ultimate" candidate for r [1]; rather the answer lies in
the procedure used to quantize classical time parameters.

II. UNCERTAINTY PRINCIPLE

We require Feynman's formulation of the uncertainty
principle ([2], p. 9). Suppose a quantum system can reach
a known final state %F via several routes. Let f;,
i =1,2, . . . , be the probability amplitude for taking the
ith route. Two situations can arise.

(i) If no observation is made on the system, the routes
are interfering alternatiues ([2], pp. 13 and 14). In this
case, the particular route the system has taken is not
known, while the probability to arrive in the final state is
given by Pz =

~ g, f, ~
.

(ii) If one determines unambiguously how the system
reaches the final state, the routes become exclusive alter-
natiues and the ith route occurs with probability

~ f; ~
.

However, P~ =g, ~ f, ~
is then no longer equal to

~ g, f, ~, because observation disturbs the motion ([2], pp.
13 and 14).

The principle applies to any physical measurement. As
an example required later, consider the measurement in a
two-slit diffraction experiment of a quantity n, which
equals 1'if the particle goes through the first slit, and 2 if
it goes through the second one. For case (ii), the mean
value of n,

&n ) =(1lf g
I'+2lfpl')/( If g

I'+ lf, I'),
is directly related to the probabilities for going through
each slit. For case (i), if we evaluate the average

n =(lf )+2f2)/(f )+f2)
then we find that n is in general complex valued, and in
accordance with the uncertainty principle, cannot be
used to predict which slit the particle will go through.

III. AMPLITUDE DISTRIBUTION
FOR THE TRAVERSAL TIME

Consider the traversal time, defined classically as

t:,'[x(t)]=f 'e.„( (xt))dt,

where B,(y) =1 if x ~y ~z and 0 otherwise, and x (t) is
the trajectory. A quantum particle starting at t, in some
state %t reaches at t2) t, a final state %F= ~%) through
a continuum of "routes, " each route consisting of all
Feynman paths with t,'6[x (t)] equal to a given value r.
We assign to each route (each r) an amplitude, by using
the traversal time amplitude distribution tr, b(% r~%t)
given by [3,4]

cr., (%~r~4t)=f(X~%t) ' fdx, fDx( )f dx, %'„*(xz)5(t.b[x( )]—r)exp[iS[x( )]/A']%, (x, ),

where

f(Nl+t) = f dx2 fDx( )f dx, %~(x2)

X exp [ iS [x ( ) ] /fi ]

X+t(xi )

I

and 5(x) is the Dirac 5 function, S[x(.)] is the classical
action, and %&(x)= (x

~
X ) . It follows from Eq. (3) that

the amplitude to reach %F and spend in [a,b] a net time
between ~ and ~+A~ is

f(&
I +t ) f"tr., (&lr'I q', )dr' .
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Note that o,b(NI&I'pt) is in general a complex-valued
function which vanishes for ~ outside the interval
[O, t2 —ti], because no Feynman path can stay in [a,b]
longer than the total duration of motion, t2 —t, [3,4].
We will also assume for simplicity that o, b( Nlrl@1) is a
smooth function of ~.

IV. INDIRECT MEASUREMENT
OF THE TRAVERSAL TIME

The uncertainty principle immediately tells us that
nothing can be said about the actual amount of time
spent in [a,b] unless the particle is restricted to taking
paths with a known value of t,'b[x (t)]. This, however,
would perturb its motion (see below). One can try to
avoid this difficulty, e.g. , by adding to the potential V(x)
in which the particle moves an arbitrarily small term
A,e,&(x), and then extracting information about the
traversal time from the perturbed amplitude fi (N

I %t ).
For the perturbed action, we have

S„[x(t)]=S [x (t)]—At,'„'[x (t)],
and we find

f),(NI+t )
=f(NI%'I )[1 iArlfi+—O(A )],

where

;—= f' (4)
0

is the first moment of o,b(NISI%'t ), being analogous to n

in Eq. (2).
Observables can be calculated from fi (NI%'I ). Com-

paring their values with and without the perturbation al-
lows one to determine ~. The price to be paid for making
the interaction between the particle and measuring device
arbitrarily small is that the indirect measurement result ~
is in general complex valued, rather than a real time in-
terval [3—5].

V. DIRECT MEASUREMENT
AND PROBABILITY DISTRIBUTION

FOR THE TRAVERSAL TIME

We now define a direct measurement of the traversal
time as follows: If the result of the measurement lies in
an arbitrarily narrow interval [r,r+«], the particle is
restricted to taking paths for which t,b[x (t)] lies within
the same range. Equivalently, we assume that the
measuring device acts as a "slit" on the traversal time
scale, excluding all routes except one (for the meaning of
an individual Feynman path, see [6]).

Let us divide the whole ~ coordinate into arbitrarily
narrow intervals [ k, rk+r«] where rk =k b, 7 and

k=0, +1,+2. . . . Since difterent intervals are now ex-
clusive alternatives, the normalized probability distribu-
tion w(N Irl+I) for the result of a direct measurement of
the traversal time is given by

(«) 'P(N
I rk, r&+ ~rl +, )

w(N Irl@'t )
—= hm

P(NIr„, rk+ b 7I %t )

(5)

where
,
2

o.g(N lr'I iI', )dr'P(NI&, &+a&I+, )= f(NIq, ) f
7

Replacing the sum in Eq. (5) by an integral, we obtain

w(NIrlqiI) =
f l~. (Nlrl+, )I'«

From Eq. (6), the expectation value of the traversal time
in a direct measurement ( r ) is given by

(r) —= f '
'rw(NIMBI+, )dr, (7)

0

which is analogous to ( n ) in Eq. (1). In accordance with
the uncertainty principle, we have obtained a non-
negative probability distribution for ~ by introducing a
measuring device which destroys the interference be-
tween paths with different t,'b [x (t)].

VI. CONSERVATION OF PROBABILITY
IN A DIRECT MEASUREMENT

The probability to find the particle in some final state
and have some measured value of the traversal time must
equal unity. More formally, let the final state IN ) belong
to a set of states I IN ) ] which form a complete orthonor-
mal basis in Hilbert space. Then, we must verify that

P: lim g P(NIrk, rk—+baal%'Ii=1 .
5~~0 k ~

Proof. It has been shown in [4] that cr, l, (N
I
r

I
iIII ) can

be written as

~.,(Nlrl~, )=[2~f(Nle'&)] '

xf" exp(iA. r)(NIUi(tz, t, )l+t )dA, ,

(9)

where (NIU&(t2, t, )l+t) is the matrix element of the
evolution operator for the potential V(x)+fiA,e,b(x).
Inserting Eq. (9) into P, integrating over the time vari-
ables, and using the closure relation g& I

N ) ( N
I

= 1, we
find

P= lim (2') f dA, f dA, '(A, 'A, ) [exp( —iA«) —1][exp(iA.'«) —1]
6~~0 oo oo

X (Oil Ui (t2, t, )U&. (t2, t, )I+i) g exp[i(A, ' —
A. )rk] .

k= —oo
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As 6~~0, the sum on the right-hand side tends to
2ir(hr) '5(A, ' —A, ) and then we find, as promised,

2 i (XS~/2)P= llm
2b,~~0 77Av

2
~~

U

0

VII. LARMOR CLOCK
AS A MEASURING DEVICE

We now show that direct and indirect measurements of
the traversal time can be realized in practice by means of
a Larmor clock [1,5,7,8]. This consists of a spin with

uniniform magnetic field H, when the particle is inside
[a,b]. Consider the transition amphtude f(I3,N l a,
between the states

z l(t2 — ti )

FIG. 1. Imaginary part of F "(n
l ag, co, w) for

co =0.02m//(t2 —t
& ), j= 10, n = —5 (dashed) and

F "
( "ly;j,co, r! for co=2m/(tz —t, ), j=10, k =5 (solid) vs

7 /( t2 t
&
). The main contribUtion to F (g p J' co 7 c'

co ~ comes
from the hatched peak.

la, iItt ) = g a lm ) f blitt(x)lx )dxI= J

at t = t, and /3, X ) at t = t2 where jim, ) =Am
l
m ) and

a = ( m
l
a ) . Since for a spin in state

l
m ), the particle

encounters an additional potential [7] A'mcoe, b x, where
co is the Larmor angular velocity, we obtain using the in-
verse of Eq. (9)

J
f(p, +la, pit )= g p* a (+lU (t2, ti )lQt

m= —J

=f(&l+t)f0

XF(Pl aj, co, r)d r,
(10)

where P =(m lP) and

J
F(plaj, co, r) = g p* a exp( imcor) . —

tel = J

Equations (10) and (11) define the Larmor clock as a de-
vice for measuring the traversal time. Note t at
o., (b% lr'lIt)t is the amplitude distribution in the absence
of the clock, while the weight F(f3l aj, co, r) depends only
on the parameters of the clock.

VIII. BAZ' READING OF THE LARMOR CLOCK
AS AN INDIRECT MEASUREMKNT

OF THE TRAVERSAL TIME

In the method originally proposed by Baz', and subse-
uently used by other authors [1,5,7], the spin at t =ti isquen

~ ~

totally polarized along the x axis, so that
&
~„'

am = I(2j)!/[2 J(j+m )!(j—m)!]]'

In addition, the field directed along the z axis is assumed
to be arbitrarily small, m~0.

Let lP) = ln ). From Eq. (11) we have

limFB" (n la;j, co, r) =a„[1 incor+0(co —)] (12)

so that, as shown in Fig. 1, all values of ~ inside the inter-

val [O, t2 —t, ] contribute to the integral (10). Inserting
Eq. (12) into Eq. (10), one finds after standard manipula-
tions [1,5,7] that

(j~)/Aj =coRer+0(co )

(g, ) /Ag = co ImÃ+ 0 (co ),
where ( j~ ) and (j, ) are the mean projection of the y
and z components of the spin, respectively. (Note that
co (0 when comparing with [1].) Thus the Baz' pro-
cedure is an indirect measurement of the complex-valued
average time ~, leading to a determination of Rex and
Im~.

IX. PERES-FODEN-STEVENS (PFS) READING
OF THE LARMOR CLOCK

AS A DIRECT MEASUREMENT
OF THK TRAVERSAL TIME

We now show that a Larmor clock can act as a "slit"
for the r coordinate, projecting [as a measurement re-
quires ([2], p. 106)] o., (bX lrCl' )tonto a state localized on
this coordinate. Following [8], we use orthonormal states
ly ), k=0, . . . , 2jwith

y" —= (mly") =(2j+1) ' exp( —i/km ),
and Pk=2nk/(2j+ I) to describe the clock. From Eq.
(11) for co )0 we have

F "(y"ly;g, co, r)=(2j +I)
sin[(2j + 1)(gk —cor) /2]

X
sin[(Pk —cow) /2]

For large j, the right-hand side of Eq. (13) is sharply
peaked around r=r„=(Pk+2ttn)/co, n ==0 +1 +2, . . .
with the base width approximately 4'/[co(2j +1)], as
shown in Fig. 1. In the limit j~ oo, for finite co we have
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lim Fp"s(y"Iy';j, co, r) =
J~oo

2'(2j + 1) ' g 6(cow P—k
—2srn ) if j=integer

2m(2j+1) ' g ( —I)"5(cow Pk
—2—em) if j=half integer .

(14)

The interference between paths with traversal times
differing by an integer number of Larmor periods can be
excluded by choosing co =2'/(tz t—, ). Then, in the limit

j~ ~, the probability

P(Xly, y+dyl+, )

2J

ep, /+ de( 0k ) If(r"»I7
' +r ) I'

k=0= lim
2J

I& =0

for the clock to be in the small interval P /co to
(P+d(b)/cboecomes, with the help of Eqs. (11) and (14),

Identifying P/co with r, we find that Eq. (15) is equivalent
to the direct measurement result (6). Thus a direct mea-
surement of the traversal time can be performed with a
Larmor clock in its classical limit j—+ ~,jr'~ ~.

X. CONCLUSIONS

The problem of quantizing the classical traversal time
t,'b[x (t)] has been solved. We did not have to invoke, as
has been suggested in Refs. [9,10], nonstandard interpre-
tations of quantum theory. We have shown that one can-
not determine the time spent by a tunneling particle in
the barrier region without perturbing its motion, for the

same reason that one cannot determine which slit a parti-
cle goes through without destroying the interference pat-
tern. Various recent candidates for the duration of tun-
neling, such as Larmor times, and the closely related
Biittiker-Landauer and phase times [1], can be obtained
from a complex time r [11]and are therefore results of in-
direct measurements. Consequently, although they are
real and have a limited physical significance [11], one
should not take them as actual tunneling times, just as
Ren, Imn, or In in Eq. (2) cannot be used to label which
slit the particle actually goes through. In contrast, a long
sought real non-negative traversal time ( r), analogous to
the conventional expection value of a dynamical variable,
e.g. , (x) = f xI@(x)I dx, or (n ) in Eq. (1), is ob-

tained in a direct measurement. However, a direct mea-
surement perturbs the particle's motion to such an extent
that an analysis of the tunneling through the unperturbed
potential no longer applies. Our approach is also valid
for time parameters which are represented classically by
functionals other than t,'b[x (t)]. Thus we conclude that
the concept of classical time scales cannot simply be ex-
trapolated to the quantum case, in particular for the case
of tunneling. Finally, we emphasize that arsy search for
an "ultimate" tunneling time will encounter the same
difficulties that arise in attempts to understand the two-
slit diffraction experiment without invoking the uncer-
tainty principle [2].
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