
PHYSICAL REVIEW A VOLUME 47, NUMBER 6

Loss of coherence in interferometry

JUNE 1993

S. M. Tan and D. F. Walls
Department of Physics, University of Auckland, Auckland, Nehru Zealand

(Received 2 December 1992)

We present a united treatment of a number of double-slit experiments which give "which-path"
information. The loss of coherence is described by a random-average model over basis states of the
path detector. While the precise physical mechanism depends on the choice of the detector basis,
the random-average model shows that the loss of coherence may always be described in terms of
a stochastic disturbance to the system due to coupling with the path detector. The possibility of
quantum erasers is shown to arise naturally from an appropriate choice of detector basis.
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I. INTRODUCTION

Young's double-slit experiment provides perhaps the
simplest example in which the coherent addition of
quantum-mechanical amplitudes leads to interference.
When a "which-path" detector is introduced in order to
monitor which slit the particle passes through, the prin-
ciple of complementarity states that the interference is
necessarily destroyed. The detection of path information
necessarily involves an interaction which couples the par-
ticles to the detector. It is convenient to call the particles
and the double slit the "system" and the path detector
the "environment" to which they couple.

Elementary considerations (summarized in Sec. II)
show that the degree of coherence loss depends on the in-
ner product between the states of the environment which
couple to the two possible particle paths. In particu-
lar, if the environment states are orthogonal, these paths
are perfectly distinguishable and all interference is lost.
From the point of view of the system, however, it is nat-
ural to view this destruction of interference predicted by
the complementarity principle as a "disturbance" intro-
duced by the coupling to the environment. Indeed Stern,
Aharonov, and Imry [1] state that the eKect on the sys-
tem may always be regarded as a randomization of the
interfering particle's phase and they rewrite the degree of
coherence loss as an expectation value of the form (e'~)
where the average is taken over some probability density
function P(P) for this random phase.

Various schemes have been proposed as path detec-
tors for the double-slit experiment, including Einstein s
recoiling slit [2, 3] in which the momentum imparted to
a slit placed in front of the double slit is measured and
Feynman's light microscope [4] in which the detector is
light scattered from electrons going through a double slit.
In Feynman's discussion of the double-slit experiment, he
concludes that "Ifan apparatus is capable of determining
which hole the electron goes through, it cannot be so del-
icate that it does not disturb the pattern in an essential
way. No one has ever found (or even thought of) a way
around the uncertainty principle. "

The involvement of the uncertainty principle and the
idea of random dephasing has led to the idea that the dis-
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FIG. 1. Double-slit configuration with micromaser cavi-
ties as path detectors.

turbance on the system is somehow uncontrollable. Re-
cently, a proposal has been made which is said to circum-
vent this limitation, which is able "to obtain which-path
or particlelike information without scattering or other-
wise introducing large uncontrolled phase factors into the
interfering beams" [5]. As shown in Fig. 1, the interfer-
ing particles are Rydberg atoms which are initially ex-
cited by a laser beam. An empty micromaser cavity is
placed in front of each slit and the interaction time is
adjusted so that it is certain that the excited atom de-
excites, leaving a photon in the cavity through which
it passes. Calculations of the effect of a single micro-
maser cavity on an excited atom [6] show that there is
no change in the center-of-mass momentum of the atom
and only a small change in position when the atom passes
through the cavity. It is concluded on the basis of this
that "the question of how the principle of complemen-
tarity is enforced must then be readdressed" since "it is
simply the information contained in a functioning mea-
suring apparatus that changes the outcome of the ex-
periment, and not uncontrolled alterations of the spatial
wave function, resulting from the action of the measuring
apparatus on the system under observation. " As further
evidence of the lack of uncontrollable scattering events,
it is then shown that a quantum eraser can be devised
which allows an interference pattern of high visibility to
be extracted from within a featureless pattern if a suit-
able measurement is made on the path detector which
erases the path information. This is said to be a special
feature of this new configuration, since "if we considered
the coherence to be lost because of a random scattering
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or other stochastic perturbations, this question (of the
possibility of a quantum eraser) would never come up. "

In this paper we shall present a unified treatment of a
variety of configurations designed to illustrate the com-
plementarity principle and demonstrate their underlying
similarities. We show that although the degree of coher-
ence loss can always be calculated abstractly in terms of
inner products of environment states, it is always pos-
sible to construct many random-average models for the
process in which the final interference pattern is always
expressed as a stochastic average of conditional patterns.
The multiplicity of models arises from the different ways
in which one can choose to describe the path detector or
environment. If we do not measure the final state of the
path detector, it is necessary to average over the con-
ditional interference patterns and all of the alternative
models yield the same result for the final pattern. This
is a stochastic average insofar as the final state of the path
detector can only be described probabilistically. On the
other hand, if the path-detector state is measured, it is
possible to correlate this information with the final po-
sition of the particle. We shall see that in certain cases,
the measurement of the path detector gives a precise in-
dication of the way in which the system wave function
has been disturbed. Depending on what we choose to
measure, the nature of this disturbance can sometimes
be interpreted as a momentum kick or as a localization
of the particle. In the former case, the conditional inter-
ference pattern has unit visibility (but is shifted) whereas
in the latter, the conditional interference pattern is fea-
tureless. The presence of such high visibility conditional
interference patterns is the basis of the quantum eraser
and we shall see how such erasers can be constructed
for all the configurations analyzed. We emphasize that
loss of coherence can always be described in terms of an
alteration of the system state due to the coupling with
the detector. Although this involves a stochastic average
over the detector states, it does not imply that the alter-
ation of the system is "uncontrolled" unless information
about the detector state is discarded.

In Sec. II, we present the general analysis of two-slit
systems coupled to path detectors and in Sec. III intro-
duce probabilistic average models for explaining the loss
of coherence. In Secs. IV and V, the analysis is applied to
the Einstein recoiling slit and a variant of the Feynman
light microscope (using atoms rather than electrons). In
See. VI, we analyze the configuration of Fig. 1 with mi-
cromaser cavities, showing the similarities to the previous
configurations and also apply the technique to a different
problem, the calculation of the loss of coherence when
these cavities are initially filled with coherent microwave
radiation.

II. YOUNG'S INTERFERENCE WITH
WHICH-PATH DETECTORS

Consider a Young's interference experiment for atoms
of mass m together with a which-path detector (see Fig.
2). For definiteness, we suppose that the atoms are prop-
agating along the z direction with a well-defined longi-
tudinal momentum p, = hk which is large compared to
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FIG, 2. General double-slit configuration with path de-
tectors.

l&r (x) + &~(x)] lx) d» (4)

where

&r(x) = (x IU(t~ tr) l(r) ~ exp
I

& (5)
(.m(x —(g)2

25 t2 —tr

is the probability amplitude for detecting the atom at
2; on the screen given that the atom passed through slit
E. We shall not be concerned with the normalization
constant in this discussion.

Under the assumption that the longitudinal momen-
turn remains approximately constant at p, throughout
the interaction, the time of passage between double slit
and screen is mI /p, . We can then write

iA:(x —(r)2'i
@g(x) oc exp

2L

From Eq. (4), the probability density for detecting an
atom at position x on the screen is

the transverse momentum changes during the course of
the experiment. This allows us to work in the parax-
ial approximation throughout. We shall ignore the y
coordinate in the analysis. The screen with the dou-
ble slit is taken to be in the plane z = 0 with the nar-
row slits spaced d apart at positions x = (r ——2d and
x = (2 = —2d. Starting with a plane atomic wave and
assuming infinitesimally wide slits, the state immediately
after passing through the double slit (at time tr) is a co-
herent superposition of position eigenstates

le(t;)) =, (I() + I(.))

If we first suppose that no path detector is present, the
atom propagates freely to the screen (located in the plane
z = L) under the unitary time evolution U(tq, tr) for free
motion with the Hamiltonian

p'0= (2)2m'

Thus when the atom hits the screen,

l&(t2)) = U(t t ) (I( ) + l(2))



47 LOSS OF COHERENCE IN INTERFEROMETRY 4665

2 1
t2)&l =

2 II@~(x)l'+ l0» '
+2 ReB~(x)O.(x))]

Substitutin~ theg e expressions for
of 6 't 11y wi 'e slits

e sl ua-
)

I( le(t. )&I' i+-
L )

which is the ~e familiar two- 1't '

unit visibility.
We no

s i interference patts i a em with

e now include the effect o the pa d

mechanical s
e path de

etector.

system which is
' ' '

1

etector also as a quantum-
y p

ath
in eraction betwe

b 'h
d't

n e

ID2) de en
'

ei er into state D

state of th

)o to tat

he system and the a
a a en by the a

thus given by
e path detector at t'a ime t2 is

free to measureure any observableva e property of the detector.

b
' f h

ithout loss of gener alit we
w ic we shall denot b IBoe yB

basis to be orth

'
y we may assume th

r onormal. The ' '
e e pointer

f b
'

t}1 ector in state Be path detec
i i y ensit

si ion x is given b
p and the

t~)&(V(t2) I IBp&(Bpl Ix)(xl]

BpID])@](x) + &BpID2&l/) (

= -Il&~(x)(BplD~&I'+ I& (x» (BplD2&l'

e( i(x)(»IBp&@2(x)(BplD2

Surnrning these ' '
e

(14)

bl t t ofth
ese partial interfe

fer
o e etector B

ms over all

erence pattern
p& yields the total inter-

P(x) = P(Bp, x) dP

14(t )) =2 ~(x) ID~& + 42(x) ID2) ]lx) dx.

This is an entan led s s

(~)

ng e state of the s s

the
ec or. If we again k f p o'n as or the r '

si t

to corn tmpute

siyt at
a e screen we ne nee

l&x14(t )) I' = tr I14(t.))&4(t
= 2[le~(x)l'+ le. ( )I'

+2Re g* x

(io)

III. THE RA NDOM-AVERAG
FOR COHER ENCE LOSS

E MODEL

We now consider ho
9 ca

'
er ow the loss of co

1 b b'1' dy e
' y,'s btai

p o ability densit . Th
ic we shall con

the state of the a
onsider is one which in

position of th

dt to tt h'h 1 he atomic paths, we are

The inte

( i ( )A (x) &D~ ID2& )]. (»
e interference term has the a

hi h th
If the

e visibility to be red
dt to it D

b

1 2

the interferenc d'
ibl tod' t' '

rt
is in uish

na, it

ce isappears. On
g

'
them with ce t '

er ainty and

tection process i 1

n the other hand 'f
ss is ess eFicient, the ov e

D)i 1 d
Note that th e states ~D

' terference rem
'

emains.

the initial state ID
th '

hi h
b h h

resu t of obse
o pa detector. If dwe o not

y c oose to

r t f erving the path d
i~D ~c

etector th
consider the

e inner prod t
t th dg f hco erence

o t e path detector.

P(Bp) = P x, Bp dx= — Bx Bp dx = 2II&Bpl»&l'+ l&BplD2)
'

Figure 3 ss ows a schematic rea ic representation of th fe orma-

)C0
O Cv- Q)0 I)
c &

lO

EA 0
0

Visibili
condit

interfer
pattern

Section

~

~

~

ivy porti
conditiono

inter fefenc
pot tern

Probobility of
finding poth
detector
specified

stote

( ~~~~~g

C

(Dg)

P(x,D,)
Joint

probability
of poth
detector

stote ond
atomic

position
on screen

P(x)
Totol (o~oged)

interference
pot tern

Stote of path detector 0

FIG. 3. Schematic re rp
' '

y distributions in th ra
configuration with

rage model for the

b1 }1

detec
1 b b'1'a i sty distribution for the a

hd '
he specified state.

i caving

= —,'I14~(x)l'+ I@ ( )I'
+2R (~;(-)~.(*)(D.ID.

where we hav d

2)] (i5)
ave used the corn 1p eteness and orthor onorm alit

xpected, thss result is the same

ignored.
e etector is present but '

u its final state is

We may similarly ask for the r

~ ~

po
t IB h

f t}1
zero mean

w e e nal
t e interferennce term has



4666 S. M. TAN AND D. F. WALLS

tion of these marginal distributions from the joint dis-
tribution in the random-average model of coherence loss.
This graphical format will be used to present many of
the subsequent results in this paper. The joint distri-
bution is represented as a contour plot of P(Bp, x). To
its right is a plot of the total interference pattern P(x).
Below the joint distribution is a plot of the probabil-
ity density of finding the detector in state IBp), namely,

P(Bp). According to (16), this is a sum of ~ I &BplDi) I

and ~ I &Bp D2) I
and so these are plotted as dashed lines

below P(Bp). The ratio of these quantities is the rela-
tive probability that the atom passed through each slit
given that the detector is found in state IBp). Each ver-
tical section through the joint probability distribution is
a partial interference pattern which is associated with a
particular measurement of the detector. The visibility of
such partial interference patterns indicates to what ex-
tent the measurement of the path detector has localized
the atom and is given by

2I &Bp IDi) II &Bp ID~) I

1&BplDi) I'+1&BiilD~) I' (17)

This will be called the conditional visibility function and
it is plotted above the joint distribution.

As an alternative to regarding the total interference
pattern as a sum of partial interference patterns, we may
consider it as a weighted average of conditional interfer-
ence patterns

P(x) = P(xIBp)P(Bp) dP

IV. THE EINSTEIN R.ECOILING SLIT

Following Wooters and Zurek [7], we consider the con-
figuration shown in Fig. 4 in which a movable screen with

and P(xIBp) is the conditional interference pattern given
that the detector is found in state IBp)

P(xlB~) = P(» B~)9'(Bn).
The conditional interference patterns are simply normal-
ized versions of the partial interference patterns.

The form of the partial interference patterns given by
(13) suggests an interpretation in terms of the effect of
measuring the path detector on the double-slit system.
We see that if we measure the detector to be in state
IBp), the efFect on the interference pattern is as if the
complex amplitudes at the slits were changed to partial
amplitudes &BplDi) and &BplD2). The partial interfer-
ence patterns may be thought of as having been produced
by these partial amplitudes. Since there are many pos-
sible alternative sets of pointer bases for the path detec-
tor, we can construct different sets partial interference
patterns and different physical models for the dynamical
effect of the measurement of the path detector. However,
once we sum over all possible results of measurement, we
recover the same total interference pattern (9). These
considerations will now be illustrated for several specific
examples.

Screen 1 Screen 2 Screen 3

k=2vrjx Q
Poth detector
Position = X

Momentum = P

Double
slit

Screen
coordinote = x

I"IG. 4. The Einstein recoiling slit configuration. The first
screen with a single slit acts as a path detector for the path
of the atom through the double slit in the second screen. The
interference pattern forms on the third screen.

X2)
IDo) ~ exp

I

—
I
IA)sdx.2o2)

We shall assume that 'on each trial, the first screen is
reinitialized to this state. Since the initial atomic state
has zero (transverse) momentum, the joint state of atom
and path detector after the atom passes through the first
screen is

a single slit in it is placed in the plane z = —L in front of
the double slit in the plane z = 0. The two slits are fixed
at x = (i ——2d and x = (2 = —2d. The interference pat-
tern is detected on the screen in the plane z = L. The
screen with the single slit acts as the path detector. In
the context of the following discussion we will again refer
to the int erfering particles as atoms and consider these
to be incident along the z direction with a well-defined
longitudinal momentum p, = h, k and zero transverse mo-
mentum. Of course, only a small fraction of the incident
atoms get through the two screens with the slits and in
this analysis we are effectively ignoring all trials in which
the incident atom is absorbed by a collision with one of
the first two screens.

At time t = 0, we suppose that an atom passes through
the first screen with the single slit. We adopt an idealized
model for the interaction of the atom and the slit by
introducing an interaction potential which is zero when
the atom is within the slit and infinite outside. If we
denote the position eigenstates of the screen with the slit
by IA )s (where A denotes the position of the slit) and
those of the atom by lxi)g, the efFect of the interaction is
to cause an initial joint state Ixi) ~IX)s to evolve to zero
if xi g A and to be unchanged if xi = A. This evolution
is nonunitary since we assume that atoms which miss the
slit and hit the screen are of no further interest.

Corresponding to the initial path-detector state IDo)
in the general analysis, we need to specify an initial state
for the screen with the single slit. This will be taken to
be the minimum uncertainty state
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I@(o+)&~ ( X2
exp

I

— 6(xi —X)Ixi&six&s dxi dx2cr'

( X2&
exp

I

—
2 I IX&wlX&sdx. (21)

This state evolves on the way to the second screen where
the atom interacts with the double slit. This selects out
the portion of the wave function at the position of the
slits (i and (2. Further propagation to the final screen
yields the joint state

exp — exp i x +exp 2 x x ~ UgX g dxdX,
x2 l ik((, —x)'l ik((, —x)'l
2o2) 2L ) 2L, (22)

where Us denotes operator describing the time evolution
of the first screen during the time that the atom takes to
travel to the final screen. Since the mass of the screen is
very large compared to the mass of the atom, this time
evolution does not appreciably change the wave function
of the screen in the position representation and we may
approximate Up by the identity on this timescale.

Equation (22) may be written in the form (9) if we de-
fine IDi& and ID2& which are the detector states coupling
to each of the possible atomic paths by

the atom went through slit E Sin.ce this depends on the
value of the measurement P, it gives some information
about the path taken.

From these inner products we find the joint probability
density

P(» ~) cc
I &PIDi) I'+

I &PID2& I'

+2Re[&PIDi&*&PIDq& exp(ikdx/L)]. (26)

Integrating over x to find the probability that the slit
momentum is P yields

ik)
2L)

ik(gX ik(r
L 2L

j
IDg& oc exp

20 P(P) oc exp
(P+ P)2
2(~P) +"'

(23) where P = hkd/(2L) and

(P —P)2
2(AP)~

The constant of proportionality can easily be found
by normalization and we find that the inner product
&DilD2) is

2

V = &D, ID, &
= ..p -

l

"(' ')'I
) (24)

A. Measuring the momentum of the slit

Suppose that as our pointer basis for the detector (i.e. ,
the single slit) we choose the momentum eigenstates IP).
It is easy to verify that

&PIDI& oc exp
o'L (P/h, + k(t/L) ik(,'

2(L —iko 2) 2L

Given that the measured slit momentum is P,
I &PID~& I'/(l(PIDi& I'+ l(PID2& I') is the pro bability that

This is the visibility of the total interference pattern as
a result of including the recoiling slit. We note that the
visibility falls either when the slit separation increases so
that the fringes are more closely spaced or when the ini-
tial position uncertainty of the path detector is increased.

Having obtained the above result by the mathematical
operation of calculating the inner product of the possible
final states of the single slit, we now consider two alter-
native ways of obtaining the same result by using the
random-average model in which we take a probabilistic
average of conditional interference patterns.

) +(—
) «V2 (28)

and so we see that if the peaks are well separated, it
follows that kdcr/L must be large and so the visibility
given by (24) is necessarily small. However, the converse
is not true and it is possible to have a low visibility even
though the screen momentum gives no path information.

Integrating over P on the other hand yields a total
interference pattern

( kdolf'kdx l.
P(x) oc1+ exp — cos

I2L ) q I (29)

which has the visibility predicted by (24).
We may now consider the conditional interference pat-

tern given that the slit momentum has been measured
to be P. The visibility of the conditional interference
pattern is

21(PIDi& I I &PID2& I

l(PIDi& I +
I &PID2) I

(3O)

AP = heal/(2cr2) + (ko.) /(2L ).
This is the sum of two Gaussian functions centered at
+P with width AP Each Ga.ussian function arises from
the momentum transfer which deflects the atom to either
one slit or the other. If these Gaussian functions are well
separated, it is possible to determine the path taken by
the atom. The condition that P &) AP is equivalent to
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the probable final values of the screen momentum P, the
conditional visibility is small and so the final interference
pattern is largely the average of low-visibility patterns.
Physically, we would express this by saying that the mea-
surement of the screen momentum often leads to a good
localization of the atom to one or other slit. Since the
single-slit patterns are featureless, the average of these is
also featureless.

In Fig. 5(b), the parameters are altered to d/L = 10
kd = 9 x 104, cr/d = s. For these values, the Gaus-
sian functions making up P(P) overlap considerably and
so which-path information is not available. The condi-
tional visibility V(P) is high for the range of probable
final screen momenta and the average of the conditional
interference patterns results in an overall pattern of high
visibility (= 0.56).

In Fig. 5(c), the parameters are d/L = 10 4, kd =
9 x 104, cr/d = s. Although the graphs for P(P)
and V(P) are identical with those of Fig. 5(b) so that
which-path information cannot be deduced from the mea-
surement and the conditional visibility is high for the
probable values of P, the overall visibility is very small
(= 1.23 x 10 4). The reason for this is clear from the
contours of the joint probability which show that the pat-
terns which are being averaged together do not line up,
but are shifted relative to each other so that the fringes
are washed out. The difference between Figs. 5(b) and
5(c) thus arises from the behavior of the function 4(P).
This example shows that not having path information is
a necessary but insufficient condition for an interference
pattern of high visibility.

B. Measuring the final position of the slit

We now suppose that we measure the final position of
the detector, effectively choosing the position eigenstates
as the pointer basis IX) for the single slit. Although these
are not stationary states of the detector Hamiltonian,
the large mass of the detector means that the amount of
spreading of the wave function over the transit time of
the atom can be made insignificant.

In this case,

(1
(XIDg) oc exp (20'

i k ) ~ ik(r ik(q2

2L) L 2I

(32)

Since I(XIDi)I = I(XID2)I for all X, the conditional
probability that the atom passes through slit E given a
measurement of the single-slit position is always 2. Mea-
surement of the position of the single slit thus gives no
information about the path taken for any values of the
parameters.

The joint probability density for atom and slit is

P(X ~) ~ I(XIDi& I'+ l(XID2& I'

+2 Re[(XIDi)*(XID2) exp(ikdx/L)] (33)

=2exp( —X /cr )[1+cos(kd(z+X)/L)]. (34)

Integrating over x to find the probability that the slit
position is X yields

P(X) oc exp( —X /o. ).

Similarly, integrating over X to find the total interference
pattern yields

kd~q
P(z) oc 1+ exp — cos

2L I ) (36)

which is identical to the result obtained earlier.
The conditional interference pattern given that the slit

position has been measured to be X has visibility

I(XI»)I'+ I(XID2& I'

and the phase shift is

C (X) = arg((XIDi)'(XIDg)) = kdX/L (38)

V. THE FEYNMAN LIGHT MICROSCOPE

Consider the configuration shown in Fig. 6 in which
atoms travel along the z direction, pass through a fixed
double slit, and are collected on a screen at distance L
away. A light field traveling along the 2: direction is
used to indicate the path by scattering off the atom.
For simplicity, we only consider elastic scattering and
use the 8-matrix approach for this problem. Following
Cohen-Tannoudji, Bardou, and Aspect [8], we denote by
S(K, , Kf, k) the amplitude of the elementary process in
which a photon of initial momentum hK, scatters off an.
atom of momentum hk to yield a final photon momen-
tum of hKf and an atomic momentum of h(k —Ky+K, ).
If we neglect the Doppler effect, this amplitude is inde-
pendent of the atomic momentum hk and we may write

Unlike the situation in which the momentum of the sin-
gle slit is measured, the conditional interference patterns
all have visibility equal to 1. The reduction of visibility
when these patterns are averaged together results only
from the different phase shifts washing out the fringes.
Figures 5(d), 5(e), and 5(f) show the joint and marginal
probability functions when the single-slit position is rnea-
sured for the same sets of parameter values as Figs. 5(a),
5(b), and 5(c), respectively. The total interference pat-
terns are identical for the corresponding pairs of graphs,
but our physical explanations for the loss of coherence
difFer. For example, in Fig. 5(a), we attributed the loss
of coherence to our ability to distinguish paths from the
final slit momentum whereas the same coherence loss in
Fig. 5(d) would be attributed to an averaging over shifted
patterns of unit visibility. The different visibilities in this
random-average model are due entirely to averaging over
patterns with varying amounts of shift relative to each
other.

As mentioned before, if we do not measure the path-
detector state, the total interference pattern can be cal-
culated by randomly averaging over any basis for the de-
tector such as its position or momentum. On the other
hand, in this case if we do tag those atoms which leave
the first screen in a particular position, we can recover a
high-visibility interference pattern from within a feature-
less pattern.
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Atom lix IDr) oc exp(iK(g) dp d8 S(K, , Kf)

d/2

—d/2

x exp( iK(g cos 8)K
x sin 8 Kf ), (43)

where K = IK, I

= IKf I. The inner product of these two
states (for either circular or linear polarization) is

Double
slit

hoton

K.
Screen

{D&ID2) = V(Kd) exp( —iKd),

where

(44)

S(K, , Kf).
The magnitude IS(K, , Kf)I depends on the projection

of the polarization vector of the outgoing photon on the
polarization vector of the incoming photon if the atomic
dipole moment is aligned with the incoming polarization
[9]. If we denote the polar and azimuthal angles of Kf
relative to K, by (8, P), the angular dependence of this
amplitude is

IS(K, , Kf) I
oc Ql + cos2 8 6(IK, I

—IKf I) (39)

for circular polarization, and

FIG, 6. The Feynman light microscope configuration.
The path of particles (here taken to be atoms) through a
screen with a double slit is observed by illuminating the slits
with light. The state of the scattered light field is taken as
the path detector.

3 cosu sinu
G 0

sin u
Q 3 (45)

The modulus of this quantity V =
I
V(Kd)

I
gives the

visibility of the interference pattern, in agreement with
the result of Sleator et at. [10]. A graph of U(u) is shown
in Fig. 7. The total interference pattern is given by (11)
which in this case is

P(x) oc 1+ Re[exp( —iKd)V(Kd) exp(ik dx /I)]. (46)

For small Kd (i.e. , light with wavelength large compared
to d) such that IV(Kd)I —1, the main effect of the illu-
mination is to shift the central fringe of the interference
pattern from 2: = 0 to 2: = KI/O This is t.he expected
momentum transfer from a single scattering event. For
photons of smaller wavelength, the visibility is reduced.

We now consider the explanation for the loss of co-
herence in terms of the random-average model. First
consider the possibility of localizing the position of the
scattered photon immediately after its production. The
pointer basis in this case is

IS(K, , Kf)I oc 1+sin 8cos2ct b(IK, I

—IKfI) (40) IX) = d Kexp( —iK X) IK), (47)

for linear polarization, where the delta function restricts
our attention to elastic scattering. In order to assign the
phase to the scattering amplitude, we consider scattering
off an atom in a position eigenstate

where the integral is over all possible K and the subscript
2: indicates the 2: component of the vector. In order to
calculate the partial interference patterns we find

Ix) oc d k exp( —ik x) Ik). (41)

1.0

0.8

For an initial joint state Ix) IK, ) of atom and photon, the
outgoing state is proportional to

0.6
~~
0

x) 04
M

d Kf S(K, , Kf) exp[i(K, —Kf) x] Ix)IKf). (42)

Thus if we choose S(K, , Ky) as purely real, this corre-
sponds to the assumption that all the plane wave com-
ponents of the scattered field are in phase at the location
of the atom.

In this configuration, the state of the outgoing photon
plays the role of the path detector. If the two slits are
located at 2: = (r = d/2 and at x = (2 = —d/2, the state
IDr) of the outgoing photon which couples with the path
through the slit at (r is

e 0.2
C

g3
0.0

-0.2-

-0.4
0

E 8

2 3 4 5 5 7
Normalized slit sepgrQtion Kd

10

FIG. 7. The visibility of the atomic interference pattern
as a function of Kd where K is the wave number of the light
and d is the slit separation in the Feynman light microscope.
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(X~Dr) oc exp(iK(r) d8 8(K, , Ky) exp[iK(X —(g) cos&]K sin8. (48)

For circular polarization, this evaluates to

2~K exp(iK(g) d8sine/1+ cos26

x exp[ik(X —(g) cos e) (49)

and for linear polarization, this is

4K exp(iK(g) d8sin HE(sin 8)

x exp [ik(X —(g) cos 9], (50)

where E(m) denotes the complete elliptic integral of the
second kind. The integration over 8 in each case can be
performed numerically.

Prom these inner products, it is straightforward to cal-
culate the partial interference patterns, the total interfer-
ence pattern, the probability of localizing the photon at
various possible positions, and the visibility of the condi-
tional interference patterns. The only parameter affect-
ing the visibility is the dimensionless combination Kd.

On the other hand, we may choose to measure the
direction of travel of the scattered photon. Only the x
component of the photon momentum is of interest and
so for the purposes of displaying the joint probability
distribution, we integrate in azimuth about the direction
of the incident light beam.

If AKy is the momentum of the scattered photon,

(K~~Dq) oc 8(K, , Ky) exp[i(K, —K~) (q]. (51)

The partial interference pattern having measured a par-
ticular Ky is

P(Kf, x) oc S(K, , Ky)(1 + Re [exp( —i(K, —Ky) d)
x exp(ikdx/L)]), (52)

where the subscript x denotes the x component of the
vector. Integrating over the azimuthal angle and chang-
ing the variable to Ky, the x component of the momen-
tum of the scattered photon, we find that

P(Ky, x) oc (K, + K& )(1 + Re (exp[—i(K, —Kf~)d]

x exp(ikd2:/L))),
(53)

where this result holds for either linearly or circularly po-
larized light. These patterns each have unit visibility and
the central maximum is shifted to x = (K, —Ky~)L/k
This has a natural physical interpretation in terms of a
momentum kick in the x direction imparted to the atom
by the scattering of the photon. The total interference
pattern is found by integrating over the possible values
of Ky from —K, to K, and it is readily verified that the
result is (46).

From Fig. 7, we see that if we choose Kd = 1, the
visibility is quite high (V = 0.81). Figures 8(a) and 8(d)
show how this result is obtained by the random-average

model where we use the possible positions and x compo-
nent of momentum of the scattered photon respectively
as a description of the path detector. Since the photon
wavelength is large, measuring the position of origin of
the scattered photon does not well localize the atom. In
Fig. 8(a), the range of probable photon positions forms
a single peak over which the conditional visibility of the
interference pattern is high. In Fig. 8(d), the physical
explanation for the high visibility is that the momentum
transfer from the photon to the atom is sufBciently small
that the interference pattern is not washed out.

Figures 8(b) and 8(e) are for the opposite situation
where Kd —9.3 and the visibility is close to zero. If we
consider measuring the position at which the scattered
photon is emitted, we see that there are two distinct
peaks, each corresponding to the atom going through
one slit. The slits are suKciently well separated that the
paths are resolved by the measurement and interference
is destroyed. The conditional visibility associated with
each peak is low and so we have an average of single-slit
patterns. On the other hand, from Fig. 8(e), conditional
on measuring a particular momentum of the photon, the
interference pattern has unit visibility. These perfect in-
terference patterns are shifted by the momentum kick
associated with the interaction with the photon. When
the average is taken, the kicks are so large that the in-
terference is lost.

Figures 8(c) and 8(f) are for Kd —4.2 at which there is
a local maximum in the visibility (V = 0.34). Although
the position distribution of the photon shown in Fig. 8(c)
consists of two fairly well-separated peaks, a secondary
maximum of one peak coincides with the maximum of
the other so that the path is in fact not well determined.
This can be also seen in the relatively high conditional
visibilities associated with the probable photon positions.
From these considerations it is clear that the oscillations
in the visibility seen in Fig. 7 arise from the oscillations
in the inner products (X~Dg) which describe how well
a measurement of the photon position determines the
atomic position.

The measurement of the photon position or momentum
can be carried out (at least in principle) by including a
lens which collects the scattered light and letting this
light fall on a screen. If the distance of the lens from the
slits and screen is arranged to be equal to twice the focal
length of the lens, this gives an imaging configuration in
which positions at which the light was scattered at the
slits are mapped to positions on the screen. On the other
hand if the distance of the lens from the slits and screen is
equal to the focal length of the lens, various directions of
photon emission are mapped to positions on the screen.
Various additional complications arise due to the finite
aperture size of a real lens, but a lens does provide a way
of selecting a pointer basis for measuring the state of the
outgoing photon.

Prom the above, the analogies between this configura-
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VI. DOUBLE-SLIT EXPERIMENT
WITH MICROMASER CAVITIES

We now analyze a configuration similar to that of
Scully, Englert, and Walther [5] in which two indepen-
dent cavities are placed immediately to the left of the
slits as which-path detectors for excited atoms entering
the system (Fig. 1).

Let g1(x) and g2(x) denote the couplings between the
atom and the cavity fields which are proportional to the
amplitudes of the mode functions of the two cavities. We
assume that these mode functions each vanish where the
other is nonzero and that at the positions of the slits
g1(x1) = g2(x2). Typically g1 and g2 might be sinusoidal
functions representing two standing waves, but their ex-
act forms away from the slit locations are unimportant.
If we now quantize the modes as well as the atomic state,
the interaction Hamiltonian may be written

HI ~gl(x)(a1&+ + a1c —) + ~g2(x)(a2&+ + a2&—)

(54)
I

where we have assumed the cavity fields are exactly res-
onant with the atomic transitions, a, is the annihilation
operator for the mode in cavity i and a~ are the usual
pseudospin operators for the two-level atom.

If we write the state of the atom and the cavities as

fg) =) ) dxa „(x)fm, n;e, x)
m n

+bm„(x) fm, n; g, x), (55)

ia =g1(x)v'm+1b +1,.+g2(x)v'n+1b, +1,
(56)

(57)i bmn—gl, (X)V m am —1,n + g2 (X)V n am, n —1.

If we denote the support of g, (the set over which the
function is nonzero) by S, , we can write the solution of
these equations as

where m and n denote the number of photons in cavities
1 and 2, respectively, and e and g refer to the state of
the atom, we find that the amplitudes satisfy the coupled
system of equations

'a „(x,0) cos[g1(x)V'm+1t] —i b +1„(x,0) sin[g1(x)vm+1t] if x C S1

amn (x, t) = & am„(x, 0) cos [g2 (x)V'n + 1 t] —i bm „+1(x,0) sin [g2 (x)v'n + 1 t] ifx~Sg (58)

, a „(x,O)

i am —1,„(x,0) sin [g1(x)V m t] + bm„(x, 0) cos [g1(x)~m t]

b „(x,t) = & i a,„1(x,0) si—n[g2(x)~nt]+ b „(x,0) cos[g2(x)vInt]

otherwise,

if2;e Si

ifxcS2 (59)

, b „(x,O) otherwise.

Suppose that at t = 0 the atom enters in the excited
state and that the cavities are in a superposition of Fock
states

fD. ) =) ) c „fm, n;.), (60)

so that am„(x, 0) = c „a(x) and b „(x,O) = 0. After
interaction time t, and passage through the slits, the joint
state of atom and cavities is

fQ) OC ) ) Cm„a(X1) COS[g1(X1)V'm+ 1t,] fm, n;e, X1)
m n

+c „a(x2) cos[g2(x2) v'n+ 1 t, ] fm, n; e, x2)
—i Cm —1,n a(x1 ) sin [g1 (x1)v m t, ] f

m, n; g, x1)
i cm, „1a(X2)Sin[g2(X2)Vt—nt, ] fm, n; g, X2) .

(61)

In the following, we shall further assume that a(x1) =
a(x2) so that the distance between the source and each
slit is the same and that the mode functions in the cavi-
ties are such that g1(x1) = g2(x2) = g.

The "detector" in this case consists of the state of the
cavities and the final internal state of the atom. The
states which couple to the two possible paths are

l

fD1) = ) ) Cm„COS[gV'm+ 1t,] fm, , n; e)
m n

—ic 1 „sin[gvtmt, ] fm, n; g),

fD2) =) ) c „cos[gv'n+ 1t,)lm, n; e)

—ic „1sin[g v nt, ] fm, n; g),

(62)

(63)

The inner product of the states is

(D1fD2) = ) ) (fCmnf COS[gVI'm+ lt, ]COS[gV'n+1t, )

+Cm 1 nCm n l Sln[g~mt~]

x sin[gVnt, )), (64)

A. Cavities initially empty

This is the situation considered by Scully, Englert, and
Walther as a means of producing a which-path detector
for the atom. If the cavities are initially empty, cQQ

j. and all other coeKcients are zero. By choosing the

where P g fcm„ f

= 1. This gives the visibility of the
interference pattern.
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interaction time so that gt; = vr/2, we can ensure that
the initially excited atom will deexcite during its passage
through the cavities. The state after passage through the
cavities and slits is simply

14) ~ 11 o g») + Io 1 g») . (65)

The detector states coupling to the two possible atomic
p~th~ are ID&) = 11,0;g) and ID&) = 10, 1;g) which are
orthogonal. Prom our general analysis, it is clear that
there is zero visibility in the far-field interference pattern.

The random-average model requires that we calculate a
joint probability distribution of the detector state and the
far-field atomic interference pattern. Unlike the previous
examples in which there is a natural continuum of states
(position or momentum) in which the detector may be
found, we need only consider a two-dimensional pointer
basis for the cavities in this case. If we adopt the natural
number state basis

will produce a far-field interference pattern of unit vis-
ibility but with the minima and maxima interchanged.
When all the atoms are considered together however, no
interference is observed. Insofar as a determination of
whether the cavities are in state IS) or IA) prevents us
from telling which path was taken by the atom, the re-
covery of the conditional interference patterns from the
system is interpreted as a consequence of the "erasure"
of the which-path information. This erasure may be per-
formed at any time after the interaction and in particular
after the atom has been detected. From our analysis it
can now be seen that a quantum eraser can in principle
also be implemented for the Einstein recoiling slit ex-
periment or the Peynman light microscope. By simply
tagging atoms associated with a particular final position
of the recoiling slit or with a particular final momentum
of the scattered photon, we recover conditional interfer-
ence patterns of high visibility from the midst of total
patterns with low visibility.

IBg) =11,0;g) and IB2) =10, 1;g) (66)

it is clear that if the detector is measured in state IBg),
the atom is localized to slit 8 and the partial interference
pattern is a featureless single-slit pattern. The sum over
these two single-slit patterns gives an overall pattern with
zero visibility.

On the other hand we may choose to adopt an alter-
native description of the cavities using the states

IBs) = (11 0' g) +10 1' g))/~2

IBA) = (11,0;g) —10, 1;g))/~2.

(67)

(68)

These are also orthogonal and span the same space as
the original states. Using this description, Eq. (65) may
be written

1
14) = IBs) (lg») + lg»))

2

+ IBA) (lg, ») —Ig, x~)).
2

(69)

If we measure the cavities to be in state IBs), the partial
atomic state is (lg, xq) + lg, xz))/v2. This atomic state
produces a partial iiiterference pattern of unit visibility
with a central "bright" fringe of high probability. On
the other hand, if we measure the cavities to be in state
IBA), the partial atomic state is (lg, xq) —lg, xq))/~2.
This atomic state produces a partial interferenee pat-
tern of unit visibility but with a central "dark" fringe of
low probability. The sum of the two partial interference
patterns once again is featureless, but we have quite a
diferent physical model for the coherence loss.

The intriguing possibility of implementing a "quantum
eraser" is raised in the article by Scully, Englert, and
Walther. In essence, this is a device which can detect
whether the cavities are left in state IS) or in state IA)
after the interaction. If on successive repetitions of the
experiment (with the cavities reinitialized to the vacuum
state between repetitions) each atom passing through the
system is tagged as to whether it left the cavities in state
IS) or in state IA), we see that each subclass of atoms

B. Cavities initially containing coherent radiation

By preparing the cavities initially in a vacuum state,
we see that the atoms which leave the slits do not produce
any interference fringes. We shall now show that if the
cavities are initialized to coherent states of nonzero am-
plitude, interference is once again possible. In one sense
this is not surprising since it may be thought that if we
have a large mean number of photons in the cavities, the
addition of a single extra photon from the atom will not
be detectable and so no which-path information is avail-
able. However, we shall see that the visibility depends
on the length of the interaction time in the field and that
for longer interaction times, the visibility does decrease
to zero.

If the cavities are initialized to coherent fields with
amplitude n, the coefBcients c „are given by

~m+A
c „=exp( —lnl ) m!n!

(70)

We can plot the visibility of the resulting interference
pattern by using Eq. (64). Figure 9(a) shows the result
as a function of the normalized interaction time gt, for
low amplitude coherent fields with n = O. l. We see that
the visibility oscillates at the Rabi frequency and it is
easy to check that these oscillations are in phase with the
probability that the atom is in the excited state when it
leaves the cavities. This is not unexpected since the cav-
ities are very close to vacuum states and so which-path
information is readily available provided that the atom
deexcites and leaves a photon in one of the cavities. If
the atom leaves in the excited state, no path information
is recorded and the visibility remains high.

Figure 9(b) is the corresponding graph for initial co-
herent amplitudes n = 4 (n = 16) in the two cavities. In
Fig. 10, we display the probability that the atom leaves in
the ground state after the interaction. Once again there
are Rabi oseillations but these die away due to interfer-
ence between the diferent oscillation rates for the dif-
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a physical mechanism for this loss, this is not uniquely
determined but rather depends on the way in which we
choose to describe the environment. Conditional upon
measuring the environment to be in a particular state,
the effective complex amplitudes at the slits are altered.
If this is simply a change in phase, the effects can be in-
terpreted as and are indistinguishable from a momentum
kick. However if the change alters the moduli of the slit
amplitudes, we say that a (possibly imprecise) localiza-
tion of the atom to one path or other has occurred.

The random-average model shows that loss of coher-
ence may always be described in terms of a stochastic
disturbance to the system due to the coupling with an
environment. This disturbance is random insofar as it is
not possible to determine a priori the result of measur-
ing the environment after the interaction has occurred.
However, this randomness does not prevent suKciently
careful measurements of the environment from giving us
information which reveals the exact nature of the distur-
bance. Collecting such information is the basis of "quan-
tum erasers" which may be implemented for all the sys-

tems discussed.
The relationship between the orthogonality of the fi-

nal environment states and the random dephasing of the
system wave function discussed by Stern, Aharonov, and
Imry [1] is seen to be readily explicable in terms of the
random-average model provided that the concept of "de-
phasing" is extended to cover the full range of possible
changes to the system wave function when the entan-
gled state of system and environment is projected out
along a pointer basis of the environment. The effect of
a probabilistic average over any pointer basis for the en-
vironment reduces the degree of coherence by precisely
the amount predicted by taking the inner product of final
environment states.
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