
PHYSICAL REVIEW A VOLUME 47, NUMBER 5 MAY 1993

Spontaneous-emission coupling factor and mode characteristics of planar dielectric
microcavity lasers
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The spontaneous-emission coupling factor P for planar microcavities without lateral confinement
is measured and calculated for gain media with finite spontaneous-emission linewidth. It is shown
that in order to maximize P, the spontaneous-emission linewidth of the gain medium must be smaller
or equal to the cold-cavity linewidth. It is also shown that the planar-cavity geometry will give rise
to spatial modes, and in order to maximize P one should pump only an area corresponding to one
spatial mode. If the pumped area is larger than the lateral extent of a cavity mode, then the mode
will grow laterally when pumped above threshold.

PACS number(s): 42.55.Px, 42.50.Lc

I. INTRODUCTION

Lasers with cavity volumes on the order of one wave-
length cubed are commonly referred to as microcavity
lasers. In these small lasers the mode density per unit
frequency is small, and consequently the threshold pump
power will also be small, since spontaneous emission into
the nonlasing modes usually constitutes the largest dis-
sipation of pump power below threshold [1, 2]. It has
been predicted that threshold pump powers below 1 pW
should be possible using semiconductor material [3, 4],
and a few pW threshold pump powers have been reported
[5,6]. Hence microcavity lasers hold great promise for the
future.

Recently, many different microcavity geometries have
been proposed, such as planar, post [7), disk [5], droplet
[8], and hemispherical cavities [9]. The simplest of the
cavities from the viewpoint of semiconductor fabrication
technology may be the planar dielectric Bragg-mirror
cavity. However, in an earlier paper [10] we have pointed
out that in contrast to laterally confined cavities such as
post, disk, and droplet cavities, the maximum achievable
spontaneous-emission coupling factor in a planar cavity
is limited by the refractive indices in the Bragg stack. In
our earlier analysis we assumed a spontaneous-emission
linewidth much smaller than the cold-cavity linewidth.
In this paper the analysis is generalized, and it is shown
that if the spontaneous-emission linewidth is broader
than the cold-cavity linewidth, P is decreased by a fac-
tor equal to the ratio between the linewidths. This is a
general result pertaining to most microcavity geometries.
Specifically, it has already been shown that this is also
the case for dielectric post lasers [11] and hemispherical
lasers, and it will be a dificult obstacle to overcome in
the pursuit of low-threshold microcavity lasers operated
at room temperature.

A difhculty with the planar dielectric cavity is that,
since there is no lateral confinement of the mode, the
transverse modes of the cavity have been poorly defined,

and, consequently, so has P. In this paper we will show
that modes can be relatively well defined, but they will be
localized spatially. Whereas every mode in a perfect cav-
ity with lateral confinement will occupy the whole cavity,
the modes of the nonperfect laterally unguiding planar
cavity will be spatially localized in the cavity. In some
sense it can be said that the modes themselves define
the cavity. Moreover, above threshold, the lateral extent
of the modes will grow, and finally only one (or rather
two) mode will fill the whole pumped area. This can be
viewed either as locking of all the spatial modes within
the pumped area to a coherent supermode, or as growth
of the spatial mode due to decreased effective cavity loss.
When the spatial mode grows, the divergence angle of
the emitted radiation narrows. The divergence angle nar-
rowing can be shown to be in complete analogy with the
narrowing of the laser linewidth above threshold.

The paper is organized as follows. In Sec. II the
spontaneous-emission intensity from a planar dielectric
cavity is calculated. Analyzing the emission pattern it
is possible to define cavity modes and to calculate how
much of the total emission is emitted into this mode.
In Sec. III we compare the behavior of the spontaneous-
emission coupling factor and the number of cavity modes
of the planar cavity with that of a laterally guided cav-
ity. In Sec. IV we show that planar dielectric cavities po-
tentially may be suitable for relatively high-power, low-
divergence-angle lasers due to the lateral spread of the
mode above threshold. In Sec. V we review some ex-
perimental results and compare with the theory in the
previous sections. In Sec. VI some of our conclusions are
summarized.

II. SPONTANEOUS EMISSION
IN PLANAR DIELECTRIC CAVITIES

A. Spontaneous-emission intensity

The model of the planar dielectric Bragg-mirror cavity
used in the paper is depicted in Fig. 1. The cavity is
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solid angle and unit wavelength of a planar dielectric cav-
ity with its active material dipole moment oriented in
the xy plane is shown in Fig. 2. To separate the infIu-
ence of the cavity on the spontaneous emission from the
influence of the bulk spontaneous-emission line shape,
the latter was assumed to be a constant, independent of
wavelength. In order to simulate one of our fabricated
samples [6], we have used the following cavity data. The
active medium was a GaAs quantum well with a homo-
geneously broadened emission peak at 786 nm. The one-
wavelength-long cavity was fabricated in Alp sGap 7As
(n = 3.47 at 786 nm). The surrounding Bragg mirrors
were made from alternating layers of A1As (n = 3.08)
and Alp isGap ssAs (n = 3.6). The Bragg mirrors, with

FIG. 1. Cross section through a planar dielectric cavity.

assumed to extend to infinity in both of the lateral di-
rections (2: and y), and it is assumed to be surrounded
by isotropic and homogeneous bulk dielectric media ex-
tending to infinity in all three directions. In practice, the
surrounding media are often difrerent, e.g. , air on one
side and semiconductor substrate material on the other.
The cavity consists of a dielectric slab, one wavelength
thick, in which a thin sheet of active material (in prac-
tice this is a quantum well) is embedded. The dielectric
slab is sandwiched between two dielectric Bragg mirrors
each consisting of 2M layers of alternating high- and low-
refractive-index dielectric slabs (M slab pairs). The z
axis is normal to the cavity plane, and the incidence an-
gle 8 is defined as shown in the figure.

To calculate the spontaneous emission emitted from
a planar cavity we use the technique described in [10].
The propagating vacuum fields incident on the cavity
from the surrounding bulk material are expanded in an
orthogonal plane-wave basis. The modification of the
planar-wave-mode functions at the location of the active
material due to multiple-reflection interference is com-
puted by the use of a transfer-matrix method (evaluated
numerically), and the spontaneous emission emitted into
the mode is assumed to be proportional to the absolute
square of the mode modification factor. Four such mod-
ification factors must be computed, as, in general, they
are difI'erent for p and 8 polarization, and they are dif-
ferent for the vacuum fields impinging on the left- and
right-hand side. In addition, if the surrounding bulk me-
dia are different, one must take into account that the
mode densities and electric-field rms expectation values
are diferent for the vacuum fields impinging from the
right- and left-hand sides. Furthermore, the orientation
of the active-material dipole moment must be considered,
as it is often not isotropic in thin quantum wells. Finally,
to evaluate the spontaneous emission per unit solid an-
gle and unit wavelength, one must weigh the (absolute
square of the) modification factors with the bulk mate-
rial spontaneous emission per unit wavelength, that is,
the line shape of the spontaneous emission when unper-
turbed by cavity mirrors. The theory behind the method
is described in some detail in [10] and will not be repeated
here.

The calculated far-field spontaneous emission per unit
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FIG. 2. Computed spontaneous emission per unit solid
angle and unit wavelength (arbitrary units) vs emission wave-
length and propagation angle in the cavity. The z axis in (a)
has been truncated at about one-fourth of the spontaneous-
emission maximum to resolve details in the passband. In (b) a
density plot over the spontaneous-emission intensity has been
drawn. White represents values ) 2.5 in. [cf. (a)], black rep-
resents zero. It can be seen that the spontaneous emission
has its maxima on a half parabola on the lower wavelength
side. The jaggedness in both figures is due to the limited plot
resolution.
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a Bragg wavelength of 786 nm, were surrounded by bulk
GaAs on one side (n = 3.65) and air on the other side.

On the air side the Bragg mirror of the fabricated sam-
ple consisted of 23 layer pairs, on the substrate side the
number of layer pairs was 29.5. This yielded almost iden-
tical calculated reflectivities (as seen from the cavity) of
99.91% and 99.94%, respectively. The calculated photon
lifetime was 5 ps. From the cavity-transmission measure-
ments, and far-field lobe angle measurements presented
in Sec. V, we deduced that the reflectivities were lower in
the real sample. The reason for this shorter lifetime is not
clear, but is most likely the combination of non-radiative
absorption in the Bragg mirrors or quantum well and less
than perfect control over mirror layer thicknesses.

In Fig. 2, which is drawn assuming 9 slab pairs in
the air-side Bragg mirror and 13 slab pairs in the sub-
strate Bragg mirror for demonstration purposes (the cor-
responding plot for the 23- and 29-pair laser spans over
about four orders of magnitude and has only a 0.065-
nm-wide resonance peak), it can be seen that at angles
between 70' and 90' there will be very little sponta-
neous emission. This is because at angles greater than
arcsin(3. 08/3. 47) = 62' the vacuum fields impinging
from the GaAs substrate will be evanescent in the AIAs
Bragg-mirror layers and will decay approximately expo-
nentially as a function of distance from the surface in
the GaAs side Bragg mirror. However, at certain an-
gles the evanescent waves will tunnel resonantly through
the structure. Three such resonant evanescent tunneling
peaks can be seen between 62 and 70' in the figure. At
slightly smaller angles (between 20' and 60' ) the Bragg-
mirror reflectivity is low since the Bragg wavelength of
the mirrors as seen from these angles does not match
the emission wavelength. Hence the sample is more or
less transparent, it will have a passband, and the sponta-
neous emission per unit solid angle and unit wavelength
will be very nearly the same as if no mirrors were present.
There will only be a small but rapid modulation due to
the Bragg mirrors. At smaller angles still (10'—20') the
emitted radiation is very small. The reason is that the
mirror reflectivity at these angles is high, but the cavity
is out of resonance (the phase condition is not met). The
incident vacuum fields are simply reflected back and can-
not penetrate the cavity. In our earlier paper we called
this the stopband. It can be seen that the stopband is al-
most wavelength independent. [The narrow peak around
arcsin(1/3. 47) —16.7' and 786 nm is due to the cutofF of
the vacuum fields impinging from the air side. It too is
relatively wavelength independent, but as a consequence
of limited plot resolution and a very narrow peak, it looks
like it exists only around 786 nm. ]

Finally, near normal propagation angles, and at wave-
lengths equal to or shorter than the resonant wavelength,
the spontaneous emission per unit solid angle is largest.
Since the (complex) amplitude reflectivity of a Bragg mir-
ror is real where its reflectivity is highest (around the
Bragg wavelength), the cavity resonance condition for an
incident plane wave can simply be written

exp(j2k, I, ) = 1

where k, is the z component of the plane-wave k vec-

tor, and I, is the cavity-dielectric-slab thickness. Re-
expressing k, in cavity wavelength and incident angle in
the cavity, k~ = 2vr cos(8)/A, and assuming that the res-
onant wavelength for 8 = 0 is A„(0),the resonant wave-
length for an arbitrary incidence angle becomes

A, (8) = A (0) cos(8) (2)

For small angles 8, Taylor expansion of this formula yields

d A = A„(0)—A„(8)= A, (0) 8 /2 (3)

Finally, expressing (3) in vacuum wavelength Ap and in-
cident angle in vacuum Oo, one gets

AAp = A„p(0)8p/(2n2, ) (4)

where n, represents the cavity refractive index, and
Snell's law has been used. The manifestation of (4) can
easily be seen in Fig. 2. The spontaneous-emission peak
extends along a ridge in a half parabola on the lower-
wavelength side in Fig. 2. If the emission wavelength is
smaller than the cavity resonant wavelength, the maxi-
murn spontaneous emission per solid angle will no longer
be in the direction perpendicular to cavity plane [12], but
at an angle given by (4).

In deriving Eqs. (1)—(4) it has been assumed that the
reflection phase of the Bragg mirrors are independent of 8
(always real). This is essentially true for small angles and
for wavelengths near the Bragg wavelength. In fact, for
a given Bragg mirror, the reflectivity can be expressed
explicitly in k, and 8 only, and it depends only very
weakly on the latter around normal incidence. Hence,
for the cavities considered in this paper, which have
high mirror reflectivity and are designed to be resonant
at normal incidence around the Bragg wavelength, the
resonance characteristics is governed only by k, . Thus
a change of k, by changing the incidence angle by a
(small) amount 8p from the normal direction, keeping the
wavelength constant, will change the resonance condition
(and the mode modification function and consequently
the spontaneous-emission rate into the plane-wave mode)
by the same amount as a change of wavelength by the
amount prescribed by (4) at normal incidence. This is a
very useful result, and we will base our mode definition
on this observation.

Prom Fig. 2 it can be deduced that if the spontaneous-
emission linewidth is small compared to the cold-cavity
resonance linewidth, the resonant mode will occupy a
well-defined solid angle. In an earlier paper [10] we de-
fined the mode as extending in angle from the normal
direction to the angle at the first spontaneous-emission
minima (close to the center of the stopband). In this
paper we will be a little bit more conservative and de-
fine the angular extension of the mode to the full width
at half maximum (FWHM) of the spontaneous emission
per unit solid angle and unit wavelength central peak. In
reality the difference between the two mode definitions
mean little, since only a small amount of the sponta-
neous emission is emitted between the FWHM and the
first minima.

It is relatively easy to show that the FWHM in wave-
length of the spontaneous emission is identical with the
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FWHM of the cavity transmittivity, if the gain medium
is located at the center of the cavity. The FWHM of
the transmittivity expressed in wavelength can be com-
puted easily as a function of the mirror reflectivities Ri
and R2, the resonance wavelength, and the cavity length.
The transmittivity of the planar cavity is

1.5 A

k»n(8HWHM) 28FWHM
(10)

that the equation 8Ji~(x) = x is approximately solved
for x = 1.5, the half-width at half maximum (HWHM)
of the intensity function gives

Q(1 —Ri ) (1 —R2)
1 —QRiR2exp(j2k, L, )

(5)
Using (8) we can express the mode radius in cavity pa-
rameters as

A2p 1 —QRiRg
2~L, n, (Ri R2) i~4 (7)

Using (4) above, the spread in incidence angle at Ap = A„p
can similarly be expressed

+6FwHMO = 2A„pn, 1 —QRi Rg
7rL„(RiR2) i~4

It is straightforward to derive the FWHM of T. Ex-
pressed in k, it is

1 —QRi R2
z FWHM

L (R R )i/4

This corresponds to a spread in vacuum wavelength of

vrA„pL, (RiR2)i~4
8n, 1 —(Ri R2) '~

Vr A„OL,
[1 —(RiRg)'~ ]

where Ri, B~ = 1 has been assumed in the last step.
This result can be derived in a more strict sense if

we consider the limiting case where we want to know
how many modes there are in a microcavity with fixed
length, within an area A, in a certain frequency interval
around the resonant frequency. Since the longitudinal-
mode spacing in a microcavity laser is very large, and
the cavity length is assumed to be fixed, we need only
to consider the transverse mode density. The transverse-
mode density per unit frequency p can be written

In Fig. 3(a) the spontaneous emission per unit solid
angle and unit wavelength at the resonant wavelength
A„o is drawn versus the propagation angle in the cavity.
The FWHM is about 6.0', corresponding to a 46IFwHMo
in vacuum (air) of 21.0'. In Fig. 3(b) the same quan-
tity is plotted versus wavelength at normal incidence.
The FWHM in the figure corresponds well to the value
predicted by inserting (8) in (7) of 2.2 nm. It should
be noted that (7) and (8) were derived using a lumped
mirror model whereas Fig. 3 was computed using the
distributed Bragg-mirror model. The less exact lumped
model thus works well near normal incidence, provided
that one uses the effective cavity length. In this case,
where the computed mirror refiectivities (as seen from
the cavity) were 93%%uo each, the efFective cavity length
can be computed to be 918.7 nm from (8). This should
be compared to the 226.5-nm length of the "cavity" di-
electric slab. The effective cavity thus extends a few slab
pairs into each Bragg mirror.

B. Cavity spatial modes

The well-defined angular half-width of the mode
LI9FwHMo indicates that the mode is also well confined
spatially. The isotropy in the xy plane of planar cavi-
ties dictates that the mode can be defined by its radius
a„.Using classical divergence theory we find that the
far-field intensity I from a uniformly illuminated circular
aperture is given by Airy's formula
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I(8) = 2Ji [ka sin(8)]
ka sin(8)

(9)

where I(0) = Ip and Ji denotes the first Bessel function
of the first kind. Replacing kasin(8) by 2: and noting

FIG. 3. The computed spontaneous emission vs the prop-
agation angle (in the cavity) at the resonant wavelength in

(a), and vs the wavelength (8 = 0) in (b). The cavity param-
eters are the same as in Fig. 2.
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A„pL„(RiR2) i~4

7m„[l—(RiRz) 'i']

~rOLcav

nn. , [1 —(R,Rz)i&z]
(14)

This result is identical to (11), to within a small nu-
merical factor. However, since (13) has been more rig-
orously derived, we will base our definition of the mode
radius on it. It also corresponds to the result derived
by Ujihara [13] to within a numerical factor of order
unity. Moreover, it is consistent with the observation
by De Martini, Marrocco, and Murra [14] that the spon-
taneous emission from two laterally separated points in
a planar cavity is only correlated within a distance pro-
portional to [1 —(RiR2) ~

] . It can also be derived
from Heisenberg's uncertainty principle for position and
momentum. At a given emission wavelength, the uncer-
tainty (or spread) in k, will lead to an uncertainty in
transverse momentum (say, in the x direction). This will
lead to an uncertainty (spread) in lateral (e.g. , x) po-
sition. The result from such a calculation again agrees
with (14) to within a numerical factor of order unity.

The result that even in a planar-cavity geometry, rel-
atively well-defined cavity modes are formed, allows us
to understand how the planar cavity works. Pumping an
area A much larger than vra~z, a number 2A/vraz of spatial
modes will form. As all the spatial modes are mutually
incoherent, the far-Geld pattern of the superposition of
the spontaneous emission emitted from each mode, as a
function of wavelength and angle, will remain the same
as that from a single spatial mode. Even if the pumped
area is much smaller than the lateral spread of one spa-
tial mode, the spontaneous-emission intensity distribu-
tion will remain the same, provided that net quantum-
well (QW) absorption in the unpumped mode region is
negligible compared to mirror losses.

In the discussion above we have been somewhat casual
in our de6nition of cavity modes. We have, e.g. , im-
plicitly assumed that the number of modes can take on
noninteger values. In reality, the boundary conditions of

4mn2 vA
~(~) =

CO

The frequency interval within which the modes lie is
given by (6), which can be translated to frequency by
Av = cpAk/(2an«). The number of transverse modes
within the cavity bandwidth is thus

2n„A(1—QRi Rz) 2A

~pL«V (Ri R2) AQL«~ (Ri R2)
mn, (1 —QRi R2)

(13)

Pumping an area A much larger than 7ra„,a number

2A/hara of spatial modes will form (the factor of 2 ac-
counts for polarization degeneracy). Identification with
(13) immediately gives us the expression for the mode
radius

the specific cavity and pump configuration will uniquely
determine the modes in that particular setup. However,
the details are often not important for our purposes, since
a typical planar dielectric cavity emits most of its spon-
taneous emission into radiation continuum modes (the
emission between 20' and 90' in Fig. 2) which are difficult
to handle as strictly quantized modes anyhow. Therefore,
with the derivations above we will move on and calculate
the spontaneous-emission coupling factor of the planar
cavity.

C. Spontaneous-emission coupling factor

The spontaneous-emission coupling factor of a mode is
de6ned as the ratio between the spontaneous-emission ra-
diated into the mode and the total spontaneous-emission
radiated by the atom system. It is important to realize
that P is the result of the interaction between the cavity
and the radiating system. Hence P depend as much on
the radiating system as on the cavity. The same cavity
will in general have different spontaneous-emission cou-

p ling ratios depending on what radiating system is put
in them.

In our case we have assumed that the GaAs quantum-
well excitonic system has its dipole moment oriented in
the xy plane and that the emission line is homogeneously
broadened. We furthermore assume that the excitonic-
polarization-decay time is much faster than the cavity-
photon lifetime.

For such a system the spontaneous emission per unit
solid angle and unit wavelength at a certain direc-
tion and wavelength can be computed as explained
above. In Fig. 4 the spontaneous emission emitted
per unit solid angle and unit wavelength (arbitrary
units) has been drawn, assuming a Gaussian materia' 1
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FIG. 4. The computed spontaneous emission per unit
solid angle and unit wavelength as a function of angle (in
the cavity) and wavelength is shown. The gain linewidth has
been assumed to be 2 nm, slightly smaller than the cold-cavity
linewidth of 2.2 nm.
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gain function with a FWHM of 2 nm, slightly smaller
than the cold-cavity linewidth of 2.2 nm. From the
Fig. 4 and the underlying model it can be deduced
that the emission into the mode has both its elec-
tric and magnetic field in the 2:y plane. The cav-
ity resonant mode thus resembles a TEMpp Gauss-
ian mode.

The spontaneous-emission coupling factor can be cal-
culated by integrating the spontaneous emission into one
of the polarization directions per unit solid angle and unit
wavelength over the solid angle of the mode and over the
cold-cavity bandwidth and dividing by the same inte-
gral over both polarizations, all solid angle and all wave-
lengths. In Fig. 4 all radiation is accounted for, both the 8

and p polarized. Since the active material in our case has
its dipole moment oriented in the 2:y plane, the radiation
propagating close to the z axis belongs to an equal super-
position of the two orthogonally polarized modes. Hence
P can be calculated relatively easily by integrating the
function in Fig. 4 within the mode-definition angle and
wavelength range, dividing the integral by 2, and divid-
ing again by the same integral taken over all solid angle
and all wavelengths.

Prom Figs. 2 and 4 it is easy to be mislead into be-
lieving that most of the spontaneous emission is emitted
into the resonant mode. This is incorrect. In fact, only a
few percent of the total spontaneous emission goes there.
Although the spontaneous emission per unit solid angle
is much larger at the resonance near the normal direction
than in the passband, very little solid angle is available in
the normal direction. Since the total spontaneous emis-
sion is the integral over all solid angle, and the solid angle
available as a function of 8 is proportional to sin(8), it
turns out that it is the spontaneous emission emitted in
the passband (between 20' to 60' in Figs. 2 and 4) that,
by far, carries away most of the emitted radiation. This
is a problem inherent to all planar dielectric cavities.

In Fig. 5, the spontaneous-emission coupling factor as
a function of the linewidth ratio AA, ~jAAFwHMp, where
LA, is the FWHM of the material gain function, has
been calculated by numerical integration for three differ-
ent cavities. The atomic gain function has been assumed
to be Gaussian, centered on the cavity resonance wave-
length. Since P is relatively insensitive to the exact shape
of the gain function (it is mainly sensitive to the width
of the function), this should be a good approximation of
the real situation. The cavities have been assumed simi-
lar to that in Fig. 2, except that the number of slab pairs
in the Bragg mirrors has been used as a parameter. The
three curves are very similar. The difference is compa-
rable to the truncation errors in the (two-dimensional)
numerical integration of the spontaneous emission. In
fact, we believe that in absence of numerical truncation
errors, the curves would be identical. When doing the
truncation, care has been taken to keep the relative and
not the absolute truncation error constant at every point.

From Fig. 5 it is clear that the optimum P is indepen-
dent of the number M of slab pairs in the Bragg mirrors.
We have shown earlier [10] that for symmetric cavities
(equal Bragg mirror re8ectivity) P depends only on the
refractive indices of the Bragg mirrors and the cavity.
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FIG. 5. The spontaneous-emission coupling factor as a
function of the relative linewidth AA, /AAFwH~p. The cav-
ity data are the same as in Fig. 2, but the number of mirror
pairs have been assumed to be 23 and 29 (symmetric cavity,
0.065-nm cold-cavity linewidth), 7 and 29 pairs (asymrnet-
ric cavity, 2.0-nm linewidth), and 9 and 13 pairs (symmetric
cavity, 2.2-nm linewidth).

When the FWHM of the gain function LA, is substan-
tially narrower than the cold-cavity linewidth AAFwHMp,
the calculated P is around 0.055.

If AA, is larger than AAFwHMp, P is rapidly de-
graded, as manifested by Fig. 5. Spontaneous emission
will be emitted at wavelengths not belonging to the cav-
ity mode, and most of it will be emitted at angles where
the Bragg mirrors are transparent and independent of
wavelength. Thus the spontaneous emission in the pass-
band will increase linearly with AA, and P will decrease
linearly.

The general behavior in Fig. 5 follows that calculated
for dielectric post cavities [11] and hemispherical cavi-
ties [9]. p remains high and constant as long as DA,
is smaller than LAFwHMp but as soon as LAFwHMp is
smaller than AA, , P starts to drop proportionally to the
ratio of the half-widths. The conclusion is that, unless
there is a forbidden gap in all spatial directions centered
around the cavity resonance (as in a photonic band-gap
structure [15]), the atomic gain tineroidt-h must be nar
rower than the cold-cavity Ltinemidth to realize the opti-
mum P. This will be a major obstacle to overcome since
the cavity loss per pass cannot exceed the QW gain per
pass if the structure is to lase. Since the latter is of the
order 1% per pass, the mirror reflectivity must be of the
order 99'%%uo. For a half-wavelength-long cavity emitting at
I-pm wavelength, a gain linewidth smaller than or equal
to 0.3 nm is required to fulfill this condition. The two
solutions employed so far to solve this problem have been
utilization of multiple quantum wells to relax the high-
mirror-reflectivity requirement and the use of excitonic
resonances in combination with cooling [6,16] to reduce
thermal-gain linewidth broadening.

An important thing to keep in mind when doing mea-
surements on planar microcavities is to use proper filter-
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ing when trying to measure AAFwHMo 48FwHMo, or p.
When measuring AAFwHMo by, e.g. , measuring the cav-
ity transmittivity (in practice this is done by measuring
the cavity refiectivity), it is important to filter the re-
flected light angularly, so that only light close to normal
incidence is collected. If not, it is easy to overestimate
LAF~HMp because of the resonance "ridge" on the lower
wavelength side of the resonant wavelength in Fig. 2.

In Fig. 6(a), the spontaneous emission per unit solid
angle is plotted versus the propagation angle in the cav-
ity. The emission has been integrated over all wave-
lengths, and a gain linewidth of 20 nm has been assumed.
This corresponds to an unfiltered measurement. It is
seen that the central lobe has a FWHM of 18', three
times the actual FWHM of the cavity. From this figure
(which should be compared to Fig. 3) it is obvious that
if one tries to estimate AAFwHMo from a lobe angle mea-
surement, it is important to filter the light (which pre-
sumably is broadband spontaneous emission or refiected
white light) in a narrow interval around the resonance
wavelength. Otherwise, the measurement will be cor-
rupted by the resonance ridge.

Collecting all light within the apparent 18' mode lobe

~ 100—
~ )&II

10

~ IISE

C6

angle, the spontaneous emission per unit wavelength will
have a broadened and distorted look shown in Fig. 6(b).
Since little angular filtering was undertaken (only the
emission in the passband was not included), the linewidth
appears broader than it really is. Proper spatial filtering
would have eliminated the emission on the short wave-
length side which does not belong to the cavity mode.

Proper filtering is also important when trying to esti-
mate P from the step height in the output power versus
input power curve occurring at threshold [6I, unless AA,
is smaller than AApwHMo. When measuring strictly one
mode the step height is equal to 1/P as will be explained
in Sec. V. If proper filtering is not undertaken P will be
overestimated by such a measurement, since sI or..-~x.ous
emission belonging to other modes will be included in the
measurement. In, e.g. , Fig. 2, every density square is 3
by 2.2 nm, that is, the square at 786 nm corresponds
to half the cavity mode, which extends from —3' to 3'
and from 784.9 to 787.1 nm. If we assume an unfiltered
measurement with a AA, of 20 nm centered around 786
nm, the cavity resonant mode would seem to extend 18'
as shown above, and all spontaneous emission between
776 and 796 nm and —9' to +9' would seem to belong
to the cavity resonant mode. In this way the resonant
mode spontaneous emission would be grossly overesti-
mated. However, above threshold, only the cavity reso-
nant mode will have sufFicient optical feedback to lase, so
virtually all measured stimulated emission will come from
the desired mode, with or without filtering. Therefore the
step in the input-power versus output-power curve will
be much smaller than 1/P since the spontaneous emis-
sion from many modes measured below threshold is corn-
pared with the stimulated emission from one mode above
threshold.
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III. COMPARISON
WITH A DIELECTRIC POST CAVITY

A. Cavity modes
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FIG. 6. (a) The computed spontaneous emission per solid
angle vs the propagation angle (in the cavity) using no wave-
length filtering. (b) The spontaneous emission per unit wave-

length vs the wavelength. In (b) the measuring aperture was
assumed to be 18' wide, collecting all radiation from —9' to
9 . The cavity parameters in both plots are the same as in
Fig. 2.

In this section we will compare the behavior of the pla-
nar dielectric cavity structure with a three-dimensionally
confined structure, namely the dielectric post. The
dielectric post cavity is depicted in Fig. 7. A high-
refractive-index post (n = 3) confines the cavity modes
tightly in the lateral direction. Integrated Bragg mirrors
at each end provides the optical feedback. To solve the
dispersion relation for the modes, it is useful to assume
that the post has a lossless metal jacket. This will elimi-
nate the (small) evanescent field outside of the dielectric
post, and will greatly simplify the dispersion relation.
However, the mode solutions will hardly be perturbed at
all, since the typically large-refractive-index step between
the post and its surroundings will leave very small evanes-
cent field "tails" outside of the post. In other words, the
assumed metal jacket will simplify the mathematics with-
out disturbing the physics very much.

The transverse-mode solutions for the cylindrical metal
waveguide filled with a dielectric can be found in any
standard textbook on microwave engineering. The modes
can be described by a set of TE and TM modes, both with
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FIG. 7. A schematic drawing of a semiconductor post cav-

ity. The cavity modes are tightly bound to the dielectric post
due to the high-refractive-index ratio between the dielectric
and the surrounding air.

FIG. 8. Normalized dispersion relation for a post laser.
The solid thin lines represent the dispersion relation for a post
cavity with perfect end reflectors. The grey area represents
the "fuzziness" in the dispersion relation introduced by the
finite end mirror reflectivity.

a twofold rotational degeneracy (as for the TE modes this
is efFectively a polarization degeneracy). The dispersion
relation for the TE modes is

(15)

2 2 i(4 - 1/2
(q01 +11 ) ~rOLcav (+1+2)

rr n 1 —(Rr R2) 1&2

2 2
qoi —Pi i ap —1.09@,p (18)

where a is the post radius, and p„ is the mth root of the
equation J„'(p„~)= 0. J„heredenotes the nth Bessel
function of the first kind, and J„'(x)is the derivative with
respect of x of that function. Similarly, the dispersion
relation for the TM modes is

where q„~is the mth root of the equation J (q~ ) = 0.
In an ideal cavity structure, the allowed k-vector z

component is given by Ic, = m7r/L, where m is an
arbitrary positive integer (assuming that the reHection
phases of the mirrors are zero or x). However, in a real
cavity, the finite mirror refIectivity allo~s a finite range
of k, 's in the mode, as manifested by (6). This spread
of A:, will lead to a "fuzziness" of the dispersion relation
which has the consequence that at a finite post radius,
the mode energies will start to overlap.

Assuming that the gain material in the cavity has a
negligibly small gain linewidth LA, , and that its gain
is centered at the fundamental TEii mode resonant wave-
length, the post radius a must fulfill the relation

a& &oi

Az+~z, FWHM

in order not to make the TMpi mode overlap the gain;
see Fig. 8. In the figure the spread in A:, is Lk, F~HM ——

0.05/L„and consequently the TE11 and TMo1 modes
start to overlap when a„)2L,~ and the TMO] mode
overlaps the TE11 mode center wavelength when a„)
2.8Ica„.Using (6) the requirement on a& in order for the
resonator to have only one mode solution (more strictly,
two rotationally degenerate solutions) can be expressed

In the planar cavity the requirement is that the pump
radius should be smaller than v 2a„.It is obvious that if
the gain bandwidth is narrow, the pump radius plays the
same role in a planar cavity as the post diameter plays
in a post cavity.

In the limit that the post radius becomes very large,
specifically when a )) a„,the two cavity geometries must
support the same set of modes for obvious reasons. This
seems not to be true since, as explained above, the planar
cavity has localized spatial modes, whereas the dielec-
tric post-cavity modes are spread throughout the cav-
ity (global modes). However, in deriving the post-cavity
modes, unity mirror refIectivity was assumed. Only then
will the mode always fill the whole cavity. For finite mir-
ror reflectivities, and hence spread in momentum, Heisen-
berg's uncertainty principle dictates that the mode size
remains finite. The modes in the post can only fill an area
aa2. If the post area is larger, localized spatial modes will
form. In Sec. IV it will be explained why these localized
modes are never observed in a microcavity post laser.

B. Spontaneous-emission coupling factor

The spontaneous-emission coupling coeKcient for a
dielectric post cavity has already been calculated in
Refs. [11,17], and we are not going to repeat the effort.
The general characteristics of P are the same for the two
cavity geometries. P depends critically on the ratio be-
tween AAFwHMo and AA, and for obvious reasons it
also depends critically on wavelength matching between
the cavity resonant mode and the gain.

The difI'erence between the two cavity geometries is
subtle, but important. In both cases, to achieve the op-
tirnum P, the gain linewidth must be narrower than the
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cavity bandwidth. However, in the planar case, the opti-
rnum P is determined by the cavity refractive indices. In
a typical lattice matched semiconductor system the op-
timum P is a few percent. In the post case, it is always
possible to achieve P ~ 1/2, provided the gain linewidth
is narrow enough. (P cannot approach unity until the
rotational mode degeneracy is lifted. ) Therefore, it is
correct to say that in the dielectric post cavity, the fun-
darnental limit for P is set by the gain bandwidth. This
is in complete agreement with the conclusions drawn in

at a mean photon number of unity equals the sponta-
neous emission [4], gp can be expressed as gp = PN/~, „.
Furthermore, using the population inversion factor nsp ——

N/(N Np—), and noting that g = p above threshold, (21)
can be rewritten

SP (22)
2~p

Finally, expressing (22) above in emitted power P
hvpp, and in the cold-cavity bandwidth Avp = p/2vr,
the linewidth can be expressed in an identical way as in
the original reference [18]

IV. LASING IN PLANAR MICROCAVITIES 2vrhe(Avp) 2

P (23)

A. Review of Schawlow-Townes linewidtb formula

The cavity modes of the planar cavity derived in
Sec. IIB are those of the passive cavity. %hen the cav-
ity is pumped above thresholdt, he stimulated emission
will preserve the coherence of the spontaneous-emission
events, and thus the effective cavity loss will decrease.
As can be seen from (14) the cavity mode radius de-
pends on the mirror loss. Above threshold, when there is
gain, the mirror loss in (14) should be replaced by effec-
tive mirror loss, and the mode will grow in the transverse
direction. As the mode grows, the emission lobe will nar-
row according to (9). This is a consequence of the earlier
observation that there is a correspondence between the
mode angle and the mode half-width manifested by (4).
When the mode linewidth narrows above threshold, as
manifested by the Schawlow-Townes linewidth formula,
the lobe angle must therefore also narrow.

In the original derivation by Schawlow and Townes, the
laser (or rather maser) was viewed as a passive linear fil-
ter whose finite Q value determined the filter bandwidth
Lv:

(19)

where p is the cavity loss per unit time. Schawlow and
Townes realized that this formula should be valid even
above threshold, provided that one used the effective cav-
ity loss instead of the cold-cavity loss.

The rate equation for the mean number of photons in
the mode p can be expressed as

—& = —(v —g)p+
PN

dt +sp
(20)

2' 7spP

Assuming a linear gain model g = gp(N —Np), where
Np is the number of excited atoms at material trans-
parency, and using the fact that the stimulated emission

where g is the material gain per unit time, N is the
number of excited atoms (excitons), and w, & is the
spontaneous-emission lifetime. The effective cavity loss
for a pumped cavity is seen to be p —g. Using the steady-
state (d/dt = 0) solution of (20) and inserting the effec-
tive loss rate into (19), the linewidth can be expressed

This equation is correct below threshold, but gives a re-
sult a factor 2 too high above threshold as noted by Lax
[19] and others. The factor of 2 is due to that the gain
is clamped above threshold, a fact Schawlow and Townes
neglected in their linear-filter assumption.

B. Narrowing of divergence angle

&eFwHMP = 2A„pn2
KCp

(24)

Using the same arguments as in Sec. IVA, namely that
the cavity loss p in (24) above should be replaced by the
effective loss in the laser, one finds that the lobe angle
above threshold will be given by

+t FwHMp
2A„pn2 pn, p

7l CpP
(25)

where p )) 1. Prom this equation it appears that the
lobe will narrow without bounds as the pumping (and
hence p) is increased. This will be true only as long as
the effective loss of the mode really decreases with in-
creasing pumping. As long as the mode radius is smaller
than the pump spot radius this is true, but in reality the

As shown in Sec. IVA, the linewidth narrowing of a
laser line above threshold can be viewed as the effect of
narrow-bandwidth filtering, the decreasing effective loss
of the cavity increasing the temporal coherence of the
mode, or equivalently the Q value of the filter. In the
same manner, the decreasing effective cavity loss will in-
crease the spatial coherence of the mode in a planar cav-
ity, thus making the laser lobe narrower. In contrast to
the laser linewidth, there will be a limit to the lobe nar-
rowing set by the pump spot size.

The lobe FWHM of the planar cavity is given by (8).
For a high reflectivity cavity, the loss per second can
be written p = —v~ 1n(RiRz)/(2L, ), where v~ is the
group velocity of the cavity counterpropagating waves.
In defining (8), however, cavity dispersion was neglected,
so for the moment we will replace v~ with cp/n, . In
most cases this is a reasonable approximation. Noting
that if Ri, Rq —1, we can replace 2(1 —QRiR2) with
—ln(RiR2), the lobe half-width 40FwHMp below thresh-
old can be expressed
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pumped area will always be finite [Eq. (8) was derived for
a cavity with infinite lateral spread], and this will lead to
restrictions on the minimum observed lobe angle, as will
be discussed in Sec. IV C.

It is also clear that the lobe narrowing will be rather
abrupt as a function of pump power, due to the non-
linear behavior of the input versus output relation near
the threshold. In a typical planar microcavity laser sam-
ple, which has a P of about 1/100, the mean photon num-
ber will jump from unity to about 100 in a very narrow
interval around the threshold pump rate [4]. This means
that the mode divergence angle will narrow by a factor
of 10 (provided that the pump spot radius is at least ten
times the cold-cavity mode radius) in the same narrow
interval. It will thus be difFicult to observe the gradual
narrowing of the lobe angle, particularly since the output
light has large intensity noise at the threshold. Instead,
the lobe will appear to suddenly change divergence angle
above threshold.

C. Lateral spread of spatial modes

The mode radius for the cold cavity is given by (14).
Again it is appropriate to replace the cold-cavity loss with
the effective loss of the active cavity. Doing so we find
that the mode radius of the active cavity can be expressed

&o„coP
%Ace + lisp Q

(26)

A„o
+~FWHMQ ~

2&pump
(27)

However, if the pump spot size is smaller than the cold-
cavity mode radius, then the beam divergence will not
narrow appreciably above threshold, because the effec-

However, this equation is only valid as long as p &) 1
and a„is smaller than the pump spot size. One sees that
at the onset of lasing, the mode area will grow propor-
tionally with the output power until the cavity mode fills
the entire pump spot. Meanwhile, the power density per
unit area remains relatively constant. This can alterna-
tively be viewed as a phase locking of all the spatial mode
within the pumped area to a coherent supermode. In
absence of cavity imperfections and active material fila-
mentation, a relatively high-power, low-divergence-angle
laser could be constructed in this manner.

It is interesting to note that while forming a coupled
array of lasers by etching away part of the top mirror in
a grid pattern, the coherent superrnode far-field pattern
of the coupled-laser-array system usually is multilobed,
indicating that the individual lasers formed in this way
locks out of phase with its neighbors [20]. By avoiding
to form individual lasers, the spatial modes of the planar
laser will lock in phase, with a narrow divergence, single-
lobed emission pattern as a result.

The minimum divergence angle of a planar laser
pumped above threshold can now be calculated from

(10). If r~„~denotes the radius of the pump spot size,
the limiting divergence angle will be

tive mirror loss over most of the mode area will remain
unaffected.

V. EXPERIMENTS

The theory presented in the preceding sections can be
compared with experiments we have done with microcav-
ity lasers. These experiments are described in detail else-
where [6, 16]. Here we will give a short overview with em-
phasis on the comparison of the results with theory. We
consider two cases: first, experiments with unrnodified
planar microcavities [16], which allow a comparison with
the prediction for the dependency of P on the linewidth
ratio of fluorescence and cavity resonance (Fig. 5). Since
the pump spot size for this case is larger than the lasing
mode diameter, several transversal modes contribute in
the threshold regime as explained in Sec. II B. In order
to get a more well-defined situation. , a three-dimensional
structure was produced by etching, which made single
transverse-mode operation possible [6]. A comparison
of experimental data with predictions made from the
present theory gives a resonable agreement.

A. Planar microcavity

Two planar microcavity structures (A and B) were
used for the experimental investigation. Their vertical
structure is identical to the model described in Sec. II
(Fig. 1). The samples differ essentially in their quan-
tum well thicknesses. Samples A and B have as active
media a 70- and a 200-A single quantum well, respec-
tively. The thicker quantum well of sample B leads to a
smaller inhomogeneous broadening and therefore a larger
P because of the better coupling of the spontaneous ernis-
sion to the cavity mode. The quantum well is located in
the center of the cavity, at the antinode position of the
resonant standing wave, which ensures a good coupling
between the Geld and the active medium. By a variation
of the layer thicknesses over the wafer diameter (taper-
ing), diiferent resonant wavelengths result for different
positions. The cavity can therefore easily be tuned to
the quantum-well emission wavelength by translation of
the sample. The cavity features a 80-nm-wide stopband
centered around the resonant wavelength, as observed by
recording the reHection spectrum of the sample upon illu-
mination with white light. At both ends of the stopband
there are highly transmitting windows. The lower wave-
length window was used for coupling the appropriately
tuned pump light, obtained from a Ti:sapphire laser, into
the cavity, thereby reducing the reflection losses to 15%.

For the measurements the microcavity was placed in
a liquid-helium dewar and cooled to 4 K. This reduced
the fluorescence linewidth by more than an order of mag-
nitude, and contributed to optimizing the coupling ratio
between cavity and Huorescence linewidth. In structure
B the resulting emission linewidth was 2.5 nrn, which is
wider than the cavity resonance width. For the narrower
quantum well in structure A, a broader linewidth of 5.3
nm was measured, which is due to increased inhomoge-
neous broadening and leads to a somewhat reduced P.
The photon energy at the pump wavelength (740 nm for
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Using the values of p estimated from the linewidth mea-
surement for the planar sample, and using the relation
p = 2rrcpAAFwHMp/Ap we get Pth, =18 pW. Thus, the
observed values of P and Pth, are in reasonable agreement
with the theoretical expectation.

VI. CONCLUSION

bly logarithmic plot is approximately 2, so the required
pump-power density is roughly equal for all the lasers
on the line. Conversely, the enhanced power density re-
quired for the 3.4-pm laser confirms that this structure
actually lases single mode.

Having a single-mode oscillator allows us to make a
quantitative comparison between experiment and theory.
The expected threshold power can be calculated from

hvar
Pthr =

2

FIG. 11. Superposition of several input-output curves ob-
tained for a 3.4-pm microlaser. The threshold powers of the
individual curves difFer by +40%.

The sample was pumped with a spot diameter of 20
p,m, and showed lasing at 805 nm. The input versus
output curve for a microlaser with top mirror diameter
of 3.4 pm is shown in Fig. 11. Fitting the theoretical
curve yields a P factor of 9 x 10 s. The threshold as
deFined by the one-photon condition [4] is Pth, = 6.7 pW
absorbed power, corresponding to 4-pA current for the
case of electrical pumping. This should be compared to
the threshold current of commercial diode lasers, which is
of the order of 10 mA. Thus several orders of magnitude
reduction of threshold is indeed possible using microcav-
ity lasers.

Data obtained for different microlaser diameters are
shown in Fig. 12. The increased pump power needed to
bring the larger structures to the threshold is apparently
consumed for increasing the number of independent oscil-
lators. As predicted in Sec. II B, the line slope in the dou-
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The spontaneous-emission pattern and the
spontaneous-emission coupling coefficient P of planar
semiconductor microcavities have been computed and
measured experimentally. Reasonable agreement has
been found between experiments and theory. The planar
structure is simple to fabricate, but the ease of fabrica-
tion is bought at the cost of limited achievable P, the
latter being determined by the refractive indices in the
Bragg mirrors and the cavity. It was demonstrated that
in order to maximize P, the gain linewidth of the active
material must be smaller than the cold-cavity linewidth.
For a typical single quantum-well microcavity laser the
gain linewidth must be smaller than 1 nm to meet this
requirement. It was shown that, in spite of having no
lateral confinement, well-defined, circularly symmetric,
spatially localized modes will form in the planar cavity.
In order to have a single-mode (or rather a two-mode) de-
vice, the pump spot size should be smaller than the mode
area. It was also pointed out that in order to experimen-
tally characterize a planar cavity, it is in general impor-
tant to filter the measured light, both spatially and in
wavelength. The reason is the peculiar cavity resonance
of the planar cavity, which may extend far outside the
cavity mode, both in wavelength and in angle. Above
threshold it is expected that the resonant-mode radius
will grow; it will eventually Fill the whole pumped area.
The lateral growth of the mode will be accompanied by
a narrowing of the far-field lobe angle. It was shown that
this behavior is analogous to the linewidth narrowing of
laser light with increasing pumping. The planar cavity
was compared to a dielectric post cavity. It was shown
that in many respects they are similar, the post radius
playing the same role as the pump spot size in the planar-
cavity case. However, an important difference is that the
P of the post cavity is in general not limited by the cavity
refractive index, but rather on the active-material gain
linewidth.
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