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The quantum dynamics of minimum uncertainty wave packets in a system described by the surface-
state-electron Hamiltonian are studied herein. The quantum evolution is found to be strongly dependent
upon the orbit structure in the classical phase space. A Gaussian wave packet, initially centered on the
part of the phase space incased by Kolmogorov-Arnold-Moser tori remains localized, while the packets
located in the chaotic region spread rapidly, filling the available phase space. To quantify the observed
spreading quantum uncertainty is introduced as a dynamical variable, and its time development is deter-
mined by the ballistic growth of the position uncertainty and the erratic oscillations of the momentum
uncertainty. The quantum evolution is analyzed within the framework of the Floquet formalism. The
Floquet spectrum of the stable packet is shown to be dominated by a few quasienergy states with the cor-
responding Husimi distribution embedded in the classical stability island. Further, the classical concept
of diffusion previously used in this context is shown to be inappropriate.

PACS number(s): 03.65.Sq, 05.45.+b

I. INTRODUCTION

The correspondence principle of Bohr, which states
that the results of classical and quantum-mechanical cal-
culations should converge in the limit of high quantum
numbers or small A', has recently become problematic
with the recognition of chaotic trajectories in the classi-
cal domain. The nonintegrability of such Hamiltonian
system has led to a Aurry of studies of a number of simple
physical models and the exploration of the analogous ex-
perirnental systems. In this paper we consider the aspect
of classical-quantum correspondence concerning the
differences between quantum dynamics in the classically
regular and classically chaotic regions of phase space.
This problem was recently studied by, among others, Lin
and Ballentine [1,2) and Plata and Llorente [3] for a
monochromatically driven double-well potential. It was
found that a Gaussian wave packet may undergo
coherent or incoherent motion depending upon whether
the initial position of the wave packet is in the regular or
irregular part of the phase space. The Poincare surface
of section of this system has a small regular island in each
well immersed in a chaotic sea which extends over both
wells. It is shown numerically by Lin and Ballentine [1,2]
that a wave packet initially centered on one stability is-
land tunnels to the other one. The tunneling between the
classical phase-space structures retains its coherent, oscil-
latory nature despite the fact that the wave packet is not
completely enclosed by the Kolmogorov-Arnold-Moser
(KAM) surfaces. The driven tunneling phenomenon has
a rate 10 faster than that for the undriven case and is

determined by the energy splitting of a pair of Floquet
states localized on two stability regions [3]. Symmetric
and antisyrnmetric combinations of these states yield
packets initially localized in each well which in the
course of time oscillate between the stability regions. On
the other hand if a wave packet is launched from the clas-
sically chaotic portion of the phase space it rapidly
spreads and covers the entire chaotic sea.

Lin and Ballentine [2] suggest that while localized
quasienergy states (in the case of periodically perturbed
systems) are associated with regular islands in the classi-
cal phase space, the extended states correspond to the
chaotic sea. Consequently, if the wave packet is initially
located in the regular island its time evolution will be
determined by a small number of very well localized
quasienergy states. Therefore the time development of
the dynamical variables should appear regular. On the
other hand, a packet launched from the chaotic part of
the phase space is a superposition of a great number of
the extended quasienergy states and produces an erratic
time evolution of the dynamical variables. In the present
paper we test whether this type of behavior holds for a
system described by a driven surface-state-electron (SSE)
Hamiltonian and may therefore be generic. The dynam-
ics of the SSE system is quite different from that in the
double-well potential mentioned above, being very corn-
plicated in both the classical and quantum domains.

The SSE model has been used to describe the ioniza-
tion of highly excited hydrogenic atoms. Jensen et aI [4].
present a quantum mechanism for the suppression of
chaotic ionization that, they argue, explains the existence
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of anomalously stable states observed in the microwave
ionization experiments of Koch et al. [5]. The mecha-
nism is the peaking of the wave function in the region of
the phase space containing unstable periodic orbits; these
are Heller's "scars." The scarred wave function inhibits
ionization, since it remains localized in regions of phase
space where the classical dynamical orbits are unstable
and chaotic. They do point out, however, that we do not
have a detailed understanding of the physical mecha-
nisms that cause scarred wave functions. Herein we
show that the scarred wave functions noted above may in
fact be implicit in the general picture suggested by Lin
and Ballentine.

The classical chaotic trajectory is herein found to assist
the spreading of the quantum wave packet into the region
surrounding the stable island in the classical phase space
of the perturbed SSE model. This delocalization of the
wave packet into the region corresponding to smaller
principle quantum numbers actually stabilizes the system
and inhibits ionization. The chaotic bed acts as a poten-
tial minimum into which the quantum wave packet is
drawn. Thus the SSE model manifests chaos-induced sta-
bility, a property overlooked in the previous investiga-
tions, which emphasized the relation of the quantum ion-
ization threshold to the onset of stochastic dynamics in
the classical domain.

The present paper is organized as follows: In Sec. II
we describe the driven SSE model and the method used
to solve the time-dependent Schrodinger equation includ-
ing some details of the Floquet formalism. In Sec. III we
discuss the introduction of a quantum phase space using
the Wigner formalism and its coarse-grained comple-
ment, the Husimi function. We also introduce the quan-
tum uncertainty as a dynamical quantity and integrate
the classical equations of motion. The growth of quan-
tum uncertainty here replaces the "diffusive" energy in-
crease as a diagnostic of the system dynamics. In Sec. IV
we present the results of numerical quantum-mechanical
calculations for three minimum uncertainty wave packets
initially localized in different portions of phase space. In
Sec. V the analysis of the quantum dynamics within the
Floquet formalism is briefly discussed. In Sec. VI we
draw some final conclusions. In particular we conclude
that the quantum evolution of the system is never
di+usiue in the classical sense, i.e., it is never irreversible,
and that the use of this nomenclature is confusing and
should be avoided in a quantum-mechanical context.

II. SSE MODEL

2a=~ +0 x&0,

and

V =xFg (t)cos(Qt) .

F is the peak amplitude of the driving force, 0, is its fre-
quency, and g(t) is a slowly varying envelope function
chosen to mimic the way in which the external perturba-
tion is turned on.

Classically the Hamiltonian (1) describes both bounded
and unbounded dynamical behavior. In the former case
it may be rewritten in action-angle variables (I,B) [11]:

H(I, B)= +2I Fg (t)sin (ri)cos(Qt),1

2I
where the canonical variables (x,p) can be expressed as

x =2I sin (g),
1

p =—cot(g) .I

(4)

investigations of the ionization of Rydberg atoms by
low-frequency microwave fields [8]. The latter experi-
mental results indicated that the ionization was strongly
dependent on the intensity of the oscillating electromag-
netic field, but only weakly dependent on the frequency,
thereby producing a quantum paradox. A proposed reso-
lution of this paradox lay in the amplitude dependence of
the nonlinear resonances which under sufficiently strong
perturbation overlap, producing chaotic orbits in the
classical analysis of the SSE model [7]. However, this
resolution is not complete because although there is an
apparent physical ionization mechanism based on the sto-
chastic diffusion of the electrons in phase space, there is
in addition a suppression of this effect due to quantum lo-
calization [4,9,10]. A complete review of these quantum
manifestations of chaos is not appropriate here so we re-
strict ourselves to a brief review of relevant SSE formal-
ism.

The driven SSE Hamiltonian has been extensively stud-
ied in connection with microwave ionization of highly ex-
cited hydrogen atoms (see Refs. [9,10] and references
therein). In atomic units (a.u. ) this Hamiltonian may be
written as

H =Ho(x, p)+ V(x, t),
where

The driven surface-state-electron model was first used
in the classical analysis of microwave perturbations of
electrons bound to the surface of liquid helium by their
image charges. Jensen [6] emphasized that since the clas-
sical dynamical orbits of the SSE model can be chaotic in
certain parameter regimes, the corresponding one-
dimensional quantum system may be unique for the ex-
perimental investigation of the quantum manifestation of
chaos. Jensen [7] also worked out the classical theory for
the stochastic ionization of surface-state electrons, which
he used to assist in our understanding of the experimental

The auxiliary variable g determines the angle variable by
means of

B=2g—sin(2g) .

The unperturbed motion with constant action I0 has the
Kepler frequency co = 1/I 0 and the total energy
E = —I/(2IO), which is the familiar expression for the
hydrogenic energy spectrum.

To facilitate further discussion in this paragraph we
choose g(t) as a unit step function [alternatively, we
could write this envelope function in the form g (Qt)]. In
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this case Hamilton's equations of motion generated by (4)
have a useful scaling property: if I(t) and B(t) are the
dynamical variables for the Hamiltonian with parameters
F and 0 and the initial conditions Io and eo, then
B'(t')=B(t/Io) and I'(t')=I(t/Io)/Io are the scaled
variables for the Hamiltonian with the parameters

F =FIO 0 =BIO (8)

and the initial conditions 1 and Bo. Equivalently Hamil-
tonian (1) remains invariant under the transformation
F'=Fa, O'=Qa, t'=t/cx, and x'=x/a, with a be-
ing any real number.

The properties of the SSE Hamiltonian are convenient-
ly described in terms of the scaled parameters (8) and in
the quantum case the initial action Io is replaced by the
principal quantum number no of the initial state. With
increasing scaled frequency Q' the differences between
classical and quantum dynamics become apparent [9].
When 0,'))1 the chaotic, diffusive behavior present in
the classical system for a sufficiently strong perturbation
(fairly well estimated by the Chirikov resonance overlap-
ping criterion [12]) appears to be completely inhibited in
the quantum domain. This phenomenon, known as quan-
tum suppression of classical chaos, was also reported for
the quantum kicked rotator [13]. The "diffusive
behavior" in the quantum case may only be observed
after the application of a perturbation which is much
stronger than that required in the classical system.

Throughout this paper we shall put Planck's constant
equal to unity and focus our discussion of the classical-
quantum correspondence on the high quantum number
case. The Schrodinger equation corresponding to (1)
then reads

i Iq& = —— ly& ——q&+xFg(t)cos(nt)Il//& .
1 0 1

Bt 2 /~2 x

(9)

There is no analytical solution to (9) and numerical
methods must be used to obtain the time evolution of the
wave function. In the most straightforward approach the
wave function is expanded in the basis of eigenfunctions

I P„& of the unperturbed Hamiltonian (2)

If(x, t)&= gc„(t)lp„(x)&e (10)

where

„,xe -'"L,„"',
5/2 n

where the Cartesian distance x replaces the radial dis-
tance r as the argument of R„&.

The Schrodinger equation (9) then leads to the set of
coupled differential equations for the expansion

L„"'
&

in (11) are associated Laguerre polynomials. The
eigenfunctions (11) are closely related to the hydrogenic
radial functions R„&(r):

(12)

coeKcients c„(t):

ic„(t)= g e "" Fg (t)cos(At)x„„.c„,(t),
n'

(13)

co„„.=e„—e„., e„=—1/(2n ), and x„„=(g„lxIP„&.
The diagonal matrix element of the x operator is found
analytically to be

X =—71nn (14)

To obtain the off-diagonal matrix elements x„n. we em-
ploy the convenient method originally proposed by
Susskind and Jensen [14], which relies on the momentum
space representation of the basis function (11)

(2n/m)' exp[2in arccot(np)]
np &=

(1+n p )

and the observation

(15)

(16)

However, expansion (10) does not take into account the
excitation into the continuum and numerical tractability
requires the use of a truncated basis. For the strength of
the driving force considered in this paper continuum
effects have been found to be negligible [10,14). The main
consequence of the use of the finite basis is the possible
modification of probability when the levels close to the
edge of the basis set become significantly populated. This
effect may considerably distort the results of the numeri-
cal simulations. We have performed the calculations
with several different sizes of the basis set (150, 200, 250)
to assess how the results are inAuenced by the truncated
basis approximation.

Both quantum and classical temporal evolutions
strongly depend on the form of the envelope function
g(t). When the driving force is applied instantaneously
[g(t) is the unit step function], the periodicity of the
Hamiltonian (1) may be exploited within the framework
of the Floquet formalism. In this case the time evolution
of the wave function is completely determined by a one-
cycle unitary propagator C',

lq((a+1)T) & =Ply(xT) &, (18)

where T =2'/A. The eigenvalue problem for C may be
written as

(19)

where the E„,called quasienergies, are real and their cor-
responding eigenvectors are frequently called Floquet or
quasienergy states (QES). To obtain the matrix represen-

The above formula may be obtained by computing the
matrix elements of [x,B ]o=iP between the eigenfunc-
tions of 80. Using (15) and (16),

8 (nn') ~

~ (n n')—
X pf sin [2n arccot( np) —2n ' arccot( n 'p) ]

2 dP
0 (1+n p )(1+n' p )

(17)
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tation of C in the basis of the Ho eigenfunctions, we no-
tice that

and if we choose the initial state such that

(21)

then

&p, lg(T)& =&p, lC'lpj & . (22)

I 4(») &
= & e

' "
Ix„& & x„ I q(0) & . (23)

It is apparent from (23) that only the Floquet states over-
lapping the initial wave function contribute to its subse-
quent time evolution. Moreover, when the initial state is
a pure state with c (0)=1 then the amplitude c (NT)

0

to excite any given state IP ) after N cycles of the per-
turbation is given by

Thus the j' column of the matrix representation of C' may
be calculated using the initial conditions (21) and in-
tegrating the time-dependent Schrodinger equation over
one period of the perturbation. We can then numerically
solve the eigenvalue problem (19).

For times t =AT the wave function may be written as

Then the expectation value of the A operator may be cast
in the form similar to that used in classical mechanics:

(qlxlit &= f" dq f dp A~(q p)p~(q p) . (27)

The Wigner function has very interesting properties
but it is not positive definite so that formally it cannot be
considered to be a probability density function. It usually
oscillates violently, which is especially well pronounced
in the case of the SSE Hamiltonian. The Wigner distri-
bution of the quantum system described by the eigenfunc-
tion IP„) of Ho has an oscillatory character which be-
comes a serious numerical problem for principal quantum
numbers as low as n =10 and becomes worse with in-
creasing n. In order to faithfully display the structure of
the Wigner function, one is forced to use a denser grid in
the phase space with the growing principal quantum
number. This is computationally inefficient although the
resulting images are often quite spectacular. The Wigner
function does not have a proper semiclassical limit and it
was shown [17] that its time evolution differs significantly
from that of an analogous classical probability distribu-
tion. To avoid these difFiculties and to obtain a non-
negative distribution function with gentle undulations
and the proper semiclassical limit, smoothing of the
Wigner function was introduced. The Husimi function
[17,18] is the simplest case of Gaussian smoothing and is
defined as

c (»)= g &p ly„)e (24)

pH(qp) f f pw(q p )

In order to induce a
I P )~ I P ) transition there has to

0
be at least one Floquet state which connects IP ) with

0

). Thus the degree of localization of the Floquet
states affects the efficiency with which the system absorbs
the external energy.

III. QUANTUM PHASE SPACE
or equivalently,

X exp —g(q' —q)—

x dq'dp', (28)

p (q,p)= f 0—"(q+yW(q —y)e"'4' (25)

where q and p are the canonically conjugate displacement
and momentum. In this formalism every operator
A (Q,p ) in Hilbert space is associated, via the Weyl trans-
formation, to a function & ii (q,p):

p ~(q,p) = f g* q+ —3 (q,p )g q
——e' dy .

(26)

Properties of classical dynamics are conveniently stud-
ied in a phase-space representation. The uncertainty
principle precludes the direct transfer of this concept and
that of distribution functions to quantum mechanics.
Nonetheless the so-called quasiprobability distribution
functions have proved to be extremely useful in studying
the correspondence between classical and quantum
mechanics. The Wigner function [15,16] is one of the
most frequently used of these latter functions and for a
one-dimensional system described by a wave function itt)
is defined as

1, 1 8
pH(q p)= exp —,

' —,+4
277 ()q Qp

pw(q p)

(29)

where
1/4

exp — (x —q) +ip x ——
2 2

(30)

2

pH(q, p, r) =
2m

(31)

The choice of g is not unique and setting its value to the
natural frequency of the unperturbed system was origi-
nally proposed by Husimi. However, his arguments can-
not be directly employed in the present context. The
choice of the coarse-graining parameter for the SSE
Hamiltonian has been previously discussed [19] and is
based on the following observation [20]. If pH(q, p) is the

is the coherent state, a=Yg[q+i(pl()], and g is a
coarse-graining parameter. Using the expansion (10) we
may rewrite (29) as
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Husimi representation of a wave function g), then

&e'&a f f'q Pa(eP)dedP=&e'&+
2
1

and

(32)

1 1 8
Ha (q,p ) = exp —— +g4 ( Bq' Bp'

= &e.l8le. & .

Hii, (q,p)

(39)

(p')—:f fp'p (q,p)dq dp=(p')+ —,'g, (33)

where (q ) =(pl"q lg) (p ) =(g p liit). On the other
hand,

The time evolution of the Husimi function may be writ-
ten as [17,21,22]

&e &a—= f f epa(e S )de dS = &e & ~

&s & =—f fpp (es»deds =&p&

(34)

(35)

~Pa A 1 ~ ~H ~Pa
~,

=
I Ha S a I +

2

(q')», (p')» —,'g
1

(36)

( q ) = ( p l q l g ), and (p ) = ( 1it p l
1(t ) . It is apparent from

(32)—(35) that coarse graining artificially increases quan-
tum fluctuations. Note that the average of the Husimi
operator Aa(q, p) with respect to the Husimi distribution
( )a is identical with the average of the Wigner operator
A~(q, p) with respect to the Wigner distribution ( ) ii„
( Aa )a = ( A g ) ~= ( A ), i.e. , the quantum average of
an observable is independent of the representation of the
distribution function. However, the average of q or any
other phase-space function may change when evaluated
in the Wigner and the Husimi representations separately,
as indicated by (32) and (33). In order to obtain a reliable
phase-space representation of li)'j), we require that

2 - ~'~H w 1a . a+ —$ i
Im —— +i

pq' 2 g' Bq Bp

(40)

where Planck s constant is written explicitly to distin-
guish between the "classical" contribution to the time de-
velopment given by the Poisson bracket and the "quan-
tum" contribution represented by the third term. Im in
the above equation denotes the imaginary part of the fol-
lowing quantity. The second term in (40) arises from
coarse graining and does not have a quantum origin.

To describe the propagation of a Gaussian wave packet
we calculate the time evolution of the quantum uncer-
tainty U using the position uncertainty hX and the
momentum uncertainty AP:

or U =AXAI', (41)

((g((2&p') .
2 q

(37) where the position uncertainty is given by the variance

Later in this paper we show that for large principle
quantum numbers the expectation value (p„le lp„) for
the unperturbed eigenfunctions lP„) is proportional to
n" and the expectation value (p„lp lp„) is proportional
to 1/n . Thus the criterion (37) reads

and the momentum uncertainty is given by the variance

&p(t ) = [ & p(t) lp'l g(t) &
—(( p(t) p l g(t) &

)']'" (43)

~&(t) =[&&(t) lx'lg(t) &
—(& g(t) lx lq(t) &)']'", (42)

1 2

2n n
(38) Using expansion (10) we may write the moments in (42)

and (43) generically as

if we choose the coarse-graining parameter in (38) equal
to the natural frequency of the state

l P„): g= 1/n,
then this relation is satisfied. One should realize however
that these arguments are valid only for a pure state. If
one investigates the time evolution of a strongly per-
turbed system or if an initial condition is chosen as a
linear combination of pure states (e.g., the minimum un-
certainty wave packets considered in this paper) the situ-
ation becomes much more involved. For all the Husimi
functions presented in this paper we use g= 1/(66) a.u. ,
which is the frequency of the driving force. This choice
assures the faithful phase-space representation of the hy-
drogenic basis states without the excessive distortion of
the minimum uncertainty wave packets used in the simu-
lations.

The Husimi representation Ha(q, p) of the Hamiltom-
an A (g,P ) is defined by [17]

(g(t)lOlp(t)) = pc,*(t)c,(t)(P, Olf, )e ', (44)

while

p„„=O . (46)

The calculation of the matrix elements for x and p may
be efhciently performed in the momentum space repre-

where 0=x, x, p, p, etc. The above coefficients c;(t)
are solutions to Eqs. (13). The nondiagonal matrix ele-
ments of the x operator are given by (17) and employing
(16) we obtain the nondiagonal matrix elements for the p
operator:

p„„,= (p„ lp lp„) =ix„„(«„—«„,, ),



4654 MIROSLAW LATKA, PAOLO GRIGOLINI, AND BRUCE J. WEST 47

sentation; using (15) we obtain

4&nn'
pnn' =

2 =1
pnn

n
(48)

X
~ p cos[2n arccot(np) 2—n'arccot(n'p)]

2 dp
0 (1+n p )(1+n' p )

(47)

To evaluate the matrix elements of x we additionally
employ its momentum space representation —(8 /Bp )

to arrive at

2 8n' V nn' ~ (3n' p 2n—' —1)cos(f) 6—n' p sin(f)
2 dp

0 (1+n' p ) (1+n p )
(49)

f =2n'arccot(n'p) —2n arccot(np),

n (1+5n )
Xnn (50)

ol

dt a r )fc
1

dt* ap
(55)

Using (14), (46), (48), and (50) we derive the following for-
mula for the position uncertainty AX„, the momentum
uncertainty hP„, and the total uncertainty U„of the
eigenstate P„) of the unperturbed Hamiltonian Ho:

bX =n( —'+ —'n )'~
2 4

1hP„=—,
n

—(1+ 1n2)1/2
2 4

(51)

(53)

I *=p2+H(x,p, t), (54)

which is by definition identically equal to zero. If we
parametrize the trajectories in the extended phase by t *

one of the Hamilton's equations of motion reads

Equations (51) and (52) have a very simple interpretation
in the pseudoprobability phase space [19]. With the
growing principal quantum number n the Husimi repre-
sentation of

~ P„) is stretched along the position axis and
contracted along the momentum axis which rejects the
structure of the corresponding classical trajectory. More-
over, the maximum of the distribution is peaked at the
turning point 2n of the classical trajectory. From Eq.
(53) we can see that for large n the quantum uncertainty
grows approximately linearly with n. The integrals in
(17), (47), and (49) have been calculated numerically and
in some cases tested against the analytical results ob-
tained with the help of the symbolic algebra packages
(e.g. , MATHEMATICA).

The singularity of the Hamiltonian (1) at x =0 causes
problems during numerical integration of the classical
equations of motion. To circumvent these difficulties we
used the regularization method suggested by Leopold and
Richards [23]. It is based upon the use of the extended
phase space in which time and energy are considered as
two additional conjugate variables. In this way the
theory of canonical transitions may be extended to in-
clude time [24] since it is one of the generalized coordi-
nates. In the case of the driven SSE Hamiltonian the ex-
tended phase space is four-dimensional (x,p, t,p2 ) with
p2= H(x, p, t) being a—generalized momentum conju-
gated to t. We introduce the new Hamiltonian given by

t =t*+const . (56)

The remaining equations are the same as in standard
Hamiltonian theory. In this formalism time transforma-
tion is accomplished by multiplying r* by an arbitrary
function. In order to remove the singularity at x =0 the
new Hamiltonian may be formed:

I =4xI *=4xp +2xp +4Fg (t)x cos(Qt) —4 .

The canonical transformations

x =q I, p] =2q)p

(57)

(58)

and the change of notation t ~q2, I +4—+r enables one
to write (57) as

I =
—,'p, +4p2q, +4Fg(q2)q, cos(Aq2) . (59)

When g(t) is chosen as a unit step function then the
Hamiltonian I yields the following equations of motion:

pi

ar
ap&

ar = —8q 1p 2
—16Fq, cos(Oq2 ),

aq&

(60)

(61)

ar =4q )2 a 1
(62)

P2= ar =4FQq, sin(Qq2) .
aq2

(63)

To optimize the numerical calculations the set of equa-
tions (60)—(63) was integrated in the vicinity of the singu-
larity and the standard Hatniltonian equations of motion
were used elsewhere.

IV. NUMERICAL RESULTS

In this section we discuss the inhuence of the initial lo-
calization of a Gaussian wave packet in the quantum
phase space on its subsequent time evolution. For all
classical and quantum simulations discussed here the per-
turbation was turned on suddenly [g(t) is a unit step
function], A= 1/(66) a.u. and for most of the calcula-
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tions F =0.03/(66) a.u.
In Fig. 1(a) the Poincare surface of section of the classi-

cal phase space for F=0.01/(66) a.u. is shown. This
picture was constructed using the trajectories originating
from the turning points of the classical unperturbed or-
bits: q„=2n, p„=0, and n is an integer selected from
the interval [60,80]. For every trajectory a point was
plotted in the phase space ever period T of the perturba-
tion for a total of 200 periods. We have chosen these par-
ticular initial conditions to elucidate the structure of the
nonlinear resonance corresponding to the scaled frequen-
cy A'=1. We can see from Fig. 1(a) and the blowup of
the central section in Fig. 1(b), that all the trajectories are
apparently stable KAM tori. Increasing the field
strength to F =0.03/(66)" a.u. induces an instability in
the orbits resulting in the outermost KAM tori dissolving
into a chaotic sea, and the more central tori retaining
their stability, cf. Fig. 2(a). The stable region of Fig. 2(a)
is enhanced in Fig. 2(b), where we see that a number of
the inner tori have bifurcated into sequences of stable is-
land chains.

In further discussion we call this central region the sta-
bility island or stability region. In our quantum-
mechanical calculations we use three minimum uncer-
tainty wave packets initially localized in the phase space
at q, =8000 a.u. , p, =0; q2=10000 a.u. , p~=0; and

q3 =12000 a.u. , p3 =0. We refer to these packets as P„
P2, and P3, respectively. The initial Husimi functions for

q (a.u. / 1000)

0.02- (a)

these three packets differ only by their location in phase
space so that in Fig. 3 we present only the one corre-
sponding to the packet P, . The comparison of Fig. 3
with the structure of the classical phase space in Fig. 2(b)
(the vertical gridlines in this picture refer to the initial
position localization of the packets) shows that the pack-
et P, is well embedded in the stability island while the
packet P2 just barely overlaps with the island. On the
other hand, the packet P3 is totally outside the stability
region, in the chaotic portion of the phase space. The
projection of the packets P, , P2, and P3 on the basis state
~P„) of the unperturbed Hamiltonian is given in Fig. 4.
In Figs. 5 —7 we present the time evolution of these wave
packets in the Husimi representation. The range of posi-
tion q (0, 20000 a.u. ) and momentum p (

—0.03 a.u. , 0.03
a.u. ) used in the presented pictures comprises only a
small portion of the phase space. We have already men-
tioned that the Husimi distribution of the pure state

~ P„)
peaks in the phase space at 2n . Thus the maximum
value of position 20000 a.u. corresponds to the maximum
of the Husimi distribution for n =100. We can see from
Fig. 4 that the basis expansion of the packets P„P2, and

q (a.u. / 1000)
c5
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-0.02-

0.

-0.02 .

0.01

10

q (a.u. / 1000)

15 20

10 15 20

0.01

q (a.u. / 1000)

(b)

0- .) s ~

r
.~

-0.01
P

1

9 P
2

P
3

13

-0.01

I

(e

FICz. 1. {a) Poincare surface of section for 0=1/(66)' a.u.
and F =0.01/(66) a.u. (b) Magnified central part of Fig. 1(a).

FIG. 2. (a) Poincare surface of section for 0=1/(66) a.u.
and F =0.03/(66) a.u. (b) Regular part of the classical phase
space is enlarged to reveal the structure of nonlinear reso-
nances. The vertical gridlines correspond to the position locali-
zation of three minimum uncertainty wave packets used in
quantum-mechanical calculations. The packet P& was initially
localized at ql =8000 a.u. , the packet P2 at q2 =10000 a.u. , and
P3 at q3 =12000 a.u.
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dergo complicated evolution as shown in Figs. 6 and 7. It
is clear that they spread out to cover the region of the
phase space occupied by the outermost classical trajec-
tories. This spreading is particularly rapid and persistent
for the packet P3. However, the time scale of the motion
is short so that the presented snapshots cannot fully de-
scribe the nature of the quantum dynamics. This is
demonstrated more clearly by the time evolution of the
autocorrelation function or survival probability

0.02

20

-0.02

10 15 20

FIG. 3. Husimi function of the packet P& at t =0.
S(t)= ((1i(t)11i(0)) i' (64)

given in Fig. 8. Only values for times equal to multiples
of the period T are plotted.

The packet P, in Fig. 8(a) exhibits a very interesting
kind of fast collapse and revival whose amplitudes are
slowly varying functions of time. The envelope of the re-
vivals begins to decrease immediately after the perturba-
tion is switched on. The minimal value of 0.53 occurs at
t =60T. From the moment revivals become stronger and
stronger and at t =141Tthe survival probability achieves
the value 0.92. On the other hand, the minimum of the
envelope of the collapses drops to 0.02 at t =3T and
steadily grows to the maximum of 0.22 observed at

P3 are peaked at n, =64, nz =72, and n 3
=79, respective-

ly. In the course of time the distribution function of the
strongly perturbed packets may spread outside the indi-
cated region of phase space which can be clearly seen as
bumps at the edges of the pictures. The scales for the
value of the Husimi distribution were chosen for max-
imum resolutions and usually differ from one picture to
the other. In the accompanying contour plots six contour
lines, uniformly spaced between zero and the maximum
value of the Husimi function, were used. It should be no-
ticed that the Husimi distributions were calculated at
times which correspond to the maximum strength of the
driving force so that the pictures are usually not sym-
metric with respect to the p axis. This is distinct from
the results presented by Stevens and Sundaram [19],who
investigated the time evolution of the distribution func-
tion for the SSE Hamiltonian initially prepared in a pure
state; cf. (11). The symmetry of all their depicted Husimi
functions with respect to momentum suggests that the ex-
pectation value (g(t)~p~1lt(t)) would be identically equal
to zero. Inspection of equations (44) and (45), however,
as well as our numerical calculations, contradict this con-
jecture.

Figures 5 —7 reveal a significant inhuence of the struc-
ture of the classical phase space on the quantum dynam-
ics. The packet P, depicted in Fig. 5, originally located
within the stability island, remains very well localized
even after 100 cycles of the driving force, cf. Figs.
5(a)—5(c). The packets P2 and P3, on the other hand, un-
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FIG-. 4. Projection of three minimum uncertainty wave pack-
ets on the basis states of the unperturbed Hamiltonian Qo. Dot-
ted line corresponds to the packet P&, dashed line to the packet
P2, and solid line to P3.

FIG. 5. Time evolution of the wave packet P, initially local-
ized at the regular part of the classical phase space. The times
plotted are (a) 5 T, (b) 20T, and (c) 100T.
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t =70T. Then it decays gradually so that at t =132Tit is
equal again to 0.02. The autocorrelation function is fre-
quently used to extract information about the coherence
of the quantum dynamics. The very low envelope of col-
lapses at the early stage of the time evolution of the pack-
et P, is somewhat surprising since there is very little
spreading apparent in Fig. 5. The resolution of this prob-
lem is provided in Fig. 9(a) where the Husimi function for
the packet P, at t =3T is shown. The extremely low
value of the autocorrelation function is primarily a result
of the coherent displacement of the packet from its initial
position. Another example of this type of behavior is
given in Fig. 9(b) which shows the distribution function
for the packet Pz at t =2T when the survival probability
is equal to 0.01. In this case besides the coherent dis-
placement a noticeab1e amount of spreading may also be
observed. %'hile the time development of the survival
probability of the packet PI is quite regular the other
packets Pz and P3 quickly lose the correlation with the
initial state and their subsequent evolution seems to be er-
ratic [cf. Figs. 8(b) and 8(c)]. Despite this irregular
behavior the autocorrelation function may be as high as
0.44 at t =16T for the packet Pz and 0.42 at t =81T for

the packet P3, which demonstrates the presence of strong
quantum-mechanical correlations. Analyzing Fig. 8(b)
we discover in the initial evolution and later at t =100T
the ghost of the quasiperiodic behavior of the packet Pz.
There is no similar behavior in Fig. 8(c) which corre-
sponds to the packet P3. This observation provides addi-
tional evidence that the quantum dynamics is strongly
affected by the structure of the classical trajectories in
phase space.

A quantitative measure of the spreading observed in
the above pictures is given by the quantum uncertainty
[cf. (41)—(44)]. In Fig. 10 the change in U(t) over time is
graphed for P, , Pz, and P3. It is clear from this figure
that there is essentially no change from the initial uncer-
tainty in PI, that the uncertainty in Pz is substantially
larger, and that in P3 is the greatest of the three. If we
examine the position uncertainty and momentum uncer-
tainty separately in Figs. 11 and 12 we can see that the
large oscillations in U(t) are primarily due to abrupt
changes in the momentum uncertainty over time. The
character of the temporal evolution of momentum uncer-
tainty may be elucidated if one realizes that the minimum
uncertainty wave packet is the linear combination of
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FICx. 6. Time evolution of the wave packet P& initially over-
lapping with the regular part of the classical phase space. The
times plotted are (a) 5 T, (b) 20T, and (c) 100T.

FIG. 7. Time evolution of the wave packet P3 initially local-
ized in the chaotic region of the classical phase space. The
times plotted are (a) 5T, (b) 20T, and (c) 100T.
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many unperturbed basis states, each having a different
natural frequency. The superposition of motions with the
different frequencies yields the observed erratic behavior.
This interpretation was confirmed in our numerical cal-
culations performed on the driven SSE Hamiltonian ini-
tially prepared in the state ~P„). If the external pertur-

0
bations are strong enough to significantly populate
several basis states the momentum uncertainty exhibits
irregular evolution. Otherwise it is a slowly varying func-
tion of time. There is some short-time variation in the
position uncertainty, but its time evolution is dominated
by an apparent diffusion process. If we disregard the tran-
sient, the position uncertainty of P2 and P3 grows ballis-
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FICz. 9. Husimi function of (a) the packet P, at t =3T, (b) the
packet P2 at 2T.
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FIG. 10. Time evolution of quantum-mechanical uncertainty.
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same as in Fig. 10.
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FIG. 12. Time evolution of momentum uncertainty. The
legend same as in Fig. 10.

[29] about the functional form of the distribution of
nearest-neighbor quasienergy level spacing. When the
corresponding classical system undergoes a transition
from integrable motion to chaotic motion it is rejected in
the change of level statistics from Poisson-like to
Wigner-like (avoided level crossing distribution). More-
over, it was shown by Graffi, Paul, and Silverstone [30]
that the threshold for avoided level crossing coincides
with that predicted by Chirikov's resonance criterion [12]
for the onset of stochastic behavior in classical Hamil-
tonian systems.

The Floquet approach was used to estimate the thresh-
old for the onset of ionization in the SSE Hamiltonian
[11,31—33]. For small perturbations the Floquet eigen-
vectors overlapping the initial wave packet are well local-
ized about the unperturbed hydrogen eigenfunctions.
When the strength of the perturbation exceeds a critical
value, quasienergy vectors spread out which via Eq. (24)

tically with time AX o- t. Note that this is not the
diffusive mechanism discussed by Casati et al. [9] and
later by Jensen, Susskind, and Sanders [10]. They dis-
cussed the diffusion of action in action-angle space using
a Fokker-Planck equation with an action-dependent
diffusion coefFicient. Here the "diffusion" is in
configuration space.

Finally we may attempt to draw the conclusion that
the quantum dynamics may be stabilized in the vicinity of
the regular regions in the classical phase space. This
behavior was also found in the driven double-well oscilla-
tor [1] and in the case of the SSE Hamiltonian prepared
in the pure state ~P„) discussed earlier by Jensen et al.

O

[4]. However, both Lin and Ballentine [1,2] and
Takahashi and Saito [25,26] found that if the wave packet
is located in a classically chaotic region it spreads to cov-
er the entire chaotic sea. The comparison of the Husimi
functions shown in Fig. 7 with the structure of the classi-
cal phase space Fig. 2 suggests that this scenario is also
applicable to the perturbed SSE Hamiltonian. We should
realize however that the time evolution of the Husimi
function is the intricate interplay of "classical" and
"quantum" terms in Eq. (40). This interplay was dis-
cussed by Bonci et al. [27,28] with regard to the evolu-
tion of the Wigner distribution in their discussion of a
two-level atomic system interacting with a one-mode ra-
diation field. As a result of this interplay the portion of
the phase space accessible to the quantum wave packet is
in the present study sharply reduced compared to the
classical trajectories. Moreover, despite the spreading
the wave packet retains its quantum properties as is
clearly refIected in the time development of the survival
probability. The presence of quantum interference is also
manifested in the structure of the Husimi distribution
which does not uniformly cover the phase space but is
usually made up of several "islands. "

V. FLOQUET ANALYSIS
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FIG. 13. Floquet spectra corresponding to the wave packets
(a) P&, (b) P&, and (c) P3.
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lead to a rapid delocalization of the initial wave packet.
Jensen et al. [4] have shown that the kind of Husimi rep-
resentation of quasienergy states excited at the end of the
slow switch-on of the perturbation are highly localized
near unstable periodic orbits in the chaotic classical
phase space. It was suggested that this provides an ex-
planation for the existence of the anomalously stable
states found in the experiments with microwave-
perturbed highly excited hydrogen atoms. This is remin-
iscent of the scarred wave functions found by Heller [34]
in the stadium billiard or the wave function of the Ryd-
berg atom in a strong magnetic field [35].

We have already pointed out (23) that only Floquet
states initially overlapping the wave function contribute
to its time development. We define the Floquet spectrum
as [3]

(65)

I(E) is given in Fig. 13 for the three cases studied. The
spectrum of P, as shown in Fig. 13(a) is dominated by
two QES, E& =2.477 with Ip (Et ) =0.546 and

1

E2=1.452 with Ip (Ez)=0.281. The Husimi representa-
2

tions of these states are shown in Fig. 14. We can see
from this picture that both states are very well localized.
The total uncertainty is equal to DUE =4. 1 a.u. for the

1

state E, and EUz =3.6 a.u. for the state Ez. These
2

values of the quantum uncertainty are very low in com-
parison with the uncertainty of the eigenfunctions ~P„)
peaked in the same region of the phase space. Calculat-
ing (53) for n =66 we obtain the uncertainty of 33 a.u.
Moreover, the comparison with the portrait of the classi-
cal phase space Fig. 2(b) shows that these Floquet states
are embedded in the stability island. While the dynamics

o o4~

0.0

0.02

a. 0

-0.02

10 15 20

FIG. 15. Husimi representation of the quasienergy state
significantly overlapping with the packet P2. E3 =0.476,
Ip (E, )=0.189. This packet overlaps also with the QES from

2

Fig. 14(b), in this case I~ (E2 ) =0.185.
2

of P& is determined by a very small number of QES, the
time evolution of P2 and P3 involves a great number of
them. Figure 15 shows the Husimi distribution of the
QES E3=0.476 [cf. Fig. 13(c)] with the largest overlap
with the packet P2, Ip (E3 ) =0.189. The total uncertain-

2

ty of this state is DUE =4.7 a.u. It happens that the Flo-
3

quet state from Fig. 14(b) also significantly overlaps with
the packet P2, Ip (E2)=0.185. The Husimi representa-

2

tions of two Floquet states from the spectrum of P3,
E4 =2.522 with Ip (E4)=0.255 and E& =0.415 with

3

Ip (Es)=0.155 are presented in Fig. 16. The spatial ex-
3

tension of the distribution functions from Fig. 16 is much
greater than those from Figs. 14 and 15. This is clearly
rejected in the total uncertainty which for the state E4 is
equal to 6Uz =79.3 a.u. and for E5 is equal to

4

DUE =77.8 a.u. The significant difference between the
5

QES from the spectrum of the packet P3 and those from
the spectrum of P2 becomes apparent when we compare
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FIG. 14. Husimi representation of two quasienergy states
significantly overlapping with the packet Pj. (a) E& =2.477,
Ip (E j ) =0.546 (b) E2 = 1.452 Ip (E2 ) =0.281.

FIG. 16. Husimi representation of two quasienergy states
significantly overlapping with the packet P3. (a) E4=2.522,
Ip (E4 ) =0.255. (b) E5 =0.415 Ip (E5 ) =0.155.
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the values of the total uncertainty for five dominant Flo-
quet states from Figs. 13(b) and 13(c). For the packet Pz
the uncertainty varies from 4.1 to 11.6 a.u. , while for the
packet P3 it varies from 27. 1 to 84.2 a.u. We would like
to stress another feature of the Husimi functions in Fig.
16, namely, the long tails mimicking the structure of the
classical trajectories. This observation may be used as a
heuristic explanation of the migration of the packet P3
into the region of the phase space corresponding to low
quantum numbers.

We conclude this section with a brief discussion of the
general properties of the quasienergy states of the SSE
Hamiltonian. Bardsley et al. [32] classified the Floquet
states into three groups on the basis of their expansion
over the eigenfunctions ~P„): (i) state which primarily
overlap with a single low n state and thus do not differ
significantly from ~P„), (ii) transitional states, and (iii)
states which mainly overlap with high n states and whose
expansion coefficients decay as a power of n for large n.

Type (i) and (ii) states are always present in the spec-
trum of the Floquet operator C'. The range of the transi-
tional states depends upon the strength of the perturba-
tion. The spectrum of the packets P, and P2 is composed
of the very well localized transitional states with low
values of the quantum uncertainty. We have found the
distribution functions of the most localized states to be
centered over the classical stability island [cf. Fig. 14],
which shows the way in which the structure of the Flo-
quet states rejects the properties of the classical phase
space.

VI. CONCLUSIONS

In this paper we have investigated the inhuence of the
structure of the classical phase space on the quantum dy-
namics of certain minimum uncertainty wave packets.
We have found that the packets initially overlapping the
regular regions of phase space remain localized, while the
packets centered on the classical chaotic sea spread rap-
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FIG. 17. Time reversal experiment for the position uncer-
tainty for the packet I'3. At t =50T the time evolution was re-
versed. The symmetry of the curve shows the reversibility of
the quantum dynamics.
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FIG. 18. Survival probability for the time-reversal experi-
ment from Fig. 17.

idly. We analyzed the quantum dynamics using the Flo-
quet formalism and determined that the Floquet spec-
trum of the stable packets is dominated by a few quasien-
ergy states whose Husimi distributions are very well lo-
calized in the classical stability islands. Moreover, we
have found that the most localized Floquet states are
peaked in the vicinity of the stable island. The spectrum
of the most unstable wave packet is made up of the
greatest number of the QES whose corresponding distri-
bution functions are usually very elongated, thereby mim-
icking the shape of classical trajectories To elucidate the
complicated nature of the quantum evolution we intro-
duced the quantum uncertainty as a dynamical variable.
In the presence of the spreading of the wave packet the
time development of its quantum uncertainty is deter-
mined by the monotonic growth of position uncertainty
and the erratic oscillations of the momentum uncertainty.
Surprisingly enough, the position uncertainty increases
ballistically with time AX ~t until the packet fills the
available portion of the phase space. We stress that apart
from significant spreading the quantum interference
effects are clearly pronounced both in the time evolution
of the survival probability and in the structure of the
Husimi distributions. To emphasize the quantum nature
of these results we performed a "time-reversal" experi-
ment, reversing the direction of the time evolution at the
point when the spreading of the wave packets was almost
completed. As far as the numerical calculations are con-
cerned the time reversal may be accomplished either by
changing the direction of time during the numerical in-
tegration of the set of equations (13) or while using the
Floquet method by replacing the evolution operator C by
the adjoint operator C . In Fig. 17 we see that at
t =50T, the point at which the evolution was reversed,
the position uncertainty of the packet P3 retraces its path
as shown by the symmetry of the curve. This reversibili-
ty is a clear manifestation of quantum coherence
throughout the diffusion" of this packet. In the same
way the corresponding correlation function (survival
probability) depicted in Fig. 18 denotes the time reversi-
bility of the evolution process. Thus we see that the term
diffusion is misleading in this context and ought to be
abandoned.
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