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Guide to fabricating bistable-soliton-supporting media
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A theoretical guide to fabricating materials which could support bistable bright optical solitons in
the sense of Kaplan’s definition is presented. The approach is to build up the requisite nonlinearity
by combining different media which are known to display saturable Kerr behavior. Conditions on
the Kerr coefficients and saturation intensities for bistability to occur are derived.

PACS number(s): 42.65.Pc, 42.50.Rh

The fabrication of materials which could support
bistable bright optical solitons in the sense of Kaplan’s
[1, 2] definition (i.e., solitons characterized by the same
energy but distinctly different profiles) would allow the
development of an alternative approach to all-optical
switching using solitons (3], optical logic operations and
optical computing. For such one-dimensional bistable
solitons to be possible, Enns, Rangnekar, and Kaplan
[2] have shown that media are required which are Kerr-
like at low intensity (Z), have a sufficiently steep jump
(behaving like Z™ with n > 3) at intermediate Z, and
either saturate or become Kerr-like again at larger Z. To
date, the only medium in which bistable optical soliton
behavior has been reported [4] is pure gaseous SFg; how-
ever, the nature of the nonlinearity was not completely
determined. Multiphoton effects were ruled out (an Z™
contribution would result from the onset of an n-photon
process) and multilevel resonant transitions were hypoth-
esized to account for the observed saturation of the re-
fractive index.

As we shall report in this paper, instead of engaging
in a somewhat difficult search for single media with the
requisite “exotic” refractive index behavior, a more viable
experimental approach (which could lead to a practical
fabrication technology) is to build up the desired nonlin-
earity by combining different media displaying saturable
Kerr behavior. A saturable Kerr refractive index is one
of the form n = ng + n2Z/(1 + Z/Zsat), where T = |¢|?
with ¢ the (complex) electric field, Zg,¢ is proportional
to the saturation intensity, and the nonlinear coefficient
ng can be positive or negative depending on the medium
and the light frequency. Many gaseous (e.g., SFg), liquid,
and solid (e.g., organics and semiconductor-doped glasses
[6-9]) media are known to have an intensity-dependent
refractive index of this form.

As an illustrative example of the procedure, we shall
build up a nonlinearity which is Kerr-like at small Z, has
an 73 jump at larger Z, and saturates for sufficiently large
Z. It is also easy to build up a refractive index where
Kerr-like behavior is regained at large Z. The procedure
can readily be extended to create media which can sup-
port bistable light bullets [10, 11], i.e., three-dimensional
spheroidal optical bistable solitons. To attain an Z™
jump, with m a positive integer, requires combining m
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saturable Kerr media. From the fabrication viewpoint
this suggests that m should have the minimum value for
bistability to occur. Thus, taking m = 3 (i.e., mixing
three saturable gases or liquids, or adding three differ-
ent semiconductor dopands to a glass), we consider the
resultant refractive index n = ng + n2F(Z) with
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and € < 1. The parameter € controls the relative size of

the Kerr coefficients, viz. ngA) = ng, ngB) = na(l —¢),
and ngc) = —2n2(1 — €). Relating the Kerr coefficients
in this way anticipates one of the guiding rules on media
selection that shall be derived. Selecting specific media
that will satisfy these guidelines is beyond the scope of
this paper and may not be a trivial task. Expanding Eq.
(1) for small Z, we have
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For sufficiently small Z, F = €Z, i.e., is Kerr-like with
€ setting the magnitude of the slope. To guarantee
I3 behavior at larger Z, we set the coefficient of the

Z? term equal to zero, yielding the relation 1 /Is(g’;) =

i1/ - e)Is‘.ﬁ) +1 /I;ﬁ)] between the saturation in-
tensities. For a positive Z3 jump, we further require
for given Iég), Is(ft) that € < €p, € being a cutoff
value above which the jump is negative. From (2)

we find that ¢ = (r — 1)2 + 7 — r/(r —1)2 + 1 with
r= Is(ft) /Is(:t)' For large Z, F(T) saturates to the value
Foop = Iéft) +(1- e)Iéﬁ) —-2(1- e)Is(ac,;), which is positive
for € < €p. Provided these two conditions on IS(aC;) and €
are met, we have constructed an intensity-dependent re-
fractive index of the desired form. This is still not suffi-
cient, however, to guarantee a bistable energy curve with
two stable solution branches in the same energy range.
Further restrictions must be imposed on the range of the
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parameters Is(;ﬁ) and Is(g) (which then determines the

required IS(S)) and on the size of e. To see what these
conditions are we must obtain the energy curve relevant
to the nonlinearity given by Eq. (1). Consider the gener-

alized nonlinear Schrédinger equation (GNLSE), viz.
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which is derived from Maxwell’s wave equation by mak-
ing the slowly varying envelope approximation in the
direction (spatial coordinate z;1) of propagation. Here
k is the wave number, v, the group velocity, t; the
time, D the group velocity dispersion, and the sub-
scripts denote differentiation. For “bright” solitons we
have ny > 0 and have assumed anomalous dispersion,
ie.,, D < 0. Substituting Eq. (1) into (3) and intro-
ducing the dimensionless quantities 2 = 772|D| fea 21,
t = 7'Vt (b1 — z1/vg), E = T+/kna/(|DIno)o,
(a,b,¢) = |Dino/m?kna(Ty), TG0, I53)), and fow =
a7l + (1 —e)b™! —4(1 — €)?la+ (1 — €)b]™L, with 7 a
temporal scale factor which sets the pulse duration, Eq.
(3) becomes

iE; + 3Eu+ f(E)E=0 (4)
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where ¢ = 1[a/(1 — €) + b]. We now seek bright solitary
wave solutions to Egs. (4) and (5) by assuming a solution
of the form E(z,t) = U(t) exp (¢{8z) with U a real func-
tion satisfying the asymptotic boundary conditions Uy,
Uy — 0 as [t| — oo and B the real positive propagation
constant. Substituting the assumed form of E into Eq.
(4) yields

Uw +2U[f(U?) - B8] = 0. (6)

For specified €, a, and b, we numerically integrate Eq.
(6) to find U(t) as a function of 8. With the U(t)
profile known, we then numerically calculate the energy
P = [% |E|*dt = [ U?Zdt. Bistability occurs [1, 2]
when there are two or more values of 8 corresponding
to a given value of P. Different 8 values generate pro-
files of different heights and widths. For certain ranges
of ¢, a, and b, the P(3) curve will be N shaped with the
positive-slope legs of the N corresponding to “robust”
solitary-wave solutions (i.e., solitons) and the intermedi-
ate negative-slope region to absolutely unstable solitary
waves. The N-shaped P(8) curve follows from the read-
ily derived rule [2, 10, 3] that for f = I" in d dimensions
dP/dg is positive for n < 2/d, zero for n = 2/d, and
negative for n > 2/d. Here d=1. The stability of the
solitary waves was examined in Ref. [2].

The values of €, a, b, and ¢ will depend on which liquid
or gaseous media are combined or which semi-conductor
dopands are added to a given glass. As a concrete exam-
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FIG. 1. Solid curve: f(I) given by Eq. (5) for € = 0.01,
a = 0.01, b = 0.05. Dashed curves: individual saturable
Kerr contributions corresponding to a = 0.01, b = 0.05, and
c= 1[a/(1 — €) + b] ~ 0.03, respectively.

ple, for a typical semiconductor doped glass [5], ng ~ 1.5,
|D| ~ 1072610552 /m, nyoTat = Angar ~ 1076 —-1074,
and A ~ 1 — 10 um for anomalous dispersion. Thus,
a ~ (1.6 x 1075-0.16)/72 with 7 given in ps. For
picosecond duration pulses, we set 7 = 1 ps so that
a ~ 1.6 x 107°—0.16. Note that a scales as 1/72 so
larger a values are possible by decreasing 7. However,
for 7 < 1 ps, higher-order contributions to the GNLSE
cannot be neglected [12].

The value of € must be below some small critical value
€cr < €0 to ensure that the I3 contribution becomes suffi-
ciently large compared to the Kerr term before saturation
sets in. With these guidelines in mind, let us consider the
representative values (i.e., within the above-determined
range) a = 0.01, b = 0.05, and further take ¢ = 0.01.
The reason for the small value of € will become apparent
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FIG. 2. Solid curve: f(I). Lower dashed line: leading
Kerr term, f = €I/ fsat. Upper dashed line: linear asymptote
to f(I) curve in the range 1=25-40. Thickened curve: region
of f(I) which corresponds to negative slope (unstable) region
of energy curve in inset. Inset: solid curve: P(8). Dashed
curve: soliton intensity amplitude I(0) vs propagation con-
stant G.
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FIG. 3. Energy P(8) for a = 0.01, b = 0.05, and (a)

e = 0.0025, (b) € = 0.005, (c) € = 0.01, (d) e = 0.02, (e)
€ =0.04, (f) e = 0.08.

shortly. In this case, ¢ ~ 0.03 and ¢y = 0.58. The corre-
sponding f(I) is shown in Fig. 1 by the solid curve. Also
shown are the three saturable Kerr contributions (dashed
curves) which sum to give f(I). For ng = 1.5, A = 1 um,
|D| ~ 10725 s?/m, 7 = 1 ps, and |ny| ~ 10716 m?/V?
(doped glass)—10722 m2/V? (silica glass), the intensity
I =10 corresponds to ¢ ~ 4 x 104 —4 x 107 V/m, a read-
ily attainable range of electric-field strengths. In terms
of I, one need not be anywhere near saturation for bista-
bility to occur. This is illustrated in Fig. 2 where we
have focused on the behavior of f(I) below I = 40. For
I < 4, f(I) given by the solid curve in the main figure
is Kerr-like being tangent to the straight (lower dashed)
line f = €l/fsat- Recalling the rule mentioned earlier,
the associated energy curve should have positive slope
in this region. As I increases, f(I) deviates from linear
behavior as the cubic contribution dominates. For the
range 4 S I < 20, the energy curve should have nega-
tive slope corresponding to unstable solitary waves. For
20 ST 540, f(I) is approximately linear again (as seen
by the upper dashed tangent line) and P should have
positive slope. At still higher I, saturation begins to
set in (Fig. 1) and dP/dB will remain positive. These
qualitative predictions are borne out as seen in the inset
where the numerically obtained N-shaped energy curve
(solid curve) is plotted as well as the maximum intensity
I(t = 0) (dashed curve) of the solitary wave. The unsta-
ble intermediate region, indicated by the thickened line in
the main figure and inset, spans the range I ~ 5-16. For
fixed a and b, the importance of keeping € below a critical
value €., can be seen in Fig. 3. With a and b having the
same values as in Figs. 1 and 2, € has been varied from
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FIG. 4. Energy P(f8) for ¢ = 0.01, a = 0.01, and (a)
b=0.02, (b) b=0.04, (c) b=0.08, (d) b=0.2, (e) b= 0.4,
(£) b=2, (g) b= 10.

0.0025 to 0.08. We see that €., ~ 0.01-0.02, which is well
below €;. For € > €, the intermediate negative-slope
region vanishes. One no longer has bistability since only
one positive-slope branch is present. The leading small
intensity Kerr contributions of the three saturable species
must nearly cancel (but stay positive) for bistability to
occur. In other words, the sum of the Kerr coefficients
(ngA) + ngB) + ngc))/ng =€ < € K 1. Since € < 1,
one has ¢ = 1[a/(1 — €) + b] = %(a + b) so that the re-
ciprocal of the saturation intensity of the medium with
the negative Kerr coefficient must be approximately the
average of the reciprocal saturation intensities of the two
media with positive Kerr coefficients.

Taking € = 0.01 and a = 0.01, we have varied b in Fig.

4. Increasing b corresponds to lowering Is(g) and Is(g)
(see Fig. 1). For sufficiently small b (e.g., b = 0.02 in
Fig. 4), f(I) rises too gently and bistability is lost. In
other words, bistability is not possible if the saturation
intensities are too high. On the other hand, if the sat-
uration intensities are too low (e.g., for b = 10 in Fig.
4), f(I) rises rapidly due to the early onset of saturation
and the cubic contribution is wiped out, as is bistability.
The permissible range of b (similar remarks applying to
a) for bistability to occur spans two orders of magnitude,
a desirable feature from the fabrication viewpoint.

In conclusion, we trust that the guidelines developed
in this paper will prove beneficial to experimentalists
attempting to fabricate materials which can support
bistable solitons. As pointed out in the introduction and
the cited references, this could lead to some important
device applications.
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