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Phase measurements
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We address the problem of identifying an operational prescription for quantum phase measurements.
As is known, different experiments can lead to different measured phase operators. However, we show
that ambiguities of interpretation can arise even if a single experiment, such as that of Noh, Fougeres,
and Mandel [Phys. Rev. Lett. 67, 1426 (1991)],is chosen as defining a phase measurement. We show by
reference to a simple but fundamental example that it is not possible to deduce a unique phase difference
from the measurements.
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I. INTRODUCTION

Recent renewed interest in the theoretical formulation
of the quantum optical phase has focused attention on
possible phase measurements [1,2]. In designing a suit-
able experiment, we can follow one of two possible ap-
proaches. On the one hand, we can introduce phase as a
fundamental mathematical component of the quantum
theory of light [3], and only then seek an experiment
from which we can infer information about the phase
statistics. Alternatively, we could examine classical
phase-measuring experiments and define these as mea-
surements of phase in the quantum regime [1,2,4,5]. Un-
fortunately, in the latter operational approach, the classi-
cal description is not sufFicient to define a unique quan-
tum phase [2]. Different classical measurement schemes
lead to dift'erent quantum measured phase operators.
While this is disappointing, it might still be possible to
choose a particular measurement scheme as the definitive
phase measurement. This choice would necessarily
represent a convention for the definition of phase.

The adoption of an operational definition of quantum
phase has been explored by us [4], and more recently ad-
vocated by Noh, Fougeres, and Mandel [1,2]. The pur-
pose of this paper is to point out that even if one particu-
lar measurement scheme is agreed upon, there can still
remain an ambiguity in the definition of the phase. In the
experiment of Noh, Fougeres, and Mandel, this ambigui-
ty leads to inconsistent interpretations of the experiment
as a quantum phase measurement. Independent methods
for extracting the phase from the data lead to equivalent
results in the classical regime and therefore to a unique
classical phase. However, application of the same
methods in the quantum regime can give inconsistent re-
sults, precluding the definition of a unique measured
phase operator for the chosen experiment.

II. THE EXPERIMENT OF NOH, FOUGERES,
AND MANDEL

We wish to point out form the outset that the experi-
mental results of Noh, Fougeres, and Mandel are in ex-

A. Classical analysis

Figure 1 shows the experimental scheme of Noh,
Fougeres, and Mandel, which consists of a similar ar-
rangement to the eight-port homodyne detection scheme
of Walker and Carroj [5]. There are four outputs with a
photodetector (D )at each. There . are also four input
ports, two of which are used for the fields to be measured.
Within the domain of classical optics, the instantaneous
amplitudes of the two input fields are

V, =I', exp(iP, ),
V, =I,'"exp(iy, ) .

(2. la)

(2.1b)

The phase difference $2 —P, is assumed to remain con-
stant during the measurement time T. The integrated
light intensities at the four outputs during the measure-
ment time are [1,2]

W'3 =
—,
' [ W, + W'2 —2 W, 2 cos( p~

—p, )],
W~= —,'[W, + W2+2W, icos(gz —P, )],
Ws =

—,'[ W, + W2 —2W]~sin($2 —yt)],
W6= —,'[W, + W2+2W, ~sin($2 —p, )],

where

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.3a)

cellent agreement with the predictions of their theoretical
analysis, and we do not question the accuracy of either of
these. Indeed, the agreement is so good that there is little
point in attempting to explain their experimental results
in terms of any other theory. We shall, however, ques-
tion the interpretation of these results as phase measure-
ments. Their approach is to use a classical treatment of
the experiment to provide the interpretation of the
quantum-mechanical quantities that they measure. That
is, their choice of quantum-mechanical operators is based
on a direct comparison with the corresponding classical
expressions.
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W» =af [I,(r')I, (r')]'~'dr', (2.3b)
Vacuum

and a is the quantum e%ciency of the detectors. The in-
tegrated intensities are clearly dependent on the phase
difference $2 —

P&, and we can use the measured values of
these intensities to obtain this phase difference. In partic-
ular, we find

Input 2
W4 W3 W[pcos($2 —p, )

W&
—W5 = W&&sin($2 —

P& ),
1

W&
—W4 = —W, &sin(gz —

P&
—n /4),

2

(2.4a)

(2.4b)

(2.4c)
X,i4

shifter

1
W3 W f3cos ( lj5 2

—p &

—m /4 )
2

(2.4d)

W3 —W5 = —W, 2 sin($2 —p, —m. /4),1

W~ —W5 = —W)2cos( P2
—$,—m /4) .1

(2.4e)

(2.4f)

E

I

Input 1
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I

These six quantities, together with the trigonometric
identity cos 8+sin 8= 1, are more than enough to deter-
mine the value of the classical phase difference from the
experimental results. For example, we find that

Vacuum

FIG. 1. Outline of the experimental setup used by Noh,
Fougeres, and Mandel. The thick lines denote 50-50 beam
splitters (BS).

W4 —W3
cos( 2—,)=

[(W —W ) +(W —W ) ]'

Ws —W5
sin( 3—,) =

[(W —W, ) +(W —W, ) ]'

W6 —8'3
cos( 2—,—m/4)=

[(W —W ) +(W —W ) ]'

(2.5a)

(2.5b)

W3 —Ws

[( W6 —W3 ) + ( W3 —W~ ) ]
' ~

W, —W4

[(W4 —W5) +(Ws —W4) ]'i

(2.5i)

(2.5j)

W4 —Ws

[(W~ —W~) +( W3 —W3) ]'

(2.5c)

(2.5d)

The classical physics of the device ensures the equality
between (2.5c), (2.5d), (2.5e), and (2.5f), and between
(2.5g), (2.5h), (2.5i), and (2.5j). Any two of the above four
trigonometric expressions can be used to determine the
phase difference, and the result will be independent of
which two are chosen.

[( Ws —W3 ) + ( W3 —Wq ) ]
'

W4 —Ws

[(W~ —W, ) +(W6 —W4) ]'

sin( 3—,—m. /4) =
[( W, —W, )'+( W, —W, )']'"

(2.5e)

(2.5f)

(2.5g)

B. Quantum analysis

In quantum-mechanical intensity measurements, a
discrete number of photoelectron counts are recorded in
the counting time. The integrated intensity is propor-
tional to this number and is represented by an operator
R~, which corresponds to the classical integrated intensity
W. to within a constant of proportionality. From this
correspondence, we can define operator functions of R'

that relate to the classical trigonometrical expressions
(2.5):

(2.6a)
W3 —8 s

[( W~ —W5 ) + ( W3 —W~ ) ]'i

(2.5h)

e6 —es
[(8' —6' ) +(8' —8, ) ]' (2.6b)
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n, —e,
Mi( 2

—
i
—~/4)=

[(R6—R', ) +(n6 —R'4) ]'/

(2.6c)

the division. Moreover, all of these S~ and CM operators
commute with each other, and therefore represent corn-
patible observables. The normalization ensures that these
operators obey the identities

n 4
—6'5

M2( z
—

i
—~/4)=

[(R' —R, )'+(R, —R', )']' '

(2.6d)

CM ($2 pi
—)+SM($2 p,—) = 1, (2.7a)

CM, ($2 p, —vr/—4)+S~,($2 p, —rr/—4) =1, b'1,

(2.7b)

6'6 —6'3
M~( z

—
i
—~/4)=

[(R' —R, ) +(R' —R, ) ]'

(2.6e)

&4 —n5
CM4( 2

—
i
—~/4)=

[(R'4 —Rs) +(&6—R'4) ]'

n, —e4
SMi( 2

—
i
—~/4)=

[(R,—R, )'+(R, —R, )']'" '

R'3 —6'5
SM2( z i ~/4 )

[(R'4 n5) +(R'—
3 n~) ]—'/

(2.6f)

(2.6g)

(2.6h)

n3 —n5
SM3( z

—
i
— /4)=

[(R ~ )2+(~ R )2]1/2

(2.6i)

We note that a11 the &- operators commute with each oth-
er, and therefore no ambiguity of ordering results from

n, —e,
SM4( 2

—
i 7r/4)=-

[(R~—R', ) +(R6 n4) ]'/—
(2.6j)

where 1 is the unit operator. Given these features, it
seems eminently reasonable to interpret these operators
as representing phase observables. Noh, Fougeres, and
Mandel chose to use their experimental data to calculate
the statistics of SM($2 P, ) a—nd CM($2 P, ), w—hich they
refer to as their measured sine and cosine of the phase
difference. However, there is no a priori justification for
choosing this particular pair to determine the phase
difference. Of course, if all the possible choices yield the
same result, as they do classically, then all choices would
be equivalent. Unfortunately, this is not the case in the
quantum regime, and the different pairs of observables
can give results that are inconsistent with a single phase
probability distribution. We can illustrate this incon-
sistency with a simple example.

Consider the case where input field 1 contains precisely
one photon and input field 2 is in its vacuum state. A
quantum-mechanical analysis shows that only one of the
four detectors will register a photocount, and that each
detector is equally likely to do so. Following Noh,
Fougeres, and Mandel, we use the knowledge of which
detector was triggered to construct the values of the
operators (2.6). If for a particular operator the denomi-
nator becomes zero, then that result is not used and the
moments for that operator are renormalized accordingly
[1,2]. In Table I, we show the four possible outcomes of a
single measurement. We emphasize that the appearance
of indeterminacies (denoted by question marks in the
table) for some operators but not for others is not a fun-
damental distinction, but rather is dependent on the par-
ticular state of the input fields. If we interpret the opera-
tors as representing the cosines or sines of their argu-

TABLE I. The four possible outcomes for measurement with only one photon in input field 1. The numbers refer to the measured
values of the operators defined in Eq. (2.6). The figures in parentheses are the phase differences in the range ( m, rr], which follo—w .if
we interpret these operators as measuring the cosines and sines of their argument. Indeterminate results are denoted by a question
mark (?).

Operator measured D3
Photodetector registering photocount

D4 D, D6

S~(gz —
P&)

~M i(4z 4 i ~/4)—
SMi($2 —p| vr!4)—
&M~(02 4'i ~/4)—
SM~(p, —p, ~/4)
~M3(A 4 i ~/4)—
S~,(P, —P, —~/4)
~M4(A 4i ~/4)—
SM4( p, —p, ~/4)

—1 (m)
0 (0,~)—1 ( —3~/4)

0 (~/4, —3~/4)
0 ( —m/4, 3m/4)

1 (3&/4)
—1/&2 (77, —7T/2)

1/~2 (m, m/2)
~ (~)
~ (~)

1 (0)
0 (0,~)

0 ( —~/4, 3~/4)
—1 ( —m/4)

1 (m/4)
0 (~/4, —3~/4)

~ (~)
'P ('P)

1/+2 (0, m/2)—1/v'2 (0, —~/2)

0 (+m/2)
—1 ( —~/2)

'7 ('7)

'7 ('P)

—1/&2 (7T, —7T/2)—1/&2 (0, —~/2)
0 ( —m/4, 3m/4)

—1 ( —~/4)
—1 ( —3m. /4)

0 (n/4, —3~/4)

0 (+~/2)
1 (n/2)

1/&2 (0, m/2)
1/&2 (n, m/2)

'7 ('7)

'p ('7)

1 (~/4)
0 (m/4, —3~/4)
0 ( —m/4 3~/4)

1 (3m/4)
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ments, then we can deduce the phase difference. This is
shown in parenthesis in Table I. We note that, although
the expectation of the square of each operator is —,', there
is no single phase difference that is consistent with the
outcome of any single measurement. For example, if only
D4 registers a photocount, then assigning a value of rr/4
to the phase difference P2

—P, is consistent with S~2 and
CMz (and possibly with SM3 and Csr3), but not with any of
the other operators.

Comparison with the classical analysis provides no ob-
jective reason for preferring any of the operators purport-
ing to represent phase over the others. Indeed, classically
there would be no inconsistencies and no reason for
choosing between the options discussed above. There are
no ambiguities in the interpretation of the classical exper-
iment as a phase-difference measurement. However, this
is certainly not the case for the quantum-mechanical ex-
periment. There is no consistent interpretation of the re-
sult of a single measurement as a phase-difference mea-
surement.

III. CONCLUSION

The example in Sec. II may appear to be a pathological
choice. However, if the experiment of Noh, Fougeres,

and Mandel had a consistent interpretation as a quantum
phase-difference measurement, then this should apply to
any choice of input states. Moreover, field states with
small numbers of excitations are those very states for
which a quantum description of phase is especially im-
portant.

It is not our main point to address the physical
grounds for accepting a quantum formulation of optical
phase, although it is worth mentioning that there are
strong reasons for requiring the phase difference between
number-state fields to be completely random [6]. Our
point is this: It is not even possible to address questions
such as phase randomness in the approach favored by
Noh, Fougeres, and Mandel, because this approach does
not lead to a consistent phase-difference probability dis-
tribution.

We conclude that the interpretation of the experiments
of Noh, Fougeres, and Mandel as a phase-difference mea-
surement in the quantum regime is inappropriate.
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