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Squeezed states with thermal noise. II. Damping and photon counting
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We consider a single-mode radiation field initially in a displaced squeezed thermal state. The weak in-
teraction of such a field with a heat bath of arbitrary temperature is shown to preserve the Gaussian
form of the characteristic function. Accordingly, the study of the time development of the density
operator reduces to our previous description [P. Marian and T. A. Marian, preceding paper, Phys. Rev.
A 47, 4474 (1993)] of the initial quantum state. As examples, photon statistics and squeezing properties
of the damped field are analyzed. Based on the close relation between field dissipation and photon detec-
tion, we derive simple analytic formulas for the counting distribution and its factorial moments. Non-
classical features of a displaced squeezed thermal state, such as oscillations of the photon-number distri-
bution, survive in the counting process, provided that the quantum efficiency of the detector is high
enough.

I. INTRODUCTION

The effect of damping on a squeezed state has been
largely investigated in recent years [1-4]. In the case of a
harmonic oscillator weakly coupled to a heat bath, Mil-
burn and Walls [1] have derived and solved the Fokker-
Planck equation for the Q function of an initial displaced
squeezed vacuum state (DSVS). Then they have dis-
cussed the influence of damping on squeezing. The pho-
ton statistics of damped squeezed light was investigated
by Perinova, Krepelka, and Perina [2] also using a
Fokker-Planck-equation approach. A more general
treatment of damping based on a functional-integral
method was given by Schramm and Grabert [3]. They
studied the time evolution of a DSVS when the field is
coupled to a dissipative environment of given tempera-
ture, for arbitrary strength of the damping. In the case of
a weak coupling to a zero-temperature heat bath, Mil-
burn and Walls [4] analyzed the attenuation of the oscil-
lations in the photon-number distribution of a DSVS.

On the other hand, the theory of photodetection is a
central problem in quantum optics. The earlier full
quantum-mechanical derivations of the counting formula
for a single-mode free field [5,6] are valid only to the first
order of perturbation theory. The attenuation of the field
by the detection process was considered first by Mollow
[7] and, independently, by Scully and Lamb [8]. Their re-
sults have been confirmed in further developments of
photodetection theory [9—11], which yielded the same
functional equation for the photon-counting distribution.
Essentially, in Refs. [7] and [8] a master-equation-type
technique is used to obtain the time evolution of the
field-detector system. The counting probability obeys the
same equation as that describing the photon-number dis-
tribution of a field mode weakly coupled to a zero-
temperature reservoir. This is by no means surprising be-

cause detection with nonunit quantum efficiency and
damping of the field amplitude are related phenomena.

Consequently, the present paper is devoted to both
damping and photon-counting statistics for the broad
class of quantum states investigated in our preceding pa-
per [12], hereafter denoted as I. The weak damping of a
single-mode radiation field initially in a displaced
squeezed thermal state (DSTS) is studied in Secs. II—IV.
In Sec. II we derive the characteristic function (CF) of
the damped field as a solution of the partial differential
equation describing its time evolution for any tempera-
ture of the reservoir. The time development of the corre-
lation functions is considered in Sec. III. We also exam-
ine various representations of the density operator, in the
Schrodinger and interaction pictures, as well as the
squeezing effect. Section IV focuses on the mode dissipa-
tion in the presence of a heat bath at zero temperature.
Starting from a formal solution of the master equation in
the Fock basis, we develop here a second method of
finding the corresponding density matrix, besides the
more general one presented in Secs. II and III. This
method is connected with a direct derivation, in Sec. V,
of the photon-counting distribution and its factorial mo-
ments. Section VI summarizes the principal results. In
Appendix A we solve formally the master equation in the
Fock representation for the case of a zero-temperature
heat bath, by employing the Laplace-transform method.
Appendix 8 deals with the summation of a series involv-
ing Laguerre polynomials.

II. CHARACTERISTIC FUNCTION
OF THE DAMPED FIELD

A standard treatment of the weak damping in the Mar-
koff approximation leads to the following master equa-
tion for the reduced density operator of a single-mode
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%co
nb = exp

k~ Tb
(2.2)

while aI and aI are the photon annihilation and creation
operators, respectively, in the interaction picture,

ar(t)=e ' 'a, ar(t)=e' 'a (2.3)

The nonvanishing terms for nb =0 describe the energy
loss from the mode to the reservoir, whereas the terms
proportional to nb account for the transfer of the Auctua-
tion energy from the reservoir into the mode.

Our aim is to evaluate the normally ordered CF

(2 4)

which is independent of the picture. Starting from Eqs.
(2.1) and (2.3), and making use of the commutation rela-
tions [14]

field, in the interaction picture [13]:

apI y
at 2

(2arprar ararpr prarar)

+ YrTb(aIpIar+aIplar aIaIpI prarar ) . (2.1)

In Eq. (2.1), y is the damping constant and nb is the mean
photon number of the thermal state (TS) at the tempera-
ture Tb of the heat bath,

A (t)= Ae r'+nb(1 —e r'),
B(t)=Be (y+2ko)t

(t) Ce
—((y/2)+ice]t

(2.9a)

(2.9b)

(2.9c)

It is remarkable that the Gaussian form of the CF (2.7) is
not altered by the damping (2.1) of the radiation field.
According to Eqs. (2.9), for t ~ ~, the CF (2.8) takes the
form

X)v(i( t)~exp( rTbl~ ), (2.10)

describing the TS with the mean photon number (2.2).
However, it is useful to define a hybrid normally or-

dered CF.

(y I) iv(A, , t)—:Tr[PI(t)e ' e '], (2. 1 1)

pr(t) =exp(icota ta )p(t)exp( icota a )
—. (2.13)

Substitution of Eq. (2.13) into Eq. (2.11), followed by use
of Eqs. (2.3) and (2.8), gives the exponential function

(yr )iv(A, , t ) =exP[ —Ar(t) ~A
~

—
—,'Br*(t)A, —

—,'BI(t)(A, *)

including the density operator in the interaction picture
pr(t), just as the CF (2.4) is expressed in terms of the
Schrodinger density operator p(t ):

r)(,a —
A, ay iv(A, , t)=Tr[ p(t)e ' e '] . (2.12)

We recall the relation

and

[a,f(a, a )]==a
Ba

(2.5a) +Cr*(t)A, —Cr(t)A, *],
with the nonoscillating coefficients

(2.14)

(2.5b)

where f(a, at) is an arbitrary analytic function, one
readily finds the linear first-order partial differential equa-
tion

A, (t) = A(t),

B,(t)=e" 'B(t),

C, (t)=e' 'C(t) .

(2.15a)

(2.15b)

(2.15c)

The outstanding form (2.8) of the CF for a damped
DSTS enables us to write, in analogy with Eq. (2.20) of I,

ynb k~2y„——— iCO A,
—

~+N+i co
Bk

(2.6)

Tr[[p(t)]2] =
—,
'

I [A(t)+ —,']' —B(t) 2] (2.16)

Insertion of Eqs. (2.9) and (2.10) of I into Eqs. (2.9a) and
(2.9b), respectively, yields an explicit expression of the de-
gree of purity of the transient state:

We require a CF (2.4) subjected to the initial condition

g&(X,0) =exp[ —A ~A,
~

—
—,(B*k —

—,(B(A,*)

+C*A,—CA, *], (2.7)

which describes a DSTS, as shown by Eqs. (2.8)—(2.11) of
I. Integration of the subsidiary equations affords the
characteristic curves [15,16]. In turn, they provide a
unique solution that fulfills the initial condition (2.7),

TrI [p(t)] J
=

—,
'

t [ne r'+nb(1 —e r')+ —,']2

+ (2n + 1)(2nb + 1 )(sinhr )2

X e r'( I —e r') ] (2.17)

In contrast with the initial situation, specified by Eq.
(2.21) of I, the degree of purity (2.17) depends on the
squeeze parameter r. We notice a symmetry property of
the function (2.17): it is not modified by the simultaneous
interchanges

&br(A, , t ) =exp[ —A (t) ~A,
~

—
—,'B*(t)k —

—,'B(t)(k*) n~nb (2.18a)

+C*(t)A, —C(t)A, '],
with the time-depending coefficients

(2.8) and

e ~'~l —e (2.18b)
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The transformation (2.18b) has the fixed point

1
t, =—ln2

y
(2.19)

Note that the degree of purity (2.17) evolves from the ini-
tial value (2n+1) ', at t=0, to the limit (2nt, +1)
when t ~~. If the squeeze parameter r satisfies the con-
dition

for which

Tr[ [p(t»]']
n nb nb n

(sinhr ) )max .
2n+1 2nb+1

(2.21)

=[(n —nb) +(2n+1)(2nb+1)(coshr) ]

(2.20)
then the degree of purity of a damped DSTS decreases
first to the absolute minimum

Tr[[p(t )] ]
=

achieved at the time

[(2n + 1)(2nb + 1)(sinhr ) —(n n& ) —]'~
(2n + 1)(2nb + 1)sinhr coshr

(2.22)

1
t =—ln.

y

2[(2n + 1)(2nb + 1)(sinhr )
—(n n&

—) ]

(2nb + 1)[n nb +—(2n + 1)(sinhr ) ]
(2.23)

and then increases. Otherwise, it varies monotonically between the values imposed by the heat baths with temperatures
T and Tb.

III. PHOTON STATISTICS, DENSITY OPERATOR, AND SQUEEZING

(3.1)X [ B(t)] In —k H ([2B+(t}] ~ C+(t))H ([2B(t)] C(t))

F o E s. (2.9) it follows that the correlation function (3.1) has no periodic dependence on time except for the
p [i (( m ) t ] Ob iously one can write special cor elatio fu ctions, as in Eqs. (3.5» (B9» and (

damped states, as displaced thermal states (DTS's) Eq
thermal states (STS's), Eqs. (3 13}of I.

From Eq (2 8), by analogy with Eqs. (4.3)-(4.7) and (4.23) of I, there follows the R function in the Schrodinger pic
ture,

Our starting point in investigating the photon-number statistics for a damped DSTS consists of the CF s (2.8) and
(2.14). We shall take advantage of the preservation of their initial Gaussian form (2.7), with the time development con-
centrated in the coefficients (2.9) and (2.15), respectively. Accordingly, all the results, both in the Schrodinger and in-
teraction pictures, parallel the initial ones, at t =0, already obtained in Secs. III—VI of I. In the corresponding formu-
las, one should merely replace the initial coefficients A, B, and C, introduced in Eqs. (2.9)—(2.11) of I, by their current
values (2.9) or (2.15).

For instance, any correlation function of the damped field is analogous to its initial expression (3.2) of I:

mlnjI m) $ Pl
m) y k~ [A(t)]"['B~(t)]

k=0

g (p4 p t )
—~Q(0 t )exp[ A (t)P*P' —'B(t)(P* )

——'B (t}(P') + C(t)P +C (t)P ]

A(t)[ A(t)+1]—IB(t}l'
[ A (t)+1]'—IB(t) I'

B( )=
[ A (t)+1]'—IB(t) I

[ A (t)+1]C(t)+B(t)C*(t)
[ A(t)+1]'—~B(t)l

and

(3.2)

(3.3a)

(3.3b)

(3.3c)

~g(0, t) = [[A(t}+1]'—IB(t)l']

[A(t)+1]~C(t)~'+ —,'[B(t}[C*(t)]'+B*(t)[«t)]]
X exp

[ A (t)+1]'—~B(t)I'
(3.4)
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In a similar way, using the CF (2.14), we find by analogy
with the above-mentioned equations of I, Glauber's R
function in the interaction picture,

operator p(t).
According to a condition analogous to Eq. (4.14) of I,

written for s = 1, Glauber's P representation for a
damped DSTS exists, provided thatR,(p*,p', t ) =~Q(0, t )exp[ A, (t)p*p' ,'8—,—(t)(p*)'

28—t*—(t)(p') +Ct(t)p'

+Ct'(t)P'] .

A(t)& iB(t)i . (3.7)

It is now adequate to recall the threshold (3.17) of I,
(3.5)

The coefficients in Eq. (3.5) are connected to the func-
tions (3.3) by relations identical with Eqs. (2.15):

r, —= —,
' ln(2n+1) .

The condition (3.7) is fulfilled either if

(3.8)

At(t) = A (t),
8,(t) =e""'8(t),
C,(t)=e' 'C(t) .

(3.6a)

(3.6b)

(3.6c)

Therefore, they no longer contain the oscillatory factors
displayed by the coefficients (3.3) in the Schrodinger pic-
ture.

The quasiprobability functions W(p, t, s) (s= —1,0, 1)
have the expression (4.13) of I, where the coefficients A,
8, and C must be replaced by the functions (2.9) in the
Schrodinger picture, or (2.15) in the interaction picture.
Exactly like the CF (2.11), all the CF's yt(A, , t, s) and the
associated quasiprobability densities (I la. )Wt(p, t, s) are
hybrid quantities. However, they are determined by the
density operator pI(t) in the interaction picture in the
same way as the functions y(A, , t, )sand (1/m)W(p, t, s)
(s= —1,0, 1) are determined by the Schrodinger density

I

(3.9)

or if

r&r, ,

but only at times

(3.10a)

(3.10b)

subsequent to the moment

1 —exp[2(r, —r)]
2',b

(3.11)

Notice that the critical time t, increases with the squeeze
parameter r and decreases as the reservoir texnperatures
T and/or Tb increase.

In view of Eq. (5.2) of I, the density-matrix elements in
the Schrodinger picture and Fock representation are

() t min(l, m j l m
pt (t)= ', , g ki „[A(t)]"[—'8(t)]"k k

x[—,'B*(t)]' "' Hi k([28(t)] ' C(t))H k([28*(t)] ' 2C*(t)) . (3.12)

Due to Eq. (3.5), in the interaction picture a similar for-
mula holds and affords the relation

(3.13)

in agreement with Eq. (2.13). Accordingly, the photon-
number distribution pII(t) and its generating function

G(s, t)= g pi((t)s' (~s~ 1),
1=0

(3.14)

written explicitly by analogy with Eqs. (5.10) or (5.11) of
I, are picture independent. We mention that our results
concerning the lth-order correlation function ( (a ) a ) ~,

and the l-photon probability pi&(t), when set in the
equivalent forms (B9) and (5.6) of I, coincide, in the spe-
cial case of a DSVS, with the previous ones reported by
Perinova, Krepelka, and Perina [17].

Since n =0 in the case of a damped DSVS or squeezed
coherent state (SCS), there follows A =0, but A (t)%0 for
t & 0. Consequently, the initial expression, at t =0, of the
density-matrix elements for a SCS, given by Eq. (5.15) of
I, is no longer valid for t &0, when the general formula
(3.12) holds, with the coefficients (3.3) written explicitly

arise from the corresponding Schrodinger operators by
means of a rotation,

X',t ( t ) =cos(cot )X', +sin( cot )X'z,

Xzt(t) = —sin(cot )X', +cos(cot )X'2 .
(3.16)

By analogy with Eqs. (6.6) and (6.7) of I, we write the dis-
tribution functions of the quadratures in the interaction
picture:

with n =0. In contrast, the coefficients 8(t) vanishes at
the same time with 8, and C(t) vanishes simultaneously
with C. It follows that the initial functional form of the
matrix elements p& (t), specific for a DTS, Eq. (5.17) of I,
or for a STS, Eqs. (5.18) of I, subsists. The time develop-
ment of the density matrix reduces to that of the corre-
sponding coefficients (3.3) or (3.6).

As stated by Eqs. (2.3), the quadrature operators in the
interaction picture,

X'U(t) = ,'[at(t)+at(t)], —
(3.15)
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2'[P(X,I, t ) = &q I pl(t)lq &

and

= [~[—,'+ AI(t) —ReBt(t)]]

[X(I—ReCI(t) ]
—,'+ A, (t) Re—B,(t)

X exp ~—

P(X,t ) = ( 2M16tt) )
~

& p ~ pl ( t )
~ p &

= [rr[ —,'+ A, (t)+ReB,(t)]]

(3.17a)

IV. DISSIPATION

AI(t) = Ae

BI(t)=Be

C (t)=Ce

(4.1)

Because of Eqs. (4.1), the evolution of the correlation
function (3.1) reads

The damping of a displaced squeezed thermal mode in
contact with a reservoir at zero temperature (nb=0) is
characterized by a time scaling of the coefFicients 3, B,
and C, defined by Eqs. (2.9)—(2.11) of I:

X exp
[X2I—ImCI(t) ]

(3.17b)
—,'+ AI(t)+ReBI(t) &(at)'a &~t =exp[i(l —m)tot]exp[ —

—,'(l+m)yt]

Employing Eqs. (2.15) and (2.9), after inserting the
coefficients (2.9) and (2.10) of I, the variances of the quad-
ratures (3.15) read

[~(l(t)] =
~t I(2n + 1)e r'[cosh(2r )+costI() sinh(2r )]

+(2nb+1)(1 —e r') j

(3.18a)

and

[~ql(t) ] =
4 I (2n + 1)e r'[cosh(2r ) —cosy sinh(2r ) ]

x &( ')' -&, , (4.2)

As proved by Eq. (A13), the scaling (4.2) is a general
property of the modes which dissipate according to the
master equation (Al).

In what follows we develop another method to evaluate
the density matrix of a damped DSTS determined by the
coefficients (4.1). This time, our main tool is the relation
(All) between the density-matrix elements in the Fock
basis and their initial values. We start by inserting Eq.
(Bl) of I into Eq. (5.2) of I to obtain a double-integral rep-
resentation of the density-matrix elements at t =0,

1/2

+(2nb+1)(1 —e r ) (3.18b) Q(0) A

In the particular case of a DSVS and for y=~, the ex-
pressions (3.18) reduce to the result of Milburn and Walls
[18].

Just as in I, squeezing in the quadrature X] becomes
effective to any even order N, when, for y =m,

X dudve '"'+"'

XL(' " — f(u)f *(u)

[EX)1(t)] (3.19)
with

( m ~ l ), (4.3)

The condition (3.19) for Xth-order squeezing is satisfied if
the squeeze parameter exceeds the threshold (3.8), f(v) =—C i (2B )' v— (4.4)

r)r, ,

and for a time prior to the critical moment (3.11),

(3.20a)

(3.20b)

The fact that the restrictions (3.20) for squeezing are
complementary to the conditions (3.9) and (3.10) for the
existence of Glauber's P representation of the density
operator attests once more the nonclassical nature of the
squeezing effect.

and LI "(z) a Laguerre polynomial, Eq. (B4) of I. In
Eqs. (4.3) and (4.4) we have employed the quantity Q (0),
given by Eqs. (4 23) and (4 4) of I, as well as the
coefficients (4.5)—(4.7) of I, whose explicit expressions are
written as Eqs. (4.9)—(4.11) of I. Note that, in the diago-
nal case, the integral representation (4.3) is similar to Eq.
(B2) of I. When substituting Eq. (4.3) into Eq. (All),
after interchanging the order of operations, we And a
series of the type (Bl). Making use of our result (B8), we
get the formula

(pI)( (t)=
mf

' 1/2
A (( y t

)
(1 + m )/2—

(0)
[1 A(1 yt)]m+1—

—yt
X f f" du dv exp —(u +u )+,f(u)f*(v)

00 00 1 —A (1—e r')

X [fe
( v ) ] lLm( m —() f( u )f t

(
1 —A(1 —e r') A

(4.5)
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Notice that, due to the symmetry property [19,20]

ZI Zm
L (I —m)( )

—+
L (m —I)( ) (4.6)

To resume, the above-presented method of evaluating
the density matrix in the Fock representation is more
complicated and less general than the method of finding
out, primarily, the time development of the CF. Howev-
er, being based on the relation (Al 1), it is rewarding espe-
cially when one is concerned about the process of photo-
detection.

V. PHOTON COUNTING

In Mollow's model of photodetection [7], the detector
consists of a large number of harmonic oscillators weakly
coupled to the radiation field. The diagonal elements of
the reduced density matrix of the field are shown to satis-
fy the system of differential equations [22]:

the expression (4.5) is general.
The next step is to evaluate Glauber's R function at the

moment t, in the interaction picture,
QO OO

1~t(P*,P', t ) = g g . . I ~, (Pt )Im (t)(P')'(P')
I om=o=(~ lm l)'"

(4.7)

%'e carry out first the summation on I, employing a Tay-
lor expansion due to Erdelyi [21]. After performing the
simpler resulting summation on m, we are left with a
double integral of the form (A6) of I. We apply Eq. (AS)
of I, and, after some elementary algebra, we recover our
result (3.5) written with the particular coefficients (4.1).
Accordingly, the evolution of the density matrix of the
field mode in a dissipating DSTS reads

(p&)i (t; g, B,C) =(pl )I (0; ge r' Be r' Ce ~~ ') .

(4.8)

4

0.04 p =1.00
/1
I

Pn
I

0.03 —,
I

I

1

1

OQ2

(a)
I

I 1 I

I I
1 ( (

0 PL~
I 1 J

I 1 /&
I 1I &I Xl if I ~+O
I

pn

0.04—
I I

I

I

1~

I

0.03 - I

I 'I

I I

I

I

0.02
I

(b)

0.0
I

A
,

I

p =0.98

A brief history of Eq. (5.3) would be valuable at this
point. Scully and Lamb [8] consider a detector consisting
of many independent atoms placed in a cavity. The prob-
ability of recording n photocounts is proved to have the
same form (5.3) [24]. A direct, probabilistic derivation of
the counting formula (5.3) is due to Rousseau [9]. After
treating the simpler case of a photodetector immersed in
a one-photon field, she develops the generalization to an
arbitrary field state. In the work [10] of Sello~i et al. ,
the detector consists of many identical two-level atoms.
Not only the field attenuation, as in Refs. [7—9], but also

d
d p =X[(n+1)p.+I, +1 np (5.1)

I

10 20 30

where y is a coupling constant. The system (5.1) coin-
cides with the diagonal case q=0 of Eq. (A3). Conse-
quently, its solution has the structure (All) written for
q=0:

p„(t)=IJ," g (1—p) "p (0) .
1V =n

(5.3)

e)

p( t)enrt y( 1 crt)Nnp(())(52)
X=n

The probability p„(t) of counting n photons in the time
interval [O, t] is connected to the n-photon probability of
the attenuated field at the moment t by the substitution
(2.18b) [23]:

0.04 p =0.90

I

10

p

0.03

(

I

I
I

I

0.02

(c)
I

1
I

001 ~
I

I

20 30

In Eq. (5.3) we have denoted by

u=1 —e

the quantum efficiency of the detector.

(5 4)

FIG. 1. Photon-counting distribution of a DSTS with the pa-
rameters n =2, ~a~ =2, and r=2 5. The quantu. m efficiency of
the detector is @=1.00 (curve a), 0.98 (curve b), and 0.90 (curve

c), while the phase difference is 2 arg(a) —y= ~.
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p —=e

so that Eqs. (5.2) —(5.4) provide the identity

p„(t)=p„„(r) .

(5.5)

(5.6)

Pn

002 -'
p =1.00

I

0.01
I I

I

I

I

I

I/

i

(aj

I

10

/ ~ /
/ I & 1 I i I

's/

20

0.02 p = 0.97
I

~n
I

I

Il
/

'

(b)
/ I /

I /

1
/ p'

the atomic relaxation processes are taken into account by
using a suitable atom-reservoir interaction Hamiltonian
[25]. The photon-counting distribution obtained is given
by Eq. (5.3), too, with a detector efficiency depending also
on the atom-reservoir coupling constant. We finally
quote the comprehensive paper [11] of Srinivas and
Davies. In the framework of Davies's theory of continu-
ous measurements in quantum mechanics, they rederive
the counting formula (5.3) together with expressions of
more complicated and higher-order joint probabilities
[26].

It is now convenient to introduce a fictitious time ~
defined as

When the incident field is in a DSTS, we carry out the
summation (5.2) by employing the method described in
Sec. IV. Then, the photon-counting distribution (5.3) is
found from Eq. (3.12):

p„(t)=m Q(0, r)[ A (r) ]"

, , qI ~. 2 J(r)
X lHq([2B(r)] '"C(r))l' . (5.7)

,
p„(~)=/tt'((& ) &'& l, =o . (5.8)

In Eq. (5.8) the summation index n denotes the number of
photons recorded in the time interval [0,t].

VI. SUMMAR&

In Eq. (5.7) we must insert the functions (3.3) and (3.4)
and use the scaling law (4.1).

Plots of the photon-counting distribution of a DSTS
for some values of the detector quantum eSciency p are
drawn in Figs. 1 and 2. The oscillatory behavior of these
distributions depends on both p and the phase difference
2arg(a) —tp. In Fig. 1 we have taken 2arg(a) —y=m. .
The quantum efficiency varies from @=1 in Fig. 1(a) to
p =0.9 in Fig. 1(c), whereas parameters n, l

a l, and r are
kept fixed. Figure 2 presents the case 2arg(a) —y=0.
Here the oscillations are of the pairwise type and remain
significant even for /tt, =0.9, Fig. 2(c), although the
thermal noise is strong enough (n =4.0). In fact, the oc-
currence of thermal noise does not affect the shape of the
counting distribution, which resembles that found by
Milburn and Walls in the case of a SCS [27]. Our graphs
in Figs. 1 and 2 also agree with those reported by
Agarwal and Adam for a DSTS with the same phase
differences [28].

Notice finally that, according to the scaling property
(A13), the factorial moments of the photon-counting dis-
tribution are proportional to the corresponding correla-
tion functions of the incident field:
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FICx. 2. As in Fig. 1, but for the parameters n =4, lal =10,
and r=3. The phase difference is now 2arg(o. ) —y=0, while
the quantum e%ciency of the detector is @=1.00 (curve a), 0.97
(curve b), and 0.90 (curve c).

Starting from the well-known master equation for a
single-mode radiation field weakly coupled to a reservoir
at temperature Tb, we have established that damping
preserves the Gaussian form of the CF of a DSTS. As a
consequence, we could employ the results of our preced-
ing paper I to analyze some statistical and squeezing
properties of a damped displaced squeezed thermal mode.
In the special case of a field dissipating in contact with a
zero-temperature reservoir, we have rederived the density
matrix in the Fock basis, making use of a general formal
solution of the master equation.

Photodetection is considered in most theoretical treat-
ments as an attenuation of the incident field. This idea
has enabled us to compute the photon-counting statistics
of a DSTS, in close analogy with the photon-number dis-
tribution of the dissipating field mode. Of particular in-
terest are the nonclassical features of the photon-number
and photon-counting distributions. As a salient example,
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we have pointed out the persistence of the oscillations in
the counting distribution for sufficiently high quantum
efficiency of the detector.

evaluate the inverse Laplace transform of a current term
of the series (A6) as a contour integral:

APPENDIX A: THE MASTER EQUATION
FOR FIELD DISSIPATION

ts

2Wl a —i txr

+n+s q

p+1

2
( arPrar ararPr Prarar) .Z 2

at
(Al)

In the case of a field mode in contact with a zero-
temperature heat bath, the master equation (2.1) becomes

1
lim ds e"

27TE R ~ oo C {R ) —+n+-s q

p+ 1

(AS)

With the notation
1/2

(n +q)!
n! (pr)„„+ (t),

we write Eq. (A 1) in the Pock basis as

(A2)

In Eq. (AS), the path of integration C(R) lies in the half-
plane Res ~ a and encloses all the poles of the integrand.
It includes two horizontal segments with Ims =+R and
0 + Res ~ a, whose end points s =iR and s = —iR are
joined by a semicircle with the center at s =0. By means
of the theorem of residues, and after performing a finite
binomial sum, we get

Bt nN„(q;t)=y (n+I) C„t+(q;t)— n+ @„(q;t)a
n+)

(A3)

To solve the system of differential equations (A3), we
apply the Laplace-transform method. First, the Laplace
transform of the function (A2),

27Tl a —i oo

+n+s q

p+1
—

( n +q /2 )y t( 1 e y t ))t-
p!

(A9)

4„(q;s )—:I dt e "Ct„(q;t ) (Res )0),
is readily seen to satisfy the recurrence relation

s+y n+ — (I)„(q;s)

=4'„(q;0)+y(n + 1)4„+,(q;s ) .

By iteration we obtain it as the sum of a series:

1
C&„(q;s)=—g

'V p=O

(n +1)

—+n+-s q

p+1

Ct„+~(q;0) .

C(tq;t)= . J
' '

ds e "(I)„(q;s),
2&l a —i oo

The inverse Laplace transform of the function (A4),

(A4)

(A5)

(A6)

(A7)

Consequently, the function (A7) is the sum of the series

n+p
(q. t ) e

—(n+q/2))'t g ( 1 e
—)'t)Pct (q. 0)

p=0

(A 10)

In view of the notation (A2), the result (A10) represents a
formal solution of the master equation (Al):

1/2
(n +q)!

(p, )„„+,(t)

—yt)n+q/2 ~ (1
—yt)N —n

nN=n
1/2(x+q)!X PN N+q(0) .

is an integral taken along a straight line Res=a, from
a —iR to a+iR, where a is an arbitrary positive number
and R —+~. We insert the series (A6) into the integral
(A7) and interchange the order of operations. Then we

I

(A 1 1)

The relation (All) provides an important time-scaling
property of any correlation function. To prove it, we em-
ploy the expansion

&(a )'a & I, =TrIpr(t)[ar(t) j'[ar(t)]

i(1—m )cot n!
(n —m)!

1/2
(n +1 —m)!

(pr)...+( (t) (1)m) . (A12)

After substituting Eq. (All) into Eq. (A12), we inter-
change the summation order and perform a finite binomi-
al sum. Using again Eq. (A12), taken at t =0, we obtain
the formula

&(")"-&I=."--'"'(.-")"+-'"&(")"-&I=

(A13)

As a consequence, dissipation has no influence on a nor-
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malized correlation function, defined by Eq. (7.5) of I,
which undergoes just the free-field phase transformation,

we employ once again Cauchy's integral formula to find,
after an obvious change of the variable of integration,

g ( Im, )
(0. t ) ei ( I —m ) co gt( 1, m )

( 0.0 )

APPENDIX B: A SERIES
OF LAGUERRE POLYNOMIALS

(A14) I

(t, u)= . ds, +, To (s+t, u) .
t (o+)

27Tl S

Making use of the factorization property

(85)

We evaluate a series of the type T' '(s+t, u)=T' '(t, u)T' S 0
1 —t' 1 —t

(86)

oo n
Tt '(t u)—= g l t L„' (u)

n=1

(gati &1, a& —1, 1=0,1,2, . . . ), (81)

starting from the generating function of the Laguerre po-
lynomials of order a [29],

the function (85) can be expressed as

T,' '(t, u ) = T' '(t, u )
1

1 —t '
2@i

Tci '(t, u ) =(1 t) 'ex—p
1 —t

( I
t

I
& I) . (82)

(87)

The contour of integration in Eq. (83) is a closed loop
encircling the origin t =0 in the counterclockwise sense.
Next, taking note of the relation

T' '(t u)= t' —T' '(t u)
a

I t at
(84)

By applying Cauchy's integral formula in the special case
l=Oof Eq. (Bl), we get

L' '(u)= dt T' '(s+t u) .
1 ~0+ i 1

27Tl t"+'

Equations (87) and (83) give the simple formula

T$' '(t, u )= T' '(t, u )L' '

1 —t

( ti &1, a& —1, l=0, 1,2, . . . ) . (88)

We finally remark that this method of calculating the
series (Bl) is analogous to that developed previously by
one of us in order to evaluate a similar series of Legendre
polynomials [30].
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