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Three-dimensional relativistic model of a bound particle
in an intense laser field
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We analyze a three-dimensional model of a Klein-Gordon particle in a short-range separable
potential and interacting with an intense plane-wave electromagnetic field. In the specific case of the
circular polarization of the radiation, we find an exact solution of the Klein-Gordon equation of the
system and derive analytic expressions for obtaining the total and partial rates of particle ejection

by N-photon absorption, the energy spectrum of the ejected particle, as well as the amplitudes for
stimulated bremsstrahlung and its inverse.
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I. INTRODUCTION

Recent developments in high-intensity lasers [1] make
it likely that in the near future the intensities will ap-
proach and exceed the limit in which the vibrational
(quiver) motion of a free electron in the field would be
comparable to its gest energy mc . In this situation it
is necessary to treat the laser-atom interaction problem
both relativistically and nonperturbatively. Although ex-
act solution of the Dirac and Klein-Gordon equations for
a free electron in a plane-wave electromagnetic field is
known for a long time [2—5], there appears to be no known
exact solution of these equations for a relativistic particle
interacting simultaneously with a binding potential and
a plane-wave electromagnetic field. It would be desir-
able, therefore, to be able to construct and to find exact
solutions of nontrivial relativistic model problems. Such
solutions would not only be of intrinsic mathematical in-
terest but could give useful qualitative insights regarding
the physical processes such as ionization, detachment, or
breakup processes, as well as stimulated bremsstrahlung,
inverse bremsstrahlung, and related radiative scattering
processes. They can also help in developing and test-
ing approximation methods which would be necessary
to tackle the real systems. The difhculty of finding ex-
act solutions of appropriate model problems in the rela-
tivistic case is not surprising, especially if one recalls the
scarcity of such soluble models even in the nonrelativistic
Schrodinger case. There are two well-investigated solu-
ble models in the Schrodinger case for a charged particle
interacting with a plane-wave field (in the dipole approx-
imation): a b potential

~() =~.~&"()'—
BT

and a separable binding potential

One may expect that a relativistic generalization of these
models can be solved exactly too. Since the Dirac elec-
tron introduces the additional mathematical complica-
tion due to the direction of spin, in this work we shall re-
strict ourselves to the investigation of the Klein-Gordon
(KG) equation only (see, however, Ref. [6]). A first obser-
vation in this context is that the 6-potential models are
not applicable to the KG equation since the square of the
potential appears in this case. But we shall show below
that the separable potential model can, in fact, be gen-
eralized to obtain an exact solution of the KG equation
in the case of the circularly polarized light. The reason
for the choice of the circular polarization is the same as
in nonrelativistic case [7], namely, the existence of the
planar symmetry of the radiation compared to the ax-
ial symmetry in the case of the linear polarization. This
leads to an azimuthal invariance in the "photon space"
in the presence of an s-type potential (such as 6 poten-
tial or a separable 8 potential). This will be shown ex-
plicitly below. The theory of separable potentials has
been developed extensively and employed in the context
of nuclear reaction theory in the past [8]. The potential
V above, being a rank-one potential, supports only one
bound state (and all the continuum states). This is anal-
ogous to the case of the 6 potential, which also supports
one bound state. Such a potential may, therefore, be
used to model quantum systems which have efFectively
only one bound state, e.g. , the hydrogen negative ion H
or the deuteron nucleus. Introduction of higher-rank sep-
arable potentials can accommodate any number of bound
states and has been used for systematic variational treat-
ment of the problem in the nonrelativistic case [9].

The three-dimensional (3D) relativistic model problem
to be investigated in this paper is defined by the KG
equation (h = c = 1):

v = v ly)( (2) ((iB, —V) —[p —eA(x, t))~ —m2) g (t) = 0 . (3)
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We choose a short-range separable pseudopotential with
one bound state

v = vpl4')(0l (4)
where

P(x) = Np —e—Ax. A
(5)

X. 27'
'

and the vector potential A(x, t) is chosen to be circularly
polarized

A(z) = Ap[ei cos(k x+ b) —e2 sin(k x+ 6')] . (6)
z and k are four-coordinates and -momenta, respectively.
With the normalization (5) we have

(4'l4) =1 (7)
The solution of (3) obtained here will be then used
to derive analytic expressions for the rate of multi-
photon detachment, radiative scattering, multiphoton
bremsstrahlung, and inverse bremsstrahlung. We shall
also derive the corresponding expression of the above-
threshold-detachment spectrum (i.e., the probability dis-
tribution of the energy of the ejected electron in the con-
tinuum by absorption of any number of photons).

Our potential defined by (4) and (5) contains two free
parameters: A and Vp. To be specific, we will fix A to
be equal to gm2 —E02, where Ep is the solution of (12).
This choice of A simplifies (12) into

1=-Vii (2Ep —Vp)

4(m2 —E(2))

so that

(13)

2-32 1——v, +-v, .
16 4 (14)

x exp — m2 —E02 lxl e (15)

For Vp negative and isV0 ( m2 we have Ep ( m and
the solution corresponds to a bound state.

The corresponding wave function of the (unique)
bound state is

4'(x, t) = e '~"@~,(x)
(m2 E2)3/4

v'2~Ep

II. KLEIN-GORDON PARTICLE
IN A SEPARABLE POTENTIAL

III. KLEIN-GORDON PARTICLE
IN A LASER FIELD

Before proceeding further, in this section we consider
the solution of the model problem in the absence of the
field and fix the parameters of the model potential (5) in
order to be able to reproduce the (unique) bound-state
energy of the system of interest. The KG equation to be
satisfied by the wave function in the absence of the field
(A = 0) is from (3)

(i' —V I4')(Pl) —p ™l@(t)) = 0 .

For a stationary solution I4'@), where
I 4(t) )

e ' 'I@@),we get

(E' —&' —m')l@~) = Vp(2E —Vp)l&)(&l@~)

This leads to the integral equation for 4@ in the coordi-
nate representation (in which V is an integral operator)

Solutions of a free relativistic particle in plane-wave
electromagnetic field are well known in both Dirac and
Klein-Gordon cases (the so-called Volkov solutions) [2—5].
For our present purpose we shall instead require and de-
rive an alternative representation (Floquet representa-
tion) of the KG—Volkov Green's function which will allow
us to make further progress in obtaining the full solution
of the model problem defined by (3).

The Green's function [in the absence of V in (3)] sat-
isfies the equation

[(iB"—eA") (iB„—eA„) —m ]G( ) (z, x') = 6( ) (x —x'),
(16)

with

4~(x) = d z' d z 6(E;x —x')Vp(2E —Vp) A" = [0, A(x)], x" = (t, x),
(10)

E(E;x —x') =—
4vrlx —x'I

x exp —gm2 —E2 lx —x'I . (11)

x P(x')P(z) @~(z),
where the free-particle Green's function

where A(x) is given by Eq. (6). The Floquet representa-
tion of the Green's function is obtained by first removing
the periodic space-time dependence due to the external
electromagnetic potential in (16) by putting

+oo
~(0) ( I) ) in(k. z+P) g(0) (Z XI)

The eigenvalue equation for the energy, obtained by
projecting both sides of Eq. (10) onto P and cancel-
ing the common factor, is

1 = Vp(2E —Vp) d x d x'P(x)D(E; x —x')P(x') .

(12)

The function C 0 depends now on 2: and x' only through
the combination x —x'. We could expand G( )(x, x')
in k x' equally well and obtain another function Go„
difFerent from the first one by the factor e'"" (~ ~ ). If
we now put the expansion (18) into Eq. (16) and go to
the momentum representation we get
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(p —e Ao —m —2nk p+ eAo[(Sn + S„)pi

—i(S„+ —S„)p2])G„„,(p) = 6„n

Taking ( = exp(ir) we get

. eA0
y(r) = yoexp i [p~sin8 sin(r+ q) )k p

(25)

and y„, which we are looking for, is now the nth coefB-
cient in the expansion of g(r) in the powers of exp(ir)

S 4n =In~i (20)

where the more general function G„„, is used instead of(o) ~

G 0. In this formula p~ and p~ are three-vector compo-(0)

nents of the momentum and Sn+ are operators increasing
and lowering the index n

where

eAo
0!0 =

k p'

J„(o.~o~p~ sin 8„)e'"~&, (26)

(27)

To solve the equation for the Green's function we Brst
consider the simplified one

(—2nk .p ~ eAo[(S„+ + S„)pi —i(S„+ —S„)p2])yn = 0 .

(21)

and J„ is the nth Bessel function. The angles P„and 8„
are measured with respect to the propagation vector of
radiation k (z axis).

Having found y we can write down the Green's func-
tion satisfying the Feynman boundary condition

Going to the representation in which

dn~(—
d

where ( is certain complex variable, we obtain

„'=,„' (1+(-')p +'(1-r-') p. X(C),2k p-
and hence

x(() =x"xp,„' [((-(-')pi+i((+(-') p2]2k p

(22)

(23)

(24)

G"'(p) = ). Jn-iv(oo"lpl»n8~)

i(n —n') p„

(p —Nk) 2 —e2Ao2 —m2 + is
x Jn~ iv(no~p[sin8„) . (28)

The c prescription refers now to the positive or negative
values of quasienergy po, wlllch is conserved in the present
case, instead of the free energy. The corresponding time-
dependent Green's function G(o) (x, y) can be constructed
from G„0 .(o) .

G(o) ( ) ) in(A: ++6)G(o) ( )

+oo
in(k. ~+6) d p,„.( „) ). J„~(no~p~sin8„)e'"& J ~(o.o~p~sin8„)

(2&) (po —Nko)2 —(p —Nk) —e Ao2 —m +is (29)

or

G( )(x y)

+oo y
y(o) (x) ) i'�(pp+s) i(p+Rk) y

J—iv(~o I&l sin 8u)
(2~)4 P ~ p2 p 2 e2A2

N= —oo 0 0

4d p @(o) x @(o)+
( ), „ (*) . . ., , . .. , (y)

where

@(o) = exP [
—iP x+ in~o~P~ sin8„sin(k. x+ P„+6)] .

~e now see that G(o) (x, y) has similar properties to those
of the Feynman Green's function. Since the "square" of
the wave function is given by the residue of the Green's

function at its poles, Eq. (31) corresponds to the Volkov
wave function of the scalar particle with the quaswfour-
momentum p) where p()

——p + m + e A().
The formula (28) is the relativistic version of that ob-

tained in previous works [7, 10] and reduces to the lat-
ter in the nonrelativistic and dipole approximations. For
completeness we will give here also the relativistic result
for the linear polarization
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~-- ( b )J-- (,b )
((p —(N —X„)k]— (32)

(33)

with

where the two-arguments functions J„(a„,b„) are the
generalized Bessel functions defined by

and e is the linear polarization vector. The important
feature of the function (28) is its simple (b„dependence,
only through the factor e'~~ " ~&&. This is not the case in

(32), where P„ is hidden in a„, the argument of the Bessel
function. This point will turn out to be of crucial impor-
tance in the following sections, since the integration of
G( i„with spherically symmetric objects p as in Eq. (5),nn' ~

Iproduces a diagonal object in n and n. Otherwise we
would have to do with infinite matrices. In Sec. IV we
deal with this point explicitly.

GA06 p
P

e2A2

4k )

e2AO2

8k p'

(34)

IV. KLEIN-GORDON PARTICLE
IN BOTH THE EXTERNAL FIELDS

The main goal of this section is to And the full Green's
function for a scalar particle in both the external fields:
the separable potential and the laser field. In the Floquet
representation the full Green's function associated with
Eq. (3) satisfies

- 2
(E —nk ) — —iB —nk — (e, (g+ ~ g—),e (g+ g —

)) ~)G (~,)

Vo[2(E —nko) —Vo]e'" "(t)(x) d zP(z) e '"" G„„(E;z,x') = b„„,P(s)(x

In this representation, the equation is fully separable and can be solved exactly. Using (28) we invert the operator in
large curly brackets on the left-hand side and get

(E; x, x') = G„'„.(E;x, x') + ) Vp[2(E —mkp) —Vp] d yG„(E;x,y)e' "~P(y)

d zP(z)e ' "'G „(E;z,x') .

projecting both sides of (36) onto (I)(x)e '""'"one obtains the (infinite) matrix equation
+oo

) 6 —Vp [2(E —mkp) —Vp]
m= —oo

d 2' d pP(x)e ' ' G (E;x,y)e™'~P(y)

d'z(t(z)e ' "'G „.(E;z, x') = d'xp(x)e-'"""G"&, (E;x,x') .

The crucial observation, already spoken of above, is that for the Klein-Gordon particle considered here, circularly
pola»zed light and spherically symmetric p's, the matrix in large square brackets in (37) becomes diagonal and the
infinite set of equations reduces to a single one. This can be easily seen if we use the formula for G, Eq. (28), and
calculate

dsz ds~ y(x)e
—ink xG(o) eimk zy(y)

dpp2 . P~(p —nk) J2 ~(o,~o~p~ sin8„)
47r " "(E—Nkp) —(p —Nk)~ —e Ao2 —m +ie ™
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where P(g) denotes the Fourier transform of the profile P(x).
Introducing now the object W„(E)

W~(E) = 1—Vp [2(E —nkp) —Vp]

pp
+~ oo d).

0 0

gP(p —nk) J2 iv(no '~[pl sin8„)
d8„sin 8„"(E —Nkp) 2 —(p —Nk) 2 —ms —e2Ao2 + is ' (39)

we can write the final formula for the full Green's function in the explicit form:

G„„(E;x,x') = G„„,(E;x,x')

+ ) Vp[2(E —mkp) —Vp] d y G~ i (E;x,y)e' "'"P(y)[W (E)]

d zP(z)e ' "'G l, (E;z, x') . (40)

Equation (40) is one of the key results of this paper. It is now used to derive analytic expressions for the amplitudes
of various processes of physical interest.

V. THE PROCESS OF DETACHMENT

A. Total rate of detachment

The total ejection probability per unit time (i.e. , the rate of detachment in the field) ean be found by investigating
the eigenvalue equation for the quasienergy. Since the state of the bound particle in the external laser field becomes
unstable, we expect this "energy" to be complex: E = ER —il'/2. According to the theory of unstable states, I" may
be identified as the total decay rate and ER as the dressed energy of the initial state. The energy eigenvalue equation
is obtained from the Floquet equation for the wave function [c.f. Eq. (35)]:

- 2

]E —rrtrrr)2 — —r'8 —rrk — ]e, ]S+ + 8„)—r'e„(S+ —8„)] —rrr )C'„(x)

= Vp[2(E —nkp) —Vp]e'"" "P(x) d z P(z)e '""'4„(z) . (41)

This leads to the integral equation

~1„(x)= d x' ) G~ ~ (E;x,x')Vp[2(E —mkp) —Vo]e™"/P(x') d zP(z)e ' "'@~(z), (42)

where, as required, the Green's function G„m satisfies the Feynman boundary condition. After projecting both sides
of this relation onto P(x)e '" " and canceling the common factor we obtain the eigenvalue equation for the complex
energy,

Vp(2E —Vp) ) dP 2

4Vr2
J' »no~ P'(p) J'N(~0'lpl»n~~)

"(E—Nkp) —(p —Nk) —e2A2p —m + iz

For our special choice of P in (5) this reads

4Vo(2E —Vo)No ) dpp
(p 2 + P2)2

J'iv(&o 'Ipl »n en)"(E —N kp) ~ —(P —Nk) s —e~ Azp—m2 + i s (44)

The relevant eigenvalue Eg is the one which goes over
adiabatically into the unperturbed bound state when
A0 —+ 0. The rate of detachment is then given by
I' = —21m(E), ).

This eigenvalue equation (44) is reminiscent of the re-
sult obtained for the b potential [ll] and the rank-one

separable potential in the Schrodinger ease [9,].0] and in
fact reproduces the latter in the nonrelativistic limit and
dipole approximation.

It is important to note that the eigenvalues E~ and
the corresponding eigenvectors Civ(E~) satisfy the rela-
tivistic analog of the "twin-transformation" invariance of
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the Floquet system known in the nonrelativistic case [12]
(p. 250). The relativistic twin-transformation is

pp —+ pg+ Mk,
CN(pA) ~ CN+M(pA + Mk) (45)

where pp = (Eg, p), k = ((u, k).
Thus, for every irreducible eigenvalue Ep there cor-

responds infinitely many eigenvalues Ep + Mw (p
p+ Mk) and eigenvectors CN+M(E~ + Ma, p+ Mk),
which constitute an equivalent set of solutions of the
Floquet-KG equation. The invariance of the eigenvalue
equation (44) under (45) can be easily checked by sub-
stitution in (44), shifting the summation index from N

to N —M and using the fact that np
'~

p~ sin 8„remains
unchanged by addition of a constant mu tiple of the four-
vector A: to p.

B. Partial widths and branching ratios

The investigation of the asymptotic properties of the
Green function in (42) allows us to find also the partial
widths I'„connected with detachment processes in sepa-
rate channels, i.e. , with certain Gxed number of photons
absorbed. Let us consider the asymptotic behavior of
G'„"„),(E; r, r')

a('„),(E;r, r') = pesp r r
(27r) (E —Nkp) —(p —Nk) —e A~p —m +ie (46)

A shift of the variable p + p + Nk and the integration over dA& for large r gives

G„„,(E; r, r')
+oo

iNk. (r—r ')e
4vr~r N= —oo

+oo
iNk (r—r')

4~2r
N= —oo

i&r '.r" i(n n')y„Jn N(Ci p»—n 8r) Jn' —N (~ p Sin 8r)
(pr) —(E —Nkp) + e A~ + m —ie

ipr ipr—' r( 1)n n' i(n—n')P-„
J„N(n+p sin 8„)J„N(a+p sin 8„)

(—pr) 2 —(E —Nkp) 2 + e Ap2 + m —ie

Jn —N(Q' p Sin 8r) Jnj —N(Cl p Sin 8r)
p2 —(E —Nkp) + e2Ap+ m —ie

(47)

where we have introduced the symbols

eAO

kp(E —Nkp) —pk r" '

+ eAo
A

k.(E —Nk. )+pk r-

In the remaining p integral we can close the contour in the upper half-plane and get

(48)

+oo
~(p) (E. t) ) iNk (r —r ') e

r
p ~ ~ /

Jn —N (cLp sin 8„p~ )e' " " Jn' N(cip p~ sin 8„—)e

This formula holds even if E is complex: E —+ E =
ER —i z. With this situation we have to do while solving
(42). In this case we have to analytically continue (49)
from E+ is to E~ —i 2.

As it can be seen from (42) the asymptotic form of the
wave function is dictated by the expression

4„(x) = CVp[2E —Up] d x'G„p(E;x, x')P(x'),

(50)

get

C„(x) -—CVp [2E —Vp]

4'
x ) e' '

P(p~x+ Nk)
N= —oo

N(cJp~ p~ sin8 )
xe'" J N(ap P~ sin8 ),

where C is certain (coordinates independent) constant.
Using the asymptotic form of the Green function (49) we

where p = Q(E —Nkp)2 —e2Ap —m [13].
Using the fact that the asymptotic behavior of the
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scalar Volkov state (31) (only outgoing waves) is

(52)

we can identify the ionization amplitude in the ¹hchan-
nel as

f (y. , 8.) = D""~""+~-)j(„-+Nk)
x J~ (no" p sin 8 ), (53)

dA~ fw f~

= ~D~ dA p ~P(p„x + Nk) J ~(no p sin 8 ) ~

where D is a new constant. For the probability of de-
tachment by absorption of N photons we get

C. The probability distribution
for outgoing electrons

In Secs. VA and VB we have dealt with the detach-
ment process in the language of the eigenvalue equation
and in terms of a constant (in time) rate of detachment.
The rate concept is essentially an approximate one and
is appropriate so long as I' (( a, ER. For high Beld in-

tensities for which this condition may be violated one
requires us to describe the process in terms of the prob-
ability distribution of the energy of the ejected particle
in the continuum (or the so-called above-threshold de-
tachment spectrum). This leads us to consider the full
time evolution of the wave function. We assume that at
certain initial moment (t ( 0) the electron is in the un-

perturbed bound state. At t = 0 the laser field is turned
on and the state evolves now in a way governed by the
full Hamiltonian. The full time-dependent wave function
can be written as

and, for our special choice of binding potential (5),

2

F~ = iD'~ dA p (p~x+ Nk)2+ A2

(54)

(55)

@(x,g) = — d x'G(x, t; x', &')(c)t +2iV)C', (x', t'),
(»)

where the total Green's function in the Floquet represen-
tation has the form

+OO

G( i) ) in(k x+6)

2J ~(no~p~ sin8~)

(p x+Nk)2+%' (56)

Since I )v's are detachment probabilities in separate pho-
ton absorption channels, the unknown constants may be
found from the normalization condition: P&Fiv = I',
where I' is the total rate considered in Sec. V A.

The branching ratios B~ s in individual photon chan-
nels can be found independent of the normalization con-
stant: B~ ——

&
—— ~, where

OO "'e-'&'&'-') G, (p, ; x, x'),
(»)

with G„o given by (40). Since the initial state C, is a
positive quasienergy state we do not distinguish between
retarded and Feynman functions.

Substituting (58) into (57), carrying out the operation

and putting the initial time t = 0, we get
+OO

4(x, t) = ) e'" "'*+ )4„(x,t), (59)

and p = P~ p„. with

C„(x,t) =—
27ri

dpoe '"" d x'G„o(po, x, x') (po. + Eo)C, (x') —,~~/(x') (60)

Using G„o(po', x, x ) from Eq. (40), changing the integration variables p ~ p+ Nk as well as the summation index
n —& n+ N, performing the integrations over x', and putting the result in (59) one gets a useful form of the full wave
function

e(x, t) = ) e'~' d p (p) 1
( )2

(N)
—~b o —~(I )|~

po. . .~, . (po, p),
p o

(61)

where we have used Floquet expansion of the Volkov wave function

+OO

@(0)( t) ) in(k x+6) J ( p~
~

8 )
inpp ie(p)t+i~ ~— (62)

at the energy
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e = e(p) = p2+m2+e2A2p,

and defined

A(~~(p) = J ~(a&lpl sin8&)e' ~" (Ep+ pp+ Nkp)C' (p+ Nk) —
&

P(p+ Nk)~1/2

+Vp [2(Pp + Nkp) —Vp] J ~(nplpl sin 8~)e' ~&P(p + Nk) [Wp(pp + Nap)] C (pp),

with

(64)

G(iv) ( ) ) d3 p(q + Nk) J M (n~&'~ lql sin 8~) [(E + pp + Nkp) 4 (q + Nk) —
zr& p(q + Nk))

27r3 ([pp —(M —N)kp]2 —[q —(M —N)k]2 —m —e2A2p+ js)

and pp ——e(p), and Wp(pp + Nkp) is given by Eq. (39)
with n = 0. We may now use the limits

dW ~ IPllA(N)( )l2
(2 )3 2

1 P (69)

e—ixt —2vrib(x)
+ x +is 0 (66)

to carry out the integration over pp in (61) for t —+ +oo
and thus find the long-time behavior of the total wave
function

where A( ~(e, p) is given by (64) and (65).
For the particular choice of the bound-state wave func-

tion (15) and the corresponding potential function (5),
used in this paper, the respective Fourier transforms are

4(x, t) = ) d'J 1 e(;~(x, t)
(27r)3 /2g(p)

„A' '(~(p) p)
V'2~(p)

(67)

and

8vrA No 1

[p 2+ q2]2

47rNO
4(p) =

p +A

(70)

(71)

@(&l(x, t) is the Volkov wave function nor-
2e(p)

malized to one particle in unit volume which is appro-
priate for a KG particle. Identifying the coefficient of
the normalized Volkov wave function in (67), taking the
modulus square, and averaging over the arbitrary ini-

tial phase (6) of the field [9], we obtain the differential
probability of transition to the continuum between e and
e+ de:

A( ~(e) '
p(e) dedA„,

2E
(68)

where p(e) =
(2 &, is the density of the final states at the

energy e = s(p) = gp2+ m2+ e2Ap. Thus we arrive
at the final formula for the probability distribution of
the ejected particle (or the above threshold detachment
spectrum) by absorption of any number of photons:

with Np = 2" and A = gm2 —Zp2. The final "mo-

mentum" lpl can be also given in terms of the "ki-
netic energy" of the ejected particle in the presence

- 1/2
of the field: lpl = e&,.„+2ek;„gm + e2Ap

eg;„= e(p) —Qm + e A

VI. RADIATIVE SCATTERING

The amplitudes for the scattering of an electron
on the separable potential with simultaneous emis-
sion (stimulated bremsstrahlung) or absorption (inverse
bremsstrahlung) of certain number of photons can also
be found for the present model exactly. In the non-
relativistic case this process was considered in [10, 12].
The starting point is the equation satisfied by the wave
function in the Floquet representation

4'„(x, t) = 4(pl(x, t) + dsx'e '"" ) G~~& (pp, x, x')Vp[2(pp —mkp) —Vp]

m= —oo

xe' ""P(x') d zP(z)e * " 4 (z),

where G~ is still the Feynman function. For 4„(x,t)—the wave function of the incoming particle in the field—we

take the scalar Volkov solution 4„"(x,t)
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0„"(x,t) = e '"" "J„(cP~~p~sin8p)e'"~ (73)

To find the appropriate scattering amplitude we will write the equation for 4(x, t), for very large times, in the form

@(x,t) = @~p)(x,t)+ (74)

Prom (72) we get

+OO +OO +OO

@(x t) = ) eon(i. x+b)@.
(x t) y o (x t) +. ) e'n(a z+b) dsx'e iioi

+oo
i(q+Nk) (X—X ') J„ iv(np' "' /q/sin8~)e'~" )+ J~ iv(ng' ""~/qf sin8~)

(Pp —Nkp)s —q 2 —esA~o —m~ + ie

xVp[2(pp —mkp) —Vp]e' ""P(x') d zP(z)e ' " 4 (z), (75)

where we have shifted the integration variable q in the definition of the Green's function: q ~ q+ Nk. After having
performed the summation over n one obtains

C(x, t) = @~o)(x,t)+
3 —iq, t

(2vr) s

+OO

x ) e' exp io,p' "'
~q~ sin 8q sin(k z + P„+6)

x ) ~
—i(po —Nkp —qp) t—i(q+Nk) x' i(N —m)Pq

(po —Nko —qo + ie)(po —Nko + qo —ie)

x J~-iv(iso' "'
Iql »n 8q) Vo[2(po —mkp) —Vo]

xe™'"/P(x') d zP(z)e ' "'@ (z) . (76)

In this formula qo = gq 2 + e2Ao2 + m2. Using now (66) one arrives at the following relation

4 (x, t) = 4 &o) (x, t) + d q

x ) ) e' (—2~i)6(pp —
qp

—Nkp)
jV= —OO m= —OO

xe' ' J~ iv(o'o~q~ sin 8~)Vp[2(pp —mko) —Vo]p(q+ (N —m)k)

dszP(z)e ™zC(z) .

Now we can find the large time limit of f(t, p, q)

»m f(t p q) = f(p q) = ). e'"'2~~(po —qo —Nko)f' )(p, q)
N= —OO

The partial amplitudes for the scattering with simultaneous absorption or emission of ~N~ photons are therefore

f (p, q) = i ) e'~ ~ J iv(n—gq~ sin8q)Vp[2(pp —mkp) —Vo)

xP(q+ (N —m)k) dszP(z)e ' "'@ (z) .

We have still to get rid of the factor jdszP(z)e ' ~' 4 (z), which contains the unknown function 4 . One can do

so by projecting Eq. (72) onto P(x)e ™'".Thus,
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d'z y(z)e-' "'e„(z) = [W (p,)]-' d'z y(z)e-' "'e (z)

= [W~(po)] 'P(p —mk) J (n~o]p[sine„)e' (80)

w»ch yields the final formula for the radiative scattering amplitude for emission (N & 0, stimulated bremsstrahiung)
and absorption (N ( 0, inverse bremsstrahlung):

e'( ) ~~ Vo [2(po —mko) —Vo]J ~(n~~[q[ sin eq)

xP(q+ (N —m)k)[W (po)] J~(ag[p[sine„)e' 4'"P(p —mk), (81)

where for the special choice of the potential (5) P is given
by (71). The above equation should be compared with
that obtained in the nonrelativistic case [10, 12], which it
reproduces in the limit of the low energy and dipole ap-
proximation of the field, as it should. The corresponding
cross-sections are obtained in terms of (81) from

(82)

ical expressions are derived for obtaining the total rate
I [see Eq. (43)], the partial rates of detachment by ab-
sorption of N photons I'iv [Eq. (54)], the branching ra-
tios B~ = P, the radiative scattering cross sections for
stimulated bremsstrahlung and inverse bremsstrahlung
[Eq. (81)], and the above-threshold detachment spectrum
[Eq. (64)]. The work is based on the Floquet representa-
tion of relativistic Green's functions and wave functions.
The obtained formulas show the expected correspondence
with the nonrelativistic ones.

VII. SUMMARY

In this paper we have analyzed a 3D relativistic model
of interaction of a bound Klein-Gordon particle in a
short-range separable pseudopotential subjected simul-
taneously to a plane-wave electromagnetic field of arbi-
trary frequency, wave number, and field strength. The
corresponding KG equation is solved exactly and analyt-
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