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Squeezed states with thermal noise. I. Photon-number statistics
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We investigate a free monochromatic electromagnetic field which is the superposition of a squeezed
thermal radiation and a coherent one. The main tool in our analysis is the characteristic function that
has a Gaussian form. We establish an analytic formula for an arbitrary correlation function, as well as
its strong-squeezing limit. Besides the usual quasiprobability densities, the coherent-state, number-state,
coordinate, and momentum representations of the density operator are derived. We point out the non-
classical oscillations of the photon-number distribution and find its generating function. Collaterally,
displaced thermal states and squeezed thermal states are revisited as nontrivial particular cases. We ex-
amine finally the squeezing properties of the field using the distribution functions of the quadratures.

PACS number(s): 42.50.Dv

I. INTRODUCTION

Superposition of light in a squeezed thermal state (STS)
with coherent light is an important problem from both
theoretical and practical standpoints. Because thermal
noise is inevitable and hard to quench, it is more realistic
to consider a thermal-state instead of a vacuum-state in-
put to a squeezing device. Had we prepared a free field in
a STS, this could be driven by a classical current, provid-
ing a displaced squeezed thermal state (DSTS).

In the present paper we deal with a single-mode free
radiation field of angular frequency co, whose photon an-
nihilation and creation operators are a and a, respective-
ly. The field is assumed to be in a DSTS, having the den-
sity operator

p»T=D(a)S(g)pTS (g)D (a) .

%co
n = exp

k~T
(1.6)

The interchanging of the operators D(a) and S(g) in
Eq. (1.1) leads to a squeezed disp/aced thermal state
(SDTS), which is, in fact, a DSTS with a modified dis-
placement parameter. Indeed, the well-known transfor-
mations of the annihilation operator a by the unitary
operators (1.2),

D (a)aD(a)=a+aI,
and (1.3),

S (g)aS(g) = (coshr )a +e 'P(sinhr)a

imply that

In Eq. (1.1), D (ct) is a Weyl displacement operator [1], D "(a)D (A, )D(a) =exp(Aa* A, *a)D (A, )— (1.9)

D (a) =exp(aa t —a*a ), (1.2) and

with the complex parameter a, while S(g) is a Stoler
squeeze operator [2],

S (g)D (A, )S (g) =D (A, coshr —
A, *e'~si hnr), (l.10)

respectively. The transformation (1.10) is equivalent to
the identity [2]

S(g)=exp[ —,'g(a ) —
—,'/*a ], (1.3) S(g)D (ct) =D (a coshr+a*e'+sinhr )S(g), (1.11)

where

(=re'+ (r &0, vr &qr &m)—. (1.4)

00

n+1 „=o n+1
/n)(n/ . (1.5)

Specifically, for thermal equilibrium, at the temperature
T

Although its subscript T signifies thermal state (TS), pT is
the density operator of a more general chaotic state with
the mean occupancy n,

'n

which proves the assertion made above.
Quite recently, nonclassical features of photon statis-

tics in DSTS's have been studied [3—11]. Vourdas [3]
considered the density operator of a chaotic field super-
posed on a squeezed coherent one, which can be written
in the form (1.1), with specific values of the parameters.
He expressed its matrix elements in the Pock basis in
terms of Hermite polynomials of two variables. In the
limit r=O, describing a superposition of coherent and
chaotic fields, his result reduces to the classical formulas
obtained by Lachs for the photon-number probability
[12] and by Mollow and Glauber for the whole density
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matrix in the number-state representation [13]. Numeri-
cal calculations [5] led to the conclusion that even very
small amounts of thermal noise destroy the oscillatory
character of the photon-number distribution. This idea
was not confirmed by the subsequent results of Agarwal
and Adam [6,7]. These authors have examined the prob-
abilities of finding and counting n photons for a class of
squeezed states that possess a Gaussian Wigner function.
They have pointed out that for certain ranges of the
squeeze parameter r, the photon-number distribution
displays oscillations. But, at the same time, we shall
prove that the DSTS's belong to the above-mentioned
class of quantum states. By analyzing the results of Ref.
[7], a simpler formula for the photon-number distribution
of a DSTS was found by Chaturvedi and Srinivasan [9].
Another noteworthy contribution to the study of these
states is due to Janszky and Yushin [4]. Starting from a
normally ordered characteristic function (CF) of Gauss-
ian form, they have calculated the correlation function of
any order, as well as its limit for weak and strong squeez-
ing. The special case of STS s was investigated by Kim,
de Oliveira, and Knight [8] and by one of us [11]. In Ref.
[8], quasiprobability densities, second-order squeezing,
and photon statistics have been discussed, while in Ref.
[11],analytical formulas for photon-number distribution,
higher-order squeezing, and correlation functions have
been established. In a very recent paper [10], Ezawa
et al. , after deriving the normally ordered CF for a
DSTS, proved an interesting factorizability property of
this function for the multimode case. The DSTS's are
characterized by the invariance of the CF factorizability
under an orthogonal transformation of the field opera-
tors. For a two-mode field, this transformation describes
the action of a special kind of beam splitter.

The present work is devoted to an extensive theoretical
study of a DSTS, starting from its CF. As a matter of
fact, our discussion encompasses a broad class of quan-
tum states, whose CF has precisely the form proposed by
Janszky and Yushin [14]. In Sec. II we derive in a
simpler way the CF of a DSTS.. The degree of purity of
this mixed state is also calculated and discussed in this
section. A general formula for correlation functions is es-
tablished in Sec. III. Then we specialize it for displaced
thermal states (DTS's) and STS's. In Sec. IV we evaluate
the density operator in the coherent-state representation,
as well as the corresponding quasiprobability densities.
Glauber's R function [1] is employed in Secs. V and VI to
obtain the density matrices in the number-state, coordi-
nate, and momentum representations. In Sec. V we also
derive the generating function of the photon-number dis-
tribution. Using the probability densities of the quadra-
tures, the squeezing properties in a DSTS are examined in
Sec. VII. In addition, the strong-squeezing limit of the
correlation functions is established. Section VIII outlines
the results. In Appendix A we recall an infinite integral
of a Gaussian-type function of several variables. An
equivalent expression of the lth-order correlation func-
tion is derived in Appendix B.

II. CHARACTERISTIC FUNCTIONS

It is well known that the most useful particular cases of
the s-ordered CF

g(A, ,s)—:exp —
~A,

~
Tr[pD(A, )] (s real),

2
(2.1)

defined by Cahill and Glauber [15], are the normally or-
dered, usual, and antinormally ordered CF's, introduced
previously by Glauber [16,17], respectively, as

(2.2)

y(A. , O):—y(A, ),
y(A, ,

—1)=y~(A, )=(e 'e ' ) .

(2.3)

(2.4)

We derive the generalized CF (2.1) of a DSTS in two
steps. First, the CF (2.3) for a chaotic mixture,

yr (A, ) =Tr [pr D (A. )], (2.5)

yz (A, ) =exp[ —(n + —,
'

) A,
~ ] . (2.6)

Second, using Eq. (1.1) and performing a cyclic permuta-
tion of operators under the trace symbol, we can write
the CF (2.1) for a DSTS as

y(A, s) =exp,
—

~A,
~ Tr[p~S (g)D (a)D (A, )D (a)S(g)] .

(2.7)

After successive use of Eqs. (1.9) and (1.10), we achieve
the possibility of employing Eq. (2.6). We finally get

y(A, ,s) =exp — A + 1 —s
2

'[B*A,—+—B(A,') ]+C'A, —CA. *

(2.8)

where

A =n+(2n+1)(sinhr)

B ='—(2n+ 1)e'Psinhr coshr,

C=a (DSTS),
C=a coshr+a*e'+sinhr (SDTS)

(2.9)

(2.10)

(2. 1 la)

(2.1 lb)

are dimensionless coe%cients depending on the parame-
ters n, g, and a. The diff'erence between expressions
(2.11a) and (2.11b) originates in Staler s identity (1.11).
Equation (2.8) for s =1, with the notations (2.9), (2.10),
and (2.11a), is a main result of Ezawa and co-workers
[23].

In the special case n =0, the quantum state (1.1) be-
comes a pure one. This is a displaced squeezed vacuum
state (DSVS),

is readily evaluated in the Fock basis. Indeed, after em-
ploying Eq. (1.5) and the diagonal matrix elements of the
displacement operator (1.2) [18—20], the remaining sum-
mation in Eq. (2.5) gives, via the generating function of
the Laguerre polynomials [21], a formula due to Glauber
[22]:
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IPDsv& =D(a)&(g)IO& . (2 12a) (2.20) yields the explicit formula

Similarly, for n =0, a SDTS reduces to a squeezed
coherent state (SCS),

1
Tr(pDsr) =

2n+1
(2.21)

ly„&=S(g)D(a)lo& . (2.12b)

As nontrivial examples of simpler mixed states, we men-
tion the DTS's (r =0) and the STS's (a=O). Further, by
equating two parameters to zero, we get as particular
cases the coherent states (CS's) (n =O, r =0), squeezed
vacuum states (SVS's) (n =O,a=O), and thermal states
(TS's) (r =O, a=O).

We recall that for a definite state of the field the CF
(2.3) determines uniquely the density operator. More
generally, following Weyl [24], any operator I which has
a finite Hilbert-Schmidt norm,

while the specification (1.6) gives further

2 Ado
Tr(pDsr) = tanh

2 g T (2.22)

Tr(pDsr) =Tr(pz ) (2.24)

The result (2.21) is not surprising. Indeed, the square
of the density operator (1.1) is

pDsr=D(a)S(g)prS (g)D (a), (2.23)

so that

llrll= [Tr(F'S)]'",
may be expressed as

F=—J d (f(g)D( —g) .

(2 13) From Eq. (1.5), we get

Tr(p ) = 1

2n+1
(2.14)

(2.25)

In Eq. (2.14),

d2g=d(Ref)d(lmg) (2.15)

is the differential element of area in the complex g plane.
The weight function f(g) has the expression

and thus the expression (2.21) is recovered. Equation
(2.24) proves that the degree of purity of the input chaot-
ic state (1.5) is left unchanged by the subsequent squeez-
ing and displacement processes described by the density
operator (1.1). Accordingly, the degree of purity of a
DSTS depends only on the temperature of the initial
reservoir, as shown by Eq. (2.22).

f (g) =Tr[FD (g) ]

and is square-integrable in view of the relation

Tr(F F)=—f d (if(g)

(2.16)

(2.17)

III. CORRELATION FUNCTIONS

The normally ordered CF, Eq. (2.2), has the Taylor ex-
pansion

p =—J d'A, y( /(, )D ( —A, ),1 (2.18)

is precisely the CF (2.3) which is always square-
integrable,

The Weyl expansion of the Hilbert-Schmidt operators
was used for the first time in quantum optics by
Glassgold and Holliday [19] and then was analyzed very
carefully by Cahill and Glauber [20]. In particular, the
Weyl representation of the density operator has been ap-
plied long ago by Mollow and Glauber to their quantum
treatment of the parametric amplification [25]. The den-

sity operator belongs to the trace class and the weight
function (2.16) in its Weyl expansion,

oo 00
1

y)v(k) = g g, ,
A, '( —A, *) ((a")'a

I=o =o l
(3.1)

~ (
) B)(m —k)/2H ((2B e

)
—) /2C e

)

which allows one to evaluate the correlation function
((a )'a &. Making use of the generating function of the
Hermite polynomials [26], we first write the CF as a
power series of A, and then expand its coefticients as a
power series of ( —

A, *). After some simple algebra, we

get, by comparison with Eq. (3.1),

minI 1, m I

(( t)l m&—
k k g k( ) B e )(( —k)/2

Tr(p') = Jd'X—lg(X) I' .2 1
(2.19) XH k((2B) '/ C), (3.2)

Tr(p )= ( [(g+ )
) —lB l ] (2.20)

Substitution of the coefficients (2.9) and (2.10) into Eq.

According to Eq. (2.18), a DSTS is completely specified
by the coefficients A, B, and C which occur in Eq. (2.8).
In turn, due to Eqs. (2.9)—(2.11), they depend on the
thermal mean occupancy n, the complex squeeze parame-
ter g, and the coherent amplitude a. Of particular in-
terest is the degree of purity Tr(p ) which can be evalu-
ated making use of Eqs. (2.19), (2.8), and (A8):

where (k ) is a binomial coefficient. For definiteness, tak-
ing notice of Eq. (2.10), in Eq. (3.2) we choose

and

/ —iei(y/ )lBl

(Be )i/2 (B i/2)e

(3.3)

(3.4)

Accordingly, the gnite sum in Eq. (3.2) involves products
of Hermite polynomials of complex conjugate variables.

Note that the lth-order correlation function
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((a )'a') =&' g (l —q)! ' ~H~((2B) ' 'C)~'
2A

(3.5)

der,

((a t)'a')
(ata) ' (3.7)

(a'a) = ~ +~C~' (3.6)

has also the equivalent form (89). This expression was
derived by Perinova et a/. for a DSVS using the generat-
ing function of the photon-number distribution [27].

With Eq. (3.5) and the average number of photons ,» iB i' —ici' —2 Re(B'C')
(~+(C~')' (3.8)

For example, the second-order normalized correlation
function is

one can write explicitly the degree of coherence of 3th or- Explicitly, Eqs. (3.6) and (3.8} read, for a DSTS,

(n ) =n+(2n+1)(sinhr) + ~a~ (3.9)

g' '(0) =2+ (n+ —,
'

) [sinh(2r)] —~a +(2n+ 1)sinh(2r)Re(a e 'r)

[n+(2n+1)(sinhr) +~a ]
(3.10)

function g' '(0) is quite sensitive to the phase
difference 2arg(a) —y, as shown in Figs. 1 and 2. In Fig.
1 we have plotted g' '(0) as a function of the squeeze pa-
rameter for some values of n and a

~

and for
2 arg(a) g=rr. W—e note the existence of a minimum at
small value of r, but the statistics is super-Poissonian. In
Fig. 2, g' '(0) is plotted versus r for several values of the
parameters n and

~
a

~
and for a phase diff'erence

2 arg(a) —y=vr/2
According to Eq. (3.2), the expectation value of any

power of the creation or annihilation operator is ex-
pressed in terms of a single Hermite polynomial. For in-

stance,

limiting cases of a DTS and a STS.
(1) Displaced thermal states AD.TS corresponds to

the superposition of a coherent and a chaotic radiation
field. Such a signaI-plus-noise field was investigated first
in Refs. [12] and [17]. In the absence of the squeezing
process (r =0), we have to take the limit B =0 of our re-
sult (3.2) to get an expression in terms of Laguerre poly-
nomials, Eq. (84),

2

((a t)!am) mI( e)l m(n )mL (—l —m)
m

n

((at)') =( ~B*)'~ H, ((2B*) '»C'}
2

(3.1 1)
)m

—
I( —)II (m —I) (3.12)

The particular cases (3.5) and (3.11) of the general formu-
la (3.2) have been derived previously by Janszky and
Yushin [28].

We conclude this section with some mention about the
This formula was put forward by Cahill and Cxlauber in a
more general context [29].

(2) Squeezed thermal states. Setting C =0 in Eq. (3.2),
we find, after adequate algebra,

9' '(0)

g)(0)

1.6

I I

2.4 2.8
I

0.4 08 1.2 1.6 2 2.4 2.8

FICx. 1. Second-order degree of coherence g' '(0) vs the
squeeze parameter r for a DSTS with the parameters ~a~ =2,
n =0.4 (curve a); ~a~ =2, n =1.4 (curve b); and ~a~ =2, n =4
(curve c). The phase difference is 2 arg(a) —y=~.

FIG. 2. As in Fig. 1, but for the phase difference

2arga y=~/2 The pa—rameters a.re ~a~~=4, n =0.4 (curve a);
~a ~

=4, n = 1.4, (curve b); and ~a
~

=4, n =6 (curve c).
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. (l ™%
( A 2 IBI2)(l+m)/4P(l —m)/2

(( t)! m) (!+m)/2
( A 2 IB 2)i/2

0 (l +m odd) .

(I +m even) (3.13a)

(3.13b)

In Eq. (3.13a), PI (z) is the Hobson's associated Legendre function of the first kind, of degree L and order M [30]. The
sign of the root ( A —IBI )' in Eq. (3.13a) could be arbitrary. However, for definiteness, we make the same assump-
tion as in a previous work [31]: The square root of a positive quantity is positive, while

(A' —IBI')'"=((IBI'—A')'" if Bl & A .

For m =/, Eq. (3.13a) becomes

(3.14)

((a')'a ') =/!( A ' IBI')'—"P,
(A' IBlz))/2

(3.15)

where P((z) is a Legendre polynomial. We mention that the result (3.15) has been obtained previously by a quite
different method [32].

Substitution of the coefficients (2.9) and (2.10) into Eq. (3.13a) yields the explicit form

m!e ' " ' (2n+1)"+ ' [(sinhr ) —(sinhr) ]"
S

t! m) &p(! I)/2 n +( 2n +1)(sinh r)
((+ )/z (2n+1)'/ [(sinhr, ) —(sinhr) ]'

0 (l+m odd),

(l +m even) (3.16)

where we have used the parameter introduced in Ref.
[11],

I

get the result

R (p*,p') =R(0,0)expI A p*/3' —' [8(/3*)2+B *(/3 )2]
r, =

—,
' ln(2n + 1 ) . (3.17)

For r (r,., the argument of the Legendre function is posi-
tive and greater than unity, while for r )r„ it becomes
imaginary. As a particular case, we get either from Eq.
(3.11) or from Eq. (3.16) the expectation value [33]

(/ —1)!![e '+(n+ —,')sinh(2r)] / (l even)
(3.18)0 (1 odd) .

where

R(0,0)=[(1+A) —IBI ]

+C/3*+ C *P'j,

Xexp '—(1+A) ICI'+-,' [B(C*)'+B*C']
(1+A)' —IBI'

(4.3)

(4.4)
IV. COHERENT-STATE REPRESENTATION

OF THE DENSITY OPERATOR

The density operator p is represented uniquely in the
coherent-state basis by Glauber's R function [1],

A (1+A) —IBI'
(1+A) —IBI

(4.5)

R(/3*, /3') =exp[-,'(IPI'+ I/3'I')]('Plpl/3' & (4.1)
BB=

(1+A)' —IB' ' (4.6)

This is a complex-valued entire function of two complex
variables P* and P'. The Weyl expansion (2.18) of the
density operator allows one to express the R representa-
tion in terms of the normally ordered CF [34]:

R (P*,P') =exp(P*P')—

(1+A)C+BC*
(1+A)' —IBI'

Note that the validity condition (A7) reads

(1+A)' —IBI'»

(4.7)

(4.8)

X f d A. y)v(A, )exp( —
IA,

I

—p*A, +p'k*) .

(4.2)

and is always fulfilled, as shown by Eqs. (2.20) and (2.21).
We write also the explicit expressions of the coeKcients
(4.5)—(4.7) as follows:

Taking into account the explicit expression (2.8), we car-
ry out the integral (4.2) by use of Eqs. (A6) and (A8) to

n(n+I)
n + (n + —,

'
)[1+cosh(2r) ]

(4.9)
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e '+(n + —,
' )sinh(2r)

n + ( n +—,
'

)[1+cosh(2r) )

C [—,'+ (n + —,
' )cosh(2r) ] C—"e'r(n +—,

' )sinh(2r)

n +(n+ —,')[1+cosh(2r)]

(4.10)
accordance with the state studied.

It is instructive to evaluate the quasiprobability densi-
ties as Fourier transforms [35]:

W(P, s)= —f d A, exp(PA, ' —P'A, )y(A, ,s) (s real) .=1

(4.12)
(4. 1 1)

In Eq. (4.11) one has to insert one of equations (211) in
Substitution of Eq. (2.8) followed by application of Eq.
(A8) gives

W(P, s) = '+a
2

2 —1/2

exp

'+g lp CI'+—'[&*(p-c) +&(p c ) )

2'+ a —lal'
2

(4.13)

while the requirement (A7) reads

'+a &I&l
2

(4.14)

We recall that the distribution Q(p) is proportional to
the average value of the density operator in a coherent
state [37],

or, explicitly, Q (p) =—(plplp),
1

(4.20)

s &(2n+1)e (4.15)

The condition (4.15), which is independent of the
coherent amplitude e, is satisfied for every value s ~0.
Hence, two of the three usual quasiprobability densities
[36], the Q function

(4.21)

Its explicit form for a DSTS,

and thereby is connected to the R function, Eq. (4.1),

Q (P) =—e IVI'R (P* P)

Q (P)=—W(P, —1)
1

(4.16) Q(P)=Q(0)exp[ —(1—&)lPI' ——,'[&(P")'+& 'P']

+CP'+ C 'PJ, (4.22)
and the Wigner function multiplied by m

—W(P) =—W(P, O),1
(4.17)

exist for every value of the parameters n and r. On the
contrary, according to the same general condition (4.15),
the third one, namely, Glauber's P distribution,

mQ(0) =R (0,0),
has the expression (4.4).

(4.23)

is quite similar to the CF y&(A, ). The expectation value
of the density operator (1.1) in the vacuum state,

P (P) =—W(P, 1),1
(4.18)

V. NUMBER-STATE REPRESENTATION
OF THE DENSITY OPERATOR

r&r, . (4.19)

exists only for values of the squeeze parameter not
exceeding the threshold (3.17),

The power-series expansion of the R function [1],

R (p*,p')= g g p1, , (p*)'(p')
(=om=o

(5.1)

This threshold is independent of a and decreases with the
degree of purity (2.21) of the STS. Note that whenever
the restriction (4.14) holds, the quasiprobability function
(4.13) is positive definite.

allows one to evaluate the density matrix elements pl in
the Fock basis as derivatives of the R function. The
similitude of expressions (2.8) and (4.3) leads to a formula
of the same kind as Eq. (3.2):

r

~ (0 "I™I
P(m Ii 1

1/2 ' k k 2 2 &
—k m —k

J k( 1g )((—k)/2( 1g e )(m —k)I2H ((2g) —1/2C)II ((2g ~
)
—1/2C e ).Pl . k=0 (5.2)
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B 1/2 ~ /(q&/2)~B
~

1/2 (5.3)

and

(B e
)

1/2 —
(B 1/2

)
e (5.4)

In particular, the probability of finding l photons in a
DSTS of the field is

with g (0) given by Eqs. (4.23) and (4.4). As regards the
square roots of the coefFicient (4.10) and its complex con-
jugate, we make the same choice as in Eqs. (3.3) and (3.4),
i.e.,

0.10

0.08' o
/

l
/

/

006

0.04
I

/

0.02,'

e

e

(&)

r= Q5

I

Pl/=erg(0)/I ' g
o gf g

q

~H ((2B) 1/2C)

(5.5)

We mention an equivalent form of the I-photon probabili-
ty, written in close analogy with Eq. (89),

q„=~g(0)( —I)12-21(a+ ~B ~)'

SII

0.04

Q03

002

r =2.5
I

I

/ I

I

I I

I I

(b)

\ sI, 1 / ~ %II, o~

0 5 10 15 20 25 30
~ —/B/„,k!(i —k)!

. Im(Ce -"~/2')
XHpk 1

1/2(W —B~)

. Re(Ce 'P ')
21 —2k

(W+~B )

0.15 r = 0.4

/

0.10—
/

1

0.05—
!

(a)

0.1

0.08

0.06

0.04

0.02

0.015'

0010

0.005

/

I' t r=4
'I

I

o o
/

C 1/ &1/ \ /
r I V I

(c)

5 10 15 20 25 30

!%

/

r=2
I

I

I

I

(b)
I / 'I

I
1

~ I t
/ I I /

/ 'I I t~~
/

/ ~ /

(5.6) and its limit for ~B~ = A,

Io/I
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[Im(Ce '~ ') j
"

XH21 2k(i(2/I )
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I
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Figures 3—5 present the photon-number distribution pI&
plotted for several values of the thermal and coherent
mean occupancies n and ~a~, respectively. It is quite re-
markable that for large values of the squeeze parameter r
the function pI& is oscillating. Even for strong thermal
noise, oscillations occur, as shown in Fig. 5, where the
photon-number distribution is plotted for n =~a~ =10
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FIR. 4. As in Fig. 3, but for the parameters ~a~ =5, n =2,
and 2arg(e) —y=m. The squeeze parameter is r =0.5 (curve a)
and r =2.5 (curve b).

10 20 30

FIG. 3. Photon-number distribution of a DSTS with the pa-
rameters ~a~'=5, n =0 4, and 2arg(a. ) y=r/. The squeeze pa--

rameter is r =0.4 (curve a), r =2 (curve b), and r =4 (curve c).
FIG. 5. As in Fig. 3, but for the parameters ~a ~

= 10, n = 10,
and r =4. The phase di6'erence is again 2 arg(u) —y=~.
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G(s)= g piis' (lsl ~1) .
1=0

(5.8)

and a large squeeze parameter r =4. Our figures are in
full agreement with similar ones reported in Ref. [7].
This is not the case with the numerical calculations of pI&
performed by Vourdas and Weiner [5]. These authors
came to the conclusion that small amounts of thermal
noise destroy the oscillatory character of the photon-
number distribution. In our opinion they did not find os-
cillations of p&I because they chose too sma11 values of the
squeeze parameter. Also, our Figs. 3(a) and 4(a) display a
nonoscillating behavior of pII at small values of r. As a
matter of fact, oscillations in photon-number distribution
set in at values of r exceeding the threshold r, [Eq.
(3.17)]. On the other hand, Glauber's P representation
does not exist for r ) r, . Thus, the oscillations of p&& can
be connected with the nonclassical character of the field
state.

To get further insight, we evaluate the generating func-
tion of the photon-number distribution,

Substitution of Eq. (5.5) into Eq. (5.8), followed by the in-
terchange of summations, gives

G(s)=vrQ(0) g IH [(2B) '/ C]l
1 B

q=o (q')' 2W

X g ' (sA)'. (5.9)
(l —q!

fter performing the last summation in Eq. (5.9), we use
Mehler's formula [38] to carry out the remaining sum.
The result is

G (s) =vrQ(0) [(1—s A )
—s IB I ]

slcl' —s'[A ICI'+Re(B *C')]
(1—sJ)'—s'IB I'

(Isl 1) . (5.10)

If we write explicitly in Eq. (5.10) the coeKcients
(4.5)-(4.7) and the factor (4.23), we finally get the alterna-
tive expression

G(s)= [[1—(s —1)A] —(s —1) IB 2] i/2ex (s — ) CI' —(.—I)'[&ICI'+Re(B*C )]
( (1)

[1—(s —1)W]' —(s —1)'IBI'

Equation (5.11)may be obtained formally from Eq. (5.10) by operating simultaneously the following changes:

s~s —1, J~A, B +B, C~—C, ~Q(0) —+ I .

(5.11)

(5.12)

Since the correlation functions (3.5) are the factorial moments of the photon-number distribution, the following Taylor
expansion ho1ds:

l f 1 1G(s)= g —,(s —I)'(a )'a') . (5.13)

Equations (5.8) and (5.13) on the one hand, and the similitude of expressions (5.5) and (3.5), on the other hand, account
for the existence of the transformation (5.12) which preserves the form of the generating function.

Now we discuss brieAy three particular cases.
(1) Squeezed coherent states. Taking n =0 in Eqs. (4.9)—(4.11) and then substituting Eq. (2.11b) into Eq. (4.11) we get

A =0, B= —e'~tanhr, C =
coshr

Accordingly, for a SCS, the sum (5.2) reduces to its first term which reads

1
i (y/2) )I —m e

—I'(,y/2) ~4e I'(q /2)

p&
= exp[ —lal —Re(a e '+)tanhr], ( —,

' tanhr)' + ' Hi —,H
coshr [l!m! ]

'/ ' [sinh(2r) ]
' [sinh(2r) ] '/

(5.14)

The expression of the probability for l photons coincides with Yuen's result [39].
(2) Displaced thermal states. For a DTS, Eqs. (4.9)—(4.11)become

(5.15)

8=0, C=
n+1 n+1

n &( i& lal
(n+1) +' n(n+1)

( e)m —I

n+1

Hence, we get a formula analogous to Eq. (3.12):
1/2 T

lt
Pim

(5.16)

1/2
m!

exp n+1
i —m n L(l —m)

( +1)'+' ( +1)
(5.17)
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Equation (5.17), which includes the result of Lachs for l = rn [12],has been established by Mollow and Glauber in their
classic work on parametric amplification [13].

(3) Squeezed thermal states. Equations (2.11) and (4.11) show that for a STS, C=O. The discussion is similar to that
concerning the correlation functions of a STS in Sec. III. Accordingly, we get, in close analogy with Eqs. (3.13), the fol-
lowing density matrix:

1/2

[( I+ g )2 lBl2]
—1/2

plm

0 (1+m odd) .

ei [(™12]4( g 2 lB l2)(1+m)/4P(™/2 (l +m even)
( J 2 lB l2)1/2

(5.18a)

(5.18b)

In Eq. (5.18a), PL (z) is an associated Legendre function of the first kind [30]. We make the same assumption as in Sec.
III about the square roots: They are positive for positive arguments and

(A —lBl )' =i( Bl —J )' if lBl) J . (5.19)

This convention coincides with that of Ref. [11]. Making use of Eqs. (4.5), (4.6), (2.9) and (2.10) our result (5.18) can be
written explicitly as

1/2
m!

e ' [' )/2+)I(n + —,
'

)[cosh(2r, ) +cosh(2r) ] I

l [sinh(2r, )] —[sinh(2r)]

cosh(2r, )+cosh(2r)

0 for (l +m) odd .

2 —1/2
sinh(2r)
sinh(2r, )

for (l +m) even (5.20)

The I-photon probability p&1, which is proportional to a
Legendre polynomial of degree l, has been derived by a
diFerent method and extensively discussed previously
[11]. As already noted in Ref. [11],for the diagonal case,
the value (3.17) of the squeeze parameter is a special one
regarding the density-matrix elements (5.20). Indeed, the
argument of the Legendre function in Eq. (5.20), which is
positive and greater than unity for r (r„becomes pure
imaginary for r ) r, . It is noticeable that the situation
facing us here is exactly the same as for the correlation
function (3.16).

VI. COORDINATE AND MOMENTUM
REPRESENTATIONS

OF THE DENSITY OPERATOR

&q plq'& =
2 f jd pd p'&qlP) &PlplP'&&Plq'&

(6.3a)

&
pl

ply'&=
2J

jd'Pd'P'&pip&&plplp'&&O'Ip') .

(6.3b)

In Eqs. (6.3) we also have to insert the wave functions
describing a coherent state of the harmonic oscillator in
the coordinate and momentum representations [40]:

1/4 ' ' ' 1/2 2

exp

We use the quadrature operators

X, =—,'(a +a ), X2=—(a —a ) .
l

(6.1)

+ ,' p( p p" ) i q)—0+——

(6.4a)

(6.2)

For a harmonic oscillator of mass M and classical fre-
quency co, the quadratures X, and X2 are proportional to
the coordinate and momentum operator, respectively,

1/2

(2M%'a) )
'/

1

2M%co

,'P(P+P' )——

1/2

p+iP
2

In spite of their purely mechanical meaning, we shall
refer in what follows to the observables q and p rather
than to the quadratures X, and X2, which are suited for
the radiation field.

We evaluate the coordinate and momentum density
matrices starting from the R function (4.3) and taking
into account the relation (4.1):

cot
l f p (6.4b)

Thus, we have to carry out quadruple integrals of the
type (A 1). The convergence conditions (A4) are satisfied
for a DSTS. Application of Eq. (A5) and insertion of the
expression (4.4) provide the results
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(q~p q')=
1/2

[1+2(A —ReB)] ' exp 1+2 A —ReB

X exp 1+2( A —ReB)
I(q+q') +4[(A+ —,') —~8~ ](q —q') +4i ImB(q+q')(q —q')]

1/2

2t ReC(q +q')+2i[( A + —,
' )ImC+Im(BC*)](q —q')] (6.5a)

2 I C
(p~p~p') =(vrMfico) ' [1+2(A +ReB)] ' exp

X exp 1+2( A +ReB) 4Miiico I (p +p') +4[( A + —,
'

) —~8 ](p —p') —4i ImB (p +p')(p —p') I

+ I
—ImC(p +p')+2i [(A + —,')ReC+Re(BC*)](p —p')I

In particular, for a DSTS, the probability densities of the coordinate and momentum are Gaussian distributions:

(6.5b)

and

1/2

(q ~p~q ) = ( —,'+ A —ReB) ' exp

' 1/2

q
—ReC

2
—'+ 2 —ReB

2

2

(6.6a)

(pp~p) =(2~Mr~) '"(-,'+ A+ReB)-'"e-xl

1
p —ImC

( 2M irido )
'

—,'+ 2 +ReB
(6.6b)

In the simpler case of a DTS, their form has been found
by Lachs [41].

Equations (6.6) give also the distribution functions of
the quadratures (6.2) for a DSTS of the radiation field:

are independent of the coherent amplitude a. The proba-
bility density of each quadrature (6.2) is entirely deter-
mined by the corresponding mean values (6.8) and (6.9),

P(X, ) = [~(—,'+ A —ReB)] ' exp
(X, —ReC)

—,'+ 3 —ReB

P(x)=[2~(b,x) ]
' exp

(5X)
2(b,x) (6.10)

(6.7a)
In Eq. (6.10) X stands for X, or X2 and 6X denotes the
deviation of a quadrature from its average value,

(X2 —ImC)
P(X2)=[sr( ,'+ A +ReB)] ' —exp

—,'+ 3 +ReB

nx—=x —(x) .

VII. SQUEEZING

(6.1 1)

(X, ) =ReC, (X ) =ImC, (6.8)

do not depend on the average photon number n of the
thermal field, whereas their variances,

(b,x, ) =
—,'( —,'+A —ReB), (hx~) =

—,'( —,'+A+ReB)

(6.9)

(6.7b)

We finally note that the expectation values of these quad-
ratures,

(X —I )!![(bx))] ~ (X even)
((~x) ) =

0 (X dd) . (7.1)

As stated by Hong and Mandel [42], the field in a definite
state is squeezed to any even order N in the quadrature
X, if the Kth-order moment ((5X, ) ) is smaller than its
value for a coherent state:

The moments of a random variable X having a Gauss-
ian distribution function (6.10) depend only on the vari-
ance (Ax) as
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((5X2) ) &(N —1)!!2 (X even) . (7.2)

In the case of a DSTS, according to Eq. (7.1) the ex-
istence of Nth-order squeezing reduces to a condition in-
dependent of N,

(bX, ) & —,
' (7.3)

We substitute the coefficients (2.9) and (2.10) in the first
equation (6.9) to obtain

(hX) ) =—'(2n+1)[cosh(2r)+cosy sinh(2r)] . (7.4)

When the variance (7.4), as a function of the phase y,
achieves its minimum at y=m, the squeezing sets in at
the threshold (3.17) of the squeeze parameter. Thus, we
get efFective squeezing to any even order N, as soon as the
P function no longer exists, i.e., for r ) r, .

We evaluate now the normalized mixed-order correla-
tion function

((")"-)g" '(0)= (7.5)
( ( t ) )(I+m)/2

in the strong-squeezing limit (r~ ~ ), when
A —IBI ——'(2n+1)e ", as shown by Eqs. (2.9) and (2.10).

In the case of a DSTS,
ae '+ 'e ~0 (7.6a)
Re(ae

so that we have to take the limit C=0 in Eq. (3.2). This
value corresponds to a STS, whose correlation functions
are given by Eqs. (3.13). The limit A = IBI of Eqs. (3.13)
[30] leads to the result

(1+m —1)!! '!" '/ )~ (3+m e e )

APPENDIX A: AN INFINITE INTEGRAL

In this appendix we use Einstein s summation conven-
tion. Let us consider the infinite integral

I(A, B)=f d —"x exp[b, x, ,'a„,x„x,—],— (A 1)

where A is a n X n symmetric nonsingular matrix with
complex elements,

eludes, as particular cases, pure and mixed states studied
a long time ago (CS's, TS's, DTS's, and SCS's) or more
recently (STS's). The starting point of our study is
Glauber s CF X(k), which is a Gaussian distribution of
two real variables, determined by three coefficients, Eqs.
(2.9)—(2.11).

We have derived three continuous representations of
the density operator, namely, the coherent-state, coordi-
nate, and momentum representations, all of them being
exponentials with algebraic quadratic exponents. The
correlation functions, Eq. (3.2), and the elements of the
number-state density matrix, Eq. (5.2), have similar ex-
pressions. We have also evaluated the generating func-
tion of the photon-number distribution, Eqs. (5.10) and
(5.11). The onset of squeezing takes place, to any even
order, at a critical value r„Eq. (3.17), of the squeeze pa-
rameter, irrespective of the coherent amplitude. At the
same threshold, Glauber's P function ceases existing.
When the squeezing is strong enough, the photon-number
distribution displays nonclassical oscillations, regardless
of the amount of noise.

g(l, m)(0)— (7.7a) akl =c„l+ idkl (ckl, dkl real), (A2)

0 (l+m odd),

which is independent of the displacement parameter a.
In the case of a SDTS,

—i (y/&)
(2B)-1/2C-

—I Re(ae )

(n + ) ))/2
2

i g . — (7.6b)

Due to the equality IBI = A, we are in a position to apply
a summation formula for products of Hermite polynomi-
als [43] yielding the strong-squeezing limit for a SDTS,

(I, m)(0) —I [( I —m)/2]y ™Hl+ (i )

( g)](I+m)/2
(7.7b)

Taking note of the value in origin of a Hermite polynomi-
al [44], we remark that Eq. (7.7b) coincides with Eq.
(7.7a) only for /=0, which corresponds simply to a STS.

Finally, we write the strong-squeezing limit of the $th-
order degree of coherence (3.7) in both cases:

cklxkxl )0 for X&0 . (A3)

The inequality (A3) implies that all the principal minors
of the matrix C should be positive:

detC'") 0, (l =1,2, . . . , n), (A4)

with C'"=c)) and C'"'=C. The integral (Al) general-
izes slightly a similar one discussed by Landau and
Lifshitz [45]. Following closely their line of reasoning,
we get the final result:

I( A, B)=(2m )"/ (detA) '/ exp[ —,'( 3 ')klbkbl] . (A5)

and B is a row matrix with n complex elements b . The n

real variables of integration x form a column matrix X.
The necessary and sufficient condition for the conver-
gence of the integral (Al) is the absolute integrability of
the exponential. This is realized if the quadratic form
whose matrix is the real part C of the matrix 3 is posi-
tively definite:

g'"(0) =(21 —1)!! (DSTS)

g'"(0)=, (sDTs) .H2I(if)
[H2 ( i)') ]'

(7.8a)

(7.8b)

Now we apply Eq. (A5) to evaluate the integral

I—= f d Rex[p—K,IXI —
—,'L(A, *) —

—,'L'A,

—MA, *—M'A, ] . (A6)

VIII. SUMMARY

We have analyzed a broad class of quantum states of a
single-mode radiation field (DSTS's and SDTS's). It in-

The convergence conditions (A4) require that the com-
plex numbers K, L, and L, ' should fulfill the inequality

ReK ) —,
' IL +L '*I, (A7)
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while M and M' may be arbitrary. The result (A5) reads,
in this particular case,

KMM' ,'—[L—(M')+L'M ]I =m(K LL—') / exp '

X —IL'
(A8)

I

APPENDIX B: ALTERNATIVE FORM
OF THE ITH-ORDER CORRELATION FUNCTION

Starting with the generating function of the Hermite
polynomials [26], an integral representation of these poly-
nomials can be obtained:

H„(g)= —f dv e ' (g+iv )" .
v'7r

We use Eq. (Bl) to carry out the finite summation in our formula (3.5):

(81)

((a ) a ) =lip —f f du dve " L( — f*(u)f(v)
77 oo oo A

(82)

where we have denoted

f (v) =—C —i(2B)' v

and L&
' is a Laguerre polynomial [46],

( )
" 1 I(n+a+1) ( —z)L„z =

0 (n —v)! I (v+a+ 1) v!

Taking note of Eq. (83), we get the formula
' 1/2 2

f (u)f(v)= (u v) i A —/ Im—(Ce '~/ ') + i
~ —1 2

A 2A 2A

(83)

(84)

2

(u +v)+ A '/ Re(Ce '~ ')

which suggests an orthogonal transformation of the variables of integration:

l 1w= —(u —v), z= —(u+v) .
2

'
2

This change of variables gives the equality

((a')'a') =I!A' f" f" d—u dz e

(85)

(86)

XL,"'
I

' 1/2 2

i /I ' I—m( Ce '~ ')
A

2

A
z +i/I ' Re( Ce '~ ')

The finite decomposition of a Laguerre polynomial [47] allows us to write the correlation function (87) as a sum of
products of two integrals:

AI I
((at)'a') =( —1)'

& g k
—f d(ve H2k

k=O

1/2

g —( /21 ( C i ( y/2 ))—lgl

A

X dZ e HP) 2k 2+i/I ' Re(Ce '~ ') (88)

i Re(Ce '~ ')

A + ~B~ )'/2

while the limit ~B
~

= A leads to the formula

The integrals in Eq. (88) can be performed [48] and the final expression of the correlation function is obtained:
'k

A —~a~ Im Ce -"&/2)
((a )a')=( 1)2 (~+iB~) y ' ' H k

~™Ce
2k

( ~ (B) )(/2 2l —2k (89)

2 Im(ce ' +/ ) H (i(2+) / Re(ce '(+ ))) (810)
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