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Inverse quantum-mechanical control: A means for design and a test of intuition
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The inverse quantum-mechanical control of molecules is studied using the equation of motion for the
expectation value of an operator. With this method, a requisite external field is obtained to track exactly
a prescribed molecular objective expectation value as a function of time. Applications to diatomic and

polyatomic molecules are formulated. While the method is directly applicable as a test of physical intui-

tion, it can in principle be used to design fields for specific objectives including reactive selectivity. Re-
sults are presented for position and energy tracking in the hydrogen fluoride molecular system. The nu-

merical calculations show that seemingly benign objective tracks may give rise to singularities in the
field. However, these singularities do not present problems in the evolution of the dynamical quantities
and instead provide useful hints for designing robust fields.

PACS number(s): 03.65.—w, 31.15.+q

I. INTRODUCTION

Control of chemical dynamics using external laser
fields has received considerable theoretical attention in
recent years [1—4). Generally, the problem is posed in
terms of designing a field which will produce a specific
physical goal in a molecular system, e.g. , cleavage of a
particular bond. To date, an especially attractive general
approach to the problem has employed the optimal con-
trol theory [5), a mathematical tool commonly used in
the engineering fields. In this method the relevant physi-
cal aspects of the problem are translated into a
mathematical cost functional whose minimization with
respect to the electric (control) field function aims to
achieve a particular set of physical goals. The optimal
control method is appealing because it allows for wide

flexibility in choosing the relative importance of various
desired objectives and penalties. A drawback is that even
for mildly complex systems (including small molecules)
the minimization of the objective functional must be per-
formed by an often computationally intensive iterative
optimization procedure.

In this work we explore an alternative method for
designing fields which produce specified objectives in
quantum-mechanical systems based on nonlinear inverse
control theory [6]. The use of inverse control is concep-
tually simple and largely unexplored in molecular dynam-
ics, although it has been used in robot and other en-
gineering control problems. In simple terms, in the in-
verse control approach, the time-dependent path of a
desired observable expectation value (O), =yd(t) is

specified a priori, and one seeks the control optical field
E(t) that will exactly meet the demand. If the expecta-
tion value yd(t) is chosen reasonably, then desirable con-

trol will be achieved without resorting to an iterative op-
timization procedure. This procedure can, in fact, be
shown to be equivalent to optimal tracking of an observ-
able using the optimal control method where the cost
functional contains nothing but the tracking demand. In
this paper we present some applications and an evalua-
tion of the inverse quantum-mechanical control ap-
proach.

The theoretical basis for the inverse quantum-
mechanical control was established by Ong et al. [7,8],
who developed necessary and sufficient conditions for the
existence and uniqueness of the solution to the inverse
quantum-mechanical control problem [7„8]. In this pa-
per, we apply the inversion procedure to position and en-
ergy tracking in a diatomic system. The practical
difficulties arising from possible singularities in the field
obtained by inversion are also discussed.

We are also pursuing inverse control for an analogous
classical mechanical problem [9] which has a connection
to recent studies on classical goal dynamics tracking [10].
In this paper, we will confine ourselves to presenting re-
sults for quantum-mechanical inverse control only, but
the procedure is completely analogous to that for the
classical problem.

The balance of the paper is as follows. In Sec. II, we
define the control model for a quantum-mechanical sys-
tem and the inverse control approach. The connection to
optimal control theory is also shown. Section III devel-
ops the application to different tracking problems and
discusses the issues of singularities arising from the in-
verse control formulation. Results for the inverse
quantum-mechanical position and energy tracking for a
diatomic molecule are presented in Sec. IV. Concluding
remarks and future perspectives are presented in Sec. V,
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and a proposed method for application of the inverse
control method to polyatomic systems is discussed in the
Appendix.

II. THE CONTROL SYSTEM
AND THE INVERSE PROBLEM

for E (t) and replacing d ( 0 ) /dt with the time derivative
of the desired trajectory, dyd /dt H. owever, if [O,P.e] is
identically zero, then Eq. (3) is not an invertible relation.
In such a case, the differentiation must be continued to
obtain a higher-order equation which is invertible or, in
other words, until the control first appears. To simplify
notation we define a sequence of operators (i =0, 1, . . . )

We consider here a molecular system interacting with
an external field E(t). Its evolution is governed by
Schrodinger's equation

BO,
0;+,= . [0;,Ha] — [0;,p, e]E(t)+

0t
(4)

ih ' =[HD —p(r) E(t)]g(r, t),(r, t)
Bt

where H0 is the field-free molecular Hamiltonian (i.e., ki-
netic plus potential-energy operators) and p(r) is the di-
pole moment operator. In the laboratory one measures a
physical observable y (t), which is the expectation value
at time t of the Hermitian operator 0 corresponding to
that particular observable:

y (t) = (0 ), = (1((t)~0 ~/(t) ), (2)

where the operator 0 could also contain an explicit time
dependence.

The inverse control problem is expressed as follows.
The molecular system is viewed as an input-output sys-
tem: the input is the external field E(t), and the output is
the expectation value y(t) As su. ch, the molecular sys-
tem deterministically maps an input function into a scalar
output function; Eqs. (1) and (2) define the input-output
system. The internal state of the input-output system at
time t is the wave packet g(r, t) and thus the internal
state is infinite dimensional. Cziven an arbitrary external
field on the interval [0, T] and the initial condition
g(r, O), the output y(t) can be computed from Eqs. (1)
and (2). The inverse control problem is stated as follows:
given a desired output yd(t) on [0, T] that is the desired
time-dependent path, or trajectory, of an expectation
value (0 ) „determine the external field E(t) on the same
interval that will produce it.

The inverse control solution is constructed by
differentiating the output [Eq. (2)] with respect to time
until the first appearance of the control field E(t). Here
the first derivative of the output y (t) is the equation of
motion for the expectation value ( 0 ) (Heisenberg' s
equation of motion):

= .
'

&[O,H. ])—.
'

&[O,u(r)]) E(r)+ '
(3)

where [O,H0] and [O,p(r)] denote the commutator of 0
with H0 and with p(r), respectively. [As written, E(t) is
a vector with possibly three independent components; in
such a general circumstance, equations of motion for
three distinct operators 0„,0, and 0, would be needed
for an inversion. More commonly, the field is polarized
along a chosen axis E(t) =eE(t) and the solution for the
simple scalar field E(t) is sought. The more general case
will not be considered further here. ] The inverse control
solution is found by inverting this equation and solving

so that by differentiating the equation of motion (3) i
times we obtain

di+1(0 )
dt'+ ([O, ,H0]) —. ([0;,p e])E(t)

E(r)=

d +'yd(T) BOk
i% —„, + (Ok, H0] ) +imari

dt k+1 Bt

&Io~ P e])

Note that for i =k, Eq. (S) is a k+1 order differential
equation whose solution requires k +1 initial conditions:
(0),=0, [d&0)/dr], =0, . . . , [d "&0)/dt "I, 0. Since
the inverse control only serves to ensure that
[d"+'(0 ) /dt ] is equal to Id"+'yd /dt"+' } for all t, the
initial wave function 1((r,O) has to be consistent with the
k + 1 initial conditions at t =0 for exact tracking.

Knowledge of the wave function g(r, t) is required to
compute the inverse control field given by Eq. (6). Since
direct measurement of the wave function is not possible,
g(r, t) must be predicted using a mathematical model.
For this initial application of the inverse control method
to molecular control, we assume that our mathematical
model is error free.

The inverted field in Eq. (6) depends upon the wave
function g(r, t) through the expectation values
([Ok,80]) and ([Ok,p e]), which represent a kind of
"feedback" from the system. Thus the field depends ex-
plicitly on time through yd(t) [and Ok(t) if the operator
O„also has an explicit time dependence] as well as impli-
citly on time through a functional dependence on g(r, t).
Taking this into account, Schrodinger s equation (1) can
be rewritten as

i' ' =[HD p(r) eE(t, g(r, t—))]g(r,.t) .Bg(r, t)
Bt

(7)

This is a highly nonlinear differential equation through
the extra dependence of E(t) upon f(r, t) (i.e., although
Schrodinger's equation is normally thought of as linear,
in the context of inverse quantum-mechanical control it

(")
Equations of higher and higher order (i.e., increasing i)
are constructed until for i =k, ( [Ok,P.e]) is found to be
nonzero (k +1 is called the relative order of the system).
This provides us with the desired invertible relation be-
tween the control and the output as well as its deriva-
tives. Solving Eq. (5) for the field we obtain
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is nonlinear). Solution of this equation will yield P(r, t),
which is substituted back into Eq. (6) to obtain the con-
trol field.

The entire inverse control procedure can be understood
more clearly if we assume that the time interval [0, T]
over which we wish to track our observable is discretized
into N+1 closely spaced points tp ti t2 . . . t~ where
tp=0 and t&=T. At time tp the expectation values in
Eq. (6) are computed using the initial wave function
P(r, to ). These values along with [ d "+'yd /dt "+'], are

substituted into Eq. (6) to determine the control field
E(to). The wave function is then propagated from to to
t, with Schrodinger s equation (1) using E(to). Next the
expectation values in Eq. (6) are computed using the wave
function tP(r, ti), which along with [d"+'yd/dt"+'I,
are substituted into Eq. (6) to determine E(t, ). The wave
function is again propagated from t, to t2 with
Schrodinger s equation (1) using E(t, ). This process is
repeated until the terminal time t~ is reached and is the
basic algorithm used in this work for implementing the
inverse control method.

As discussed in Sec. I, much of the recent research per-
taining to the quantum-mechanical control has employed
optimal control theory [2—4]. It is therefore instructive
to compare the inverse control approach of this work to
the optimal control approach as applied to the problem
of optimal tracking. In the context of the present paper,
the natural optimal control functional J for achieving an
objective trajectory yd(t) in competition with a fiuence
term weighted by a factor a is

2= f [y(t) yd(t)] dt+—a f E (t)dt . (g)
0 0

This functional is minimized with respect to the control
field E(t) subject to the Schrodinger equation (1) and
ideally provides an optimal field striking a balance be-
tween the tracking goal and the desire to keep the field
fluence down. It can be shown that for ca=0 the optimal
control field is the one that results in exact tracking. In-
verse control allows for y (t) to be exactly yd(t); no itera-
tion is called for, but the field E(t) may have undesirable
characteristics because there is no simple provision for
field restrictions as in the optimal control case (e.g. , the
fiuence penalty).

Past experience has shown that intuition is generally
inadequate for determining the field required to achieve a
specified value of a molecular observable at a given final
time T. The inverse control approach shifts the
designer's burden from determining the field to determin-
ing the trajectory of the observable leading to the
specified value at time T. The designer's intuition may
prove more successful in choosing the observable trajec-
tory. Again, for the inverse control approach, the mea-
sure of success is the reasonableness of the required field,
since yd(T) will be achieved by design. In using the in-
verse control approach, one must also be concerned with
the so-called zero dynamics [6]. Exact tracking of a
desired output trajectory does not ensure that all is well
with other aspects of the evolving molecular system. The
field required to achieve exact tracking may produce
unacceptable behavior in other observables of interest.

III. APPLICATIONS

In general, the chosen observables to be tracked will
depend not only the physical goals we wish to achieve but
also on the particular molecule and laboratory con-
straints. Below we consider some typical cases.
Case (i): 0= ~m ) & m ~, a projection operator defined in
terms of the mth eigenstate

~
m ) of the zeroth-order

Hamiltonian. The prescribed objective trajectory yd(t) in
this case is

where

f(r, t)=pc„(t) exp( —iE„t/R)~n ) (10)

aild

H, ~n ) =E„~n ) .

Physically, y (t) signifies the tracking of the probability
of being in the mth state of the system. A typical chosen
trajectory y (t) might be a function following a gradual
path from y (0) to y (T) with oscillations corresponding
to the natural frequencies of the system. The inverse
solution for the field is given by [see Eq. (6)]

—iiriy, + & [ ~
m & & m ~, II, ] &

(12)
&[~m)&m~, p e])

E(t)=

with an initial wave function i'(r, O) chosen such that
& O ),=,=y~(0).

Case (ii): 0=Ho, the energy operator; the objective
trajectory here is

y (t)=y, (t)=&H ), = &P'), +& I'), ,

and the inverse solution for the field is given by

(14)

with any initial wave function P(r, O) chosen such that
&O), = =y, (0).

Case (iii): O=x, the position operator corresponding
to the internuclear distance of a particular bond; the ob-

Finally, we mention that although often one wants only
to achieve a specified value of an observable at a target
time T (and therefore one must use the optimal control
method to design the control field), in some cases it might
be useful to specify an entire objective track instead. For
example, if the output y(t) is wildly oscillatory, then
problems will arise if the timing of the field with respect
to the target time T is slightly skewed because then the
output will be far away from the desired value. By
prescribing a smooth (as opposed to a wildly oscillatory)
track and using the inverse control method to design the
field, we can ensure that the transition from the initial
system state to the desired final state yz(T) will be
smooth. This may prevent large deviations between the
desired value of the observable at time T and the realized
value even if the timing is slightly off.
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jective trajectory here is

yd(r)=y„(r)=(x), . (15)

In this case [x,P]=0 and hence Eq. (6) cannot be directly
employed. As explained in Sec. II, we construct a
higher-order operator from Eq. (5), i.e.,
Oi = [x,HO]lih=plm. The inverse solution for the field
is then given by

perhaps minor expense of (0), not exactly tracking
yd(t) (and the additional hidden expense of iteratively
finding the field). One sees then that the singularities may
arise from the demand of exact tracking of yd(t) with in-
verse control. However, in the vicinity of yd (t) there will
likely be other trajectories that exhibit no singularities.
It is then a practical matter to explore the balance be-
tween the desired output trajectory and desirable field
behavior.

i f—imy„+ ( [p,HO] )E(r)=
(p,p e])

(16) IV. ILLUSTRATIONS

with any initial wave function 1((r,0) chosen such that
(0), O=y (0) and (dO/dt), o=y (0).

In both cases (i)and (ii) the field may have multiple iso-
lated singularities due to the denominator passing
through zero in Eqs. (12) and (14). For case (iii), the
denominator in Eq. (16) is equivalent to the dipole gra-
dient. Here, isolated singularities will arise only if the
evolving wave packet significantly samples a region
where the dipole moment function reaches an extrema.

It is worth exploring the issue of singularities in more
detail since they are likely to occur in many quantum-
mechanical inverse control problems. Referring to Eq.
(5), it is seen that the dynamical equation remains well
behaved even if there is a singularity in the field as long
as the product of the field E(t) and the quantity
( [Ok,p.e] ) remains finite. However, numerically a
practical problem arises because we must integrate the
Schrodinger equation through the singularity in time.
The singular behavior of the field results in a very large
field amplitude and therefore causes g(r, t) to oscillate
very rapidly in the region of the singularity and can result
in numerical errors. However, in actual calculations
where field singularities occur, one virtually never exactly
hits the singularity and no real difficulties were encoun-
tered due to the finite-time step size of the numerical in-
tegration procedure. Most importantly, for the results
presented in this work, accurate tracking of (0 ), was
maintained while passing through the singularities. This
result clearly implies that the field amplitude near the
singularities may be "cut oA ' to some reasonable finite
level and still retain good quality control, as will be
demonstrated in Sec. IV. Thus, from a design point of
view, the practical significance of attempting to create a
near-singular field in the laboratory may not be serious.
The important question is how far one may truncate the
field amplitude near the singularities and still obtain ac-
ceptable tracking results. One could numerically experi-
ment by truncating the field at the singularity to assess
the level of field truncation that still leaves a minimal de-
viation from the objective trajectory. Furthermore, in
most real problems the objective trajectory yd(t) should
be viewed as a flexible guide to the desired output; some
level of deviation will be acceptable. Some numerical ex-
amples of field singularities will be shown in the following
section.

Finally, in relation to the above discussion it is instruc-
tive to return to the optimal control formulation in Eq.
(8). The presence of the fluence term with a&0 assures
that the field solution is "well behaved, " but at the

Here we apply the inverse control formalism to posi-
tion and energy tracking on the hydrogen fluoride mole-
cule which here is modeled as a nonrotating Morse oscil-
lator [11]. Specifically, the interaction potential is

V ( x ) =D [ 1.0—exp [ —I3(x —x, ) ] ]

and the dipole moment is

(17)

A. Position tracking

Here O=x [case (iii) in Sec. III] and for this one-
dimensional problem the expression for the control field
for position tracking is [cf. Eq. (16)]

dV x

E(r)=

(
dy(x)

)

(19)

The objective trajectory is the internuclear distance
ydt)=y„(t). This tracking trajectory could be imposed
with any logic, including digitization of a smoothly
drawn curve. Here the following classical equation of
motion for an antidamped oscillator is used to generate
the trajectory:

my
dV(y )

+yy
x

(20)

where I is the reduced mass of the oscillator and y )0.
The solution of the above equation is used only as an
artificial device to generate a suitable smooth trajectory
for y„(t). Similar devices have also been employed to
generate goal dynamics in studies of classically nonlinear
driven oscillators [14]. The advantage of using Eq. (20) is
that since the interaction potential V(y„) is the same as
that of the actual system, the trajectory y (r) thus gen-
erated has oscillations at the natural frequency of the sys-
tem.

As previously discussed in Sec. III, the initial condi-

p(x ) =Bx exp( —gx ) .

The parameters of the Morse potential V(x) and the di-
pole moment p(x) are the same as those in Ref. [11]. In-
tegration of Schrodinger's equation is performed using
the split-operator scheme [12] and exponentiation of the
kinetic-energy operator is performed using the fast
Fourier transform (FFT) algorithm [13]. Convergence
with respect to grid point spacing and time step was
checked. Atomic units are used throughout this section.
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E(t)=

«((. ( av(~()+

(dp(x()
(21)

If the potential is harmonic, then ( d V(x ) /dx
=d V(y„)/dy at all times. Assuming the dipole gradient
can be approximated by a constant a ,'i.e., p~[' . !x)=ax], the
control field is

E(t)=yy, a . (22)

Since the solution for Eq. (20) with a harmonic potential
is of the form

y (t)= 2 exp(yt) sin(nih„ t +9), (23)

where coh„ is the natural frequency of the harmonic os-
cillator, then by Eq. (22) the control field is also an osci-
lating function of frequency ~h„m mu 'p ymulti lied by an ex-
ponentially rising amplitude. This conclusion was borne
out numerically (not shown here).

Now consider the case of an anharmonic potential
wh1ch 1S arh h

' "h d" for x (x and "soft" for x )x, (i.e. ,eq
like a Morse potential):

2 I t 3V(x)= —,'k(x —x,q)
—

—,'k (x —x, )

+ —,', k "(x —x, )— (24)

w ere k, k', k", . . . )0. Considering only the first two
terms in Eq. (24), the classical potential gradient is

tions of the generated trajectory y (0) and y„(0 must
match the corresponding expectation values of the initia
wave packet, (x ),=p and (P ), p. Here, the initial wave
packet was simply the ground vibrational eigenstate of
the hydrogen fiuoride (HF) potential, which is a reason-
able assumption if the system is at room temperature.
The position and momentum expectation values of this
wave packet, 1.77 and 0.0, respectively, were used as the
initial conditions for solving Eq. (20). (Changing the ini-
tial wave packet to, for instance a Gaussian centered at
the same initial position, does not qualitatively change
the results, though the inverse field obtained is different. )

Before presenting numerical results, a few conclusions
can be drawn about the nature of the control field from
Eq. (19) if the objective trajectory y„(t) is generated from
Eq. (20). Substituting Eq. (20) into Eq. (19), the control
field becomes

(27)

(28)

Thus as the field amplitude increases, so does d (Ep ) /dt
d h f re (H ) this in turn further delocalizes the

B E . (27) thiswave packet and increases the variance. By Eq.
increases the field amplitude further. Thus if the momen-
tum of the wave packet is large enough, this process wi

2.0

0
1.8

0
G4

Thus the control field possesses a strong (negative) dc
component and never changes sign, since it is proportion-
al to the negative variance of the wave function. Also, we
can predict within this approximation that as the wave
packet acquires more energy and becomes more deloca1-
ized, this dc field component will also increase.

We now turn to numerical results where, as in all of
the numerical calculations in this work, we employ the
HF Morse potential [Eq. (17)] and dipole moment [Eq.
(18)] in the integration of Schrodinger's equation. Figure
1 shows the objective trajectory y„(t) generated from Eq.
(20) using y =1.0. The potential V(y„) used for integrat-
ing Eq. (20) is identical to the HF Morse potential. Su-
perimpose on yd (t) in Fig. 1 is the achieved trajectory
(x ) obtained frotn propagating Schrodinger's equation
using the inverse control field [computed from q.E . 19)
shown in Fig. 2. Note that the tracking is perfect, i.e.,
y„(t) and (x ), are identical. Note also the presence of a

e field which in-strong (negative) dc component in t e
creases throughout the pulse length. This rise in field
strength corresponds with a similar increase in energy, as
seen in Fig. 3, which plots the energy expectation value
(Hp), . This correspondence can be rationalized by ex-
amining the equation of motion for (8p) [assuming
p(x) =ax]:

d(Hp) E(t)(p)a
dt I

dV(y, ) 2
X eq 2 X

=k (y —x ) ——'k'(y„—x, )

1X

and the corresponding quantum expectation value 1s

(25)

(26)

1.6

1000 2000 3000 4000 5000 6000 7000 8000

time (a.u. )

Assuming that the norm of the wave function is one and

yly. I(&IdV(y )/dy I, I(dV(x)/dx)I, and also n«ing
h ( )=(x ) for all t by construction of the inverse

21) be-control problem for position tracking, then Eq. ( e-
comes

FIG. 1. The objective position trajectory y„(t) generated
from the equation of motion for a classical driven oscillator q.r E.
(20)] with @=1.0. The potential V(y„) used to generate y„(t)
was the same as the HF Morse potential (see text). Superim-
posed on this is the achieved trajectory (x ),. Note that the two
trajectories are virtually identical.
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—0.0
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0.12
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time (a.u. )

0.00
0 1000 2000 3000 4000 5000 6000 7000 8000

time (a.u. )

FIG. 2. The inverse solution for the control field for the posi-
tion trajectory shown in Fig. 1. The field reaches a maximum
amplitude of —2.9 a.u. at the end of the pulse.

FIG. 3. The energy expectation value (Hp ) as a function of
time corresponding to the position trajectory shown in Fig. 1.

result in the exponential-like growth of the field intensity
and the energy expectation value, as shown in Figs. 2 and
3.

More physical insight into the origin of the strong dc
component can be gained as follows. The initial wave
packet g(r, 0) is a stationary state (since it is composed of
only the ground vibrational eigenstate) and thus the ex-
pectation value of its position and momentum (or any
other operator) does not change with time. Therefore, by
Ehrenfest's theorem,

d(P) dV(x)

Gaussian at low energies with its center matching the
classical position y (t), then (dV(x )/dx ), will be less
than Id V(y„)/dy„}, due to the asymmetry of the poten-
tial well. At higher energies, however, the wave packet
becomes more delocalized and its shape more irregular,
thereby complicating the analysis.

One possible way of avoiding the undesirable dc com-
ponent is to use a "shifted" potential for generating the
tracking (classical) trajectory, for example, a potential of
the form

V(y„)=—,'k(y —x, ) —
—,'k'(y, —x,q)

we know that ( d V(x ) /dx ), o is zero. However, be-
cause the potential is anharmonic, (x ), coax, . The ini-
tial condition of the objective trajectory y, (0) used in Eq.
(20) must be equivalent to (x ), 0 and thus the potential
gradient felt by the classical particle at t =0, i.e.,
Id V(y„)/dy„ I, o, is not zero. The control field compen-
sates for this discrepancy by using a (negative) dc field
component Ed, to add an "artificial" potential—p(x ) Ed, to the Hamiltonian in Eq. (1). Indeed, at t =0
it is found that

where x, )x, . Equation (21) then becomes [assuming
the growth term y is relatively small as in Eq. (27)]

0.4

0. 1

Px E, = dV(y, )

dJx
(30)

'0 —0.0
bQ

—0. 1

(U —0.20
C4

showing that the dc component creates an "artificial" po-
tential gradient for the initial wave packet. At later times
the negative dc component persists because, at least for
small-amplitude oscillations, the classical potential gra-
dient remains significantly smaller than its corresponding
expectation value, as seen in Fig. 4, where we plot
Id V(y )/dy J, (dotted line) and (dV(x )/dx ), (solid
line). This can be explained by the fact that the wave
packed g(r, t) possesses a spatial width and thus samples
a region of the potential gradient unlike the classical par-
ticle for which the gradient is computed at one specific
point. If the wave packet is assumed to be roughly a

—0.3

—0.4
0 1000 2000 3000 4000 5000 6000 7000 8000

time (a.u. )

FIG. 4. Classical potential gradient Id V(y„)/dy I (dotted
line) and the corresponding quantum expectation value
(dV(x )/dx ) (solid line) as a function of time for the position
trajectory shown in Fig. 1.
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k(x, —x '+ —',q,q)+ —,k (x, —x )—k'(()+-,q
—,'„— x —x &)'&

2(x

(32)

0. 1

—0.0

Since x, —x )0q zq 7 the first two terms
of Eq. (32) will heie p to cancel the ne

erms of the numerator
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than offset the shifted potential modification.
A more detailed examination of the control field and its

interaction with the HF system provides physical insight
as to how the objective trajectory in Fig. S is realized.
Besides the previously mentioned dc component, a power
spectrum of the field (Fig. 8) reveals a dominant frequen-
cy component at =0.018 as well as smaller ones at
=0.036 and =0.053. These values correspond, respec-
tively, to the fundamental (0~1) vibrational transition
and the first (0—+2) and second (0~3) overtone transi-
tions of HF. Clearly, the control field utilizes transitions
among the first few vibrational eigenstates in order to
produce the objective trajectory in Fig. 5. This is also
reflected in the populations of the lower eigenstates plot-
ted against time in Fig. 9. Since the initial wave packet
l((r, 0) is the first vibrational eigenstate, the population of
this state remains significantly high until much later
times and explains why the first fundamental contributes
a dominant component to the field. However, as other
states become significantly populated, the overtones be-
come more important.

In our second example of position tracking we consider
a case where the expectation value of the dipole gradient
crosses zero and thereby produces a singularity in the in-
verse control field [see Eq. (19)]. The objective trajectory
y (t) is again generated using Eq. (20) with the same ini-
tial conditions and employing the shifted Morse potential
[Eq. (33)]. However, here we set y=12.0 to produce
higher-amplitude oscillations in the trajectory. Figure 10
shows the objective trajectory y (t) (dotted line) and the
achieved trajectory (x ), (solid line). (The initial 4500
units of time in these plots are not shown because of the
very-low-amplitude motion during this time. ) A limit
(2.0) was imposed on the magnitude of the amplitude of
the inverse control field (Fig. 11). From comparing the
field with a plot of the dipole gradient expectation value
versus time (Fig. 12) one notes that the field singularity at
t =5180 corresponds to the time when (dp(x )Idx ) is

0.9

0.8

P 0.6
cI

0.5

0 4
Q

0.0
I J. OOO 12000 1 3000 14000 15000

time (Q. u. )

FIG. 9. First (solid line), second (dotted line), third (dashed
line), and fourth (dotted-dashed line) vibrational eigenstate pop-
ulations of HF as a function of time while the bond follows the
trajectory shown in Fig. 5.

zero, as expected. The maximum deviation of the
achieved trajectory (x ), from the objective trajectory
y, (t) is 2. 1 percent, which occurs at the end of the pulse.

As expected, less-stringent field restrictions result in
better tracking. For example, an inversion performed
with a field cutoff of 5.0 (not shown here) produced a
tracking deviation of 1.0 percent. Another inversion per-
formed with no explicit limit imposed on the amplitude
of the control field resulted in a tracking deviation of only
0.04 percent (an effective limit occurred due to the finite
time step used in the numerical integration procedure).
In this case, however, the field amplitude reaches an un-
reasonably large maximum of 17.0 at the time closest to
that where the singularity occurs. These results show
that for this case the field amplitude may be "cut off" to
an acceptable value at the singularity and still achieve
reasonable results.
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0.5
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O
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FIG. 8. The power spectrum of the control field shown in
Fig. 6. The dominant peak at co=0.018 a.u. corresponds to the
first fundamental (0~1) vibrational transition of the HF mole-
cule. The smaller peaks of higher frequency correspond to vari-
ous overtone transitions from the ground state.
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FIG. 10. The objective position trajectory y (t) (dotted line)
and the achieved trajectory (x ), (solid line) where, as for the
case shown in Fig. 5, a "shifted" Morse potential was used to
generate y ( t). Here, however, y = 12.0 a.u.
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2my[y (t)]&(t)=
~(p)

(36)

1.0

0.0

Making the approximation that my (t) =C(P )„i.e., the
momentum expectation value oscillates with the same
frequency as the momentum of the classical oscillator, we
then have

—1.0

4500 4600 4700 4800 4900 5000 5100 5200 5300

time (n. u. )

2Cyy (t)E(t}=

The frequency of the oscillator is a function of energy (be-
cause the potential is anharmonic) and therefore so is the
trajectory y, (t) and its time derivative y„(t) Sin.ce the
energy increases with time, we may write co(E) =co(E(t)),
and the inverse control field takes on the form

FICs. 11. The inverse solution for the control field for the po-
sition trajectory shown in Fig. 10. A limit of 2.0 a.u. was im-

posed on the magnitude of the control field amplitude (see text).
Despite the appearance of the singularity at t =5180 a.u. ,

reasonably precise tracking is still maintained.

B. Energy tracking

Here 0=HO [case (ii) in Sec. III] and the expression
for the control field for the one-dimensional problem is
[cf. Eq. (14)]

E(t)= 2m/ E

dPX.~dPX
(34)

Before turning to numerical results we can draw some
conclusions about the nature of the control field from Eq.
(34). Assuming p, (x ) =ax and realizing that

y, ( t) =y [y„(t) ],Eq. (34) becomes
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FIG. 12. The expectation value of the gradient of the dipole
moment for the system evolving on the trajectory shown in Fig.
10.

The objective trajectory yd(t)=y, (t) was obtained by
again integrating the equation of motion for an anti-
damped oscillator [Eq. (20)] and simultaneously comput-
ing its energy:

y, (t)= —'m[y (t)]'+V(y (t)) .

E(t) =+A„(t)c os[co„(t)t +6„(t)],

where 6„ is a phase. Thus we see from Eq. (38) that
chirping is a natural solution to molecular energy track-
ing control. This is consistent with the suggestion of us-
ing chirped fields to vibrationally excite anharmonic sys-
tems, as shown in recent studies by other workers [15].
The chirped field solution can also be realized from the
nature of the control field in the position tracking case.
Here, (x ), oscillates at progressively smaller frequencies
as the energy increases, and by Eq. (27) the control field
should reflect this behavior.

We now turn to numerical results for inverse control of
energy tracking. Here there was no need to employ a
shifted potential as in the position tracking cases and so
the potential V(y„) used in Eq. (20) was the same as the
HF Morse potential [Eq. (17)] used for integrating
Schrodinger s equation. The initial position y, (0) was
slightly altered from 1.77 to 1.94 so that the initial condi-
tion of the objective trajectory y, (0)= V(y„(0)) was
equal to the energy of the initial wave packet (Ho),
For all energy tracking results the growth term y was set
at 2.5.

Unlike the position tracking inversion, the control field
given by Eq. (34) is likely to have multiple singularities.
These correspond to multiple roots in the denominator of
Eq. (34) which occur whenever (approximately) the
wave-packet momentum (P ), is zero. To avoid numeri-
cal blowups, a small term q was added to the denomina-
tor of Eq. (34) with the sign rationalized. This procedure
should be distinguished from the position tracking case in
the previous section where a specified limit was imposed
on the magnitude of the field amplitude. In the energy
tracking case here the inverse control field explicitly de-
pends on the g damping parameter as opposed to being
truncated to a specified value.

Figure 13(a) shows the objective energy trajectory y, (t)
(dotted line) and the achieved trajectory (Ho), (solid
line) produced from the inverse control field shown in
Fig. 13(b) for q=0. 001. Figures 14(a) and 14(b) show
similar plots for g=0. 1. As expected, the deviation of
the realized trajectory (Ho ), from the objective trajecto-
ry y, (t) in the ii =0.001 case is much smaller than for the
g=0. 1 case. However, a price is paid for the higher pre-
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cision in that the control field in Fig. 13(b) exhibits the
effects of the singularities more, resulting in a more frag-
mented field structure. On the other hand, the field for
the g =0. 1 case [Fig. 14(b)] is much smoother and
possesses a lower peak field amplitude, although the
tracking is not as precise. However, it is likely that in
practical situations exact tracking often will not be re-
quired. For example, if the actual goal here was to sim-

ply excite the HF molecule up to its dissociation energy
(D =0.21), both fields accomplish this task, but the field
in Fig. 14(b) is obviously more desirable from an experi-
mental point of view.

To determine if the resultant control fields for energy
tracking exhibit chirping behavior, power spectrums
were computed of the first half (t P [0, 1023]) of the con-
trol field shown in Fig. 13(b) (the solid line in Fig. 15) and
of the second half (t P [1024,2047]) (the dotted line in
Fig. 15). The dominant frequency of the second half of
the control field, m=0. 012, which approximately corre-
sponds to the (7~8) vibrational transition, is
significantly less than the dominant frequency of the first
half, co=0.018, which corresponds to the (0~1) transi-
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FIG. 14. (a) Same as Fig. 13(a) except g=0. 1 Note that al-
though the tracking here is not as precise as in Fig. 13(a), the
control field here [Fig. 14(b)] is more amenable to experimental
implementation.
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FIQ. 13. (a) Objective energy trajectory y, (t) (dotted line)
and achieved trajectory (80), (solid line) for g=0.001 (see
text). (b) The corresponding inverse solution for the control
field [computed from Eq. (34)].
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FIG. 15. Power spectrums of the first half (solid line) and the
second half (dotted line) of the control field shown in Fig. 13(b).
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tion. (The smaller peaks in both plots correspond to vari-
ous overtone transitions. ) This change of dominant fre-
quency components with time is indicative of chirping
behavior.

V. CONCLUSIONS

In this paper we have formulated the theory of inverse
quantum-mechanical control and applied it to a diatomic
system for two diff'erent goals. Our results for the prob-
lem of position tracking show that the method is remark-
ably successful in producing an inverse solution for the
external field that reproduces a desired trajectory. The
results for the energy tracking show that the multiple
singularities in the control field may arise and thereby
perhaps tax one s intuition in choosing an appropriate in-
put trajectory, but sti11 the tracking in most cases is re-
markably precise. The singularities may be truncated to
give reasonable tracking, as shown.

In principle, the inverse control method may be useful
for designing experiments. A much more thorough study
of the method is needed, including further illustrations,
to establish its full utility. At a minimum, inverse track-
ing should be regarded as a useful device in testing and
improving one's intuition in designing molecular control
fields. A major advantage of inverse control is its lack of
iteration to achieve a field design. This makes the
method potentially quite attractive for the study of con-
trolling polyatomic systems where the numerical compu-
tations are more expensive. In this case the issue of
tracking multiple objectives needs to be carefully exam-
ined. A suggestion in this regard is given in the Appen-
dix. With the methodology introduced in this paper we
hope to have established an alternative direction in the
control of reactive quantum-mechanical systems.
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such a case, 0 would be chosen and the procedure im-
mediately follows. However, a special problem can arise,
as may be seen from a simple example when 0 = r, is tak-
en as the ith bond length coordinate. Tracking
(r; ) =yd(t) could be prescribed, but there is no explicit
control over the other internal coordinate expectation
values (r, )„jWi Th. us one might specify yd(t) to break
the ith bond, but the resultant E(t) might also unwitting-
ly break other bonds as would only be discovered after
performing the inverse control design. In general, we
would like to control, as best as possible, X distinct
operators 0-, j = 1, . . . , Ã. Arbitrary individual
specification of yd(t) will, in general, yield % inconsistent
fields E, (t), j= I, . . . , X. We suggest below a possible
means to circumvent this problem.

A general invertible relation for tracking multiple
operators is developed as follows. Consider the linear
combination of operators 0:

N0= g wJ(t)O, ,
j=1

(A2)

which we now treat as the object to be controlled with
ui (t) to be specified. Then the objective is given by

(A3)

where

yd'(t)=(O, ), .

Diff'erentiating Eq. (A2) with respect to time gives

d(g )» dyd'(t)i' =i' g u) (t)ydJ(t)+i' g w, (t)
dt J=1 j= 1

Substituting Eq. (A2) into Eq. (3) we have

i% = g wJ(t)( [OJ,@0]) —g iJJ(t)( [OJ,p] ) E(t)d(0) N N

j 1

N

+i' g w~(t)ydJ(t)

APPENDIX: INVERSION CONTROL
OF POLYATOMIC MOLECULES:
THE STROBOSCOPIC METHOD

BOj+iRzw tt)( ') .
J=1

(A6)

For a polyatomic molecule, the dynamics of the vari-
ous local modes cannot be treated independently. Here
we write the total Hamiltonian as consisting of the
kinetic-energy terms involving momenta corresponding
to the local modes as well as cross terms that describe the
coupling between modes and an interaction potential
which is a function of the position coordinates of all the
modes. In general,

Finally, subtracting Eq. (A5) from Eq. (A6) we obtain

dy J ( i )ilia ui, (t) = g w (t) ([O, ,HD])
j=1 j=1

—( [O~,P] ) E(t)

M= —,'p Crp+ V(q) —p(q) E(t), (A 1) (A7)

where the interaction with the external field has also been
included. The matrix Cx is symmetric and its elements in-
volve the masses of the atoms in the molecule. The in-
verse tracking formulation introduced in Sec. III can, in
principle, be applied directly to polyatomic systems. In

Assuming that during any particular time interval
[i, , t, +r] only one weight, say w. , (t) here, is nonzero, im-
mediately leads to the conclusion
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dyd(t)
iA =([O, ,Hc]) —([O, ,P]) E(r)

(A8)

during that particular time interval. This result shows
that exact tracking of yd(t) uphill be achieved during the
interval it is monitored; however, it is necessary that
(0;(r;)) be equal to its desired initial value yz(t, ). Due
to dynamical coupling this will likely not be the case, and
therefore the objective trajectory itself may need to be
corrected in order to match initial conditions.

The weights wj(t) could, in principle, be chosen arbi-
trarily, but here we seek a choice that will allow control
over each 0, j =1, . . . , N as best as possible. One in-
teresting possibility to achieve multioperator tracking is
the stroboscopic case, where the weights to~ ( t) are period-
ic and are constructed such that while one strobe is "on"

[i.e., tc; ( t) = 1.0] the other strobes are "off" [i.e. ,
w (t)=0.0, jAi] .For example, if we consider a linear
triatomic molecule where the objective trajectories are
prescribe for both bonds (r, ), and (rz)„a suitable
choice for the weights might be w, (t)=sin (co„„~,t),
M z ( r ) —cos ( cost~~ber ) .

In general, the degree to which each mode can be
tracked optimally will depend on the physical nature of
the problem. For example, the difficulty of the problem
will increase as coupling between oscillators increases.
Also, tracking of individual modes can be hampered if
the individual modes have overlapping frequency struc-
ture. These aspects should be taken into account when
choosing the value of strobe frequency cu„„~„which will
undoubtedly influence the controllability of the individu-
al modes as well as the strength of the control field. Fur-
ther analysis and numerical illustrations need to be per-
formed to fully understand this method and to determine
a strategy for finding the "optimal" strobing functions.
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