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The problem of electromagnetic-field quantization in time-dependent nonuniform linear nondispersive
media is investigated. The explicit formulas for the number of photons generated from the initial vacu-
um state due to the change in time of dielectric permeability of the medium are obtained in the case
when the spatial and temporal dependences are factorized. The concrete time dependences include adia-
batic and sudden changes of permeability, the parametric resonance at twice the eigenfrequency of the
mode, Epstein’s symmetric and transition profiles, ‘“temporal Fabry-Pérot resonator,” and some others.
The upper and lower bounds for the squeezing and correlation coefficients of the field in the final state
are given in terms of the reflection coefficient from an equivilent potential barrier or the number of creat-
ed quanta. The problem of impulse propagation in a spatially uniform but time-dependent dielectric

medium is discussed.

PACS number(s): 42.50.Dv

I. INTRODUCTION

The aim of this paper is to consider the problem of
photon creation and generation of squeezed and correlat-
ed states of the electromagnetic field in media in which
dielectric properties vary in time (due to some external
action).

The problem of electromagnetic-field quantization is
usually considered in textbooks under the assumption
that the field occupies some empty box. The case when
the box is filled with a uniform dielectric medium was
considered in [1,2]. The quantization of the field in a
medium consisting of two uniform dielectrics with
different permeabilities was studied in [3—5]. The case of
an arbitrary inhomogeneous dielectric medium was inves-
tigated in [6,7] and especially in [8,9]. In all the above-
mentioned papers the properties of the medium were be-
lieved to be time independent.

The most general case of nonuniform and time-
dependent linear media was investigated in [10]. Howev-
er, the authors of that paper considered only approximate
solutions of the Heisenberg equations for field operators
valid for some polarization of the medium. Here we want
to consider the case when a nonuniform time-dependent
medium is described with some space-time factorized
dielectric permeabilities € and magnetic permeabilities p.
Then explicit results can be found for arbitrary magni-
tudes of parameters € and p.

In Sec. IT we present a scheme of electromagnetic-field
quantization in a general case of nonuniform and nonsta-
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tionary (although linear and nondispersive) medium. In
Sec. III we apply this scheme to the case of the medium
in which dielectric permeability can be represented as a
product of two arbitrary functions: one dependent only
on space coordinates and another dependent only on
time. Different specific time dependences of the permea-
bility are considered in detail in this section too. The
main results of the paper are summarized in Sec. IV. In
the Appendix we consider a classical problem of impulse
propagation in a uniform but time-dependent dielectric
medium.

II. QUANTIZATION OF ELECTROMAGNETIC FIELD
IN NONSTATIONARY MEDIA

The basis of the subsequent consideration is the system
of Maxwell’s equations in linear, passive, nondispersive,
time-dependent dielectric and magnetic media without
sources (the field quantization in nonlinear stationary
dielectric media was investigated in [6,8,11], and the most
general approach suitable for nonstationary nonlinear
media was proposed recently in [12]),

rotE= 198 ig-19D
¢ ot c ot
divD=0, divB=0, 2.1)

D=e(r,t)E, B=pu(r,t)H .

Introducing the vector potential according to the rela-
tions
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B=rotA, E=—L2A (2.2)
c ot
and imposing gauge conditions
. JA | _ _
div |e a1 0, ¢=0, (2.3)

we can replace the system of first-order equations (2.1)
with the single second-order equation

1 d
+ — =
c2 dt

JA

€ FY =0. (2.4)

rot ‘1~rot A
I

The subsequent quantization procedure is based on the
following important property of Eq. (2.4): it admits a
time-independent scalar product of any two different
solutions in the form

3A,

d2
ot T

A3
ot

i
(A, A== [er,0) | A,

(2.5)

It is essential that the dielectric permeability be a real
function, i.e., the medium is assumed lossless. Besides,
the vector potential has to go to zero at the surfaces
confining the integration domain. Moving boundaries
(considered in [13] in the special case of a free space) are
included into the general scheme automatically.

Suppose that before some instant of time (let it be t =0)
both the medium and the boundaries were time indepen-
dent. Then solutions of (2.4) could be factorized:

A(r,t)=g(r)exp(—iwt) , (2.6)
2

rot irotg _co_e_(zr_)g_zo. 2.7
¢

The scalar product (2.5) was proportional to the usual
scalar product

((A}, Ay)))=—Ho,to,))exp[ilo,—w)t](g)8) ,
(2.8)

(g2,8))= [ e(r)gsgid’r . 2.9)

But it is known that solutions of Eq. (2.7) form the com-
plete orthogonal set of vector functions with respect to
scalar product (2.9). Therefore any real vector field can
be decomposed over this set of functions:

A(r,t)= 3 [a,g,(r)exp(—iw,t)

+arg*(rlexplim,t)] . (2.10)

Comparing (2.8) and (2.9) we conclude that the set of
basis functions { A,} satisfying generalized wave equa-
tion (2.4) can be normalized as follows (n =1,2, . . .):

((A,, A, N=5,. , (A, A%))=0. .11

After the instant when the properties of the medium be-
came time dependent, the basis functions change their ex-
plicit expressions, but the scalar products (2.11) will not
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change. Then for ¢ >0 we can write instead of (2.10) the
following decomposition:

A(r,t)= Y [a, A, (r,t)+a) As(r,1)] . (2.12)

Then we proclaim that the (time-independent) coefficients
of this expansion operators satisfy bosonic commutation
relations and thus obtain the quantized field from a classi-
cal one.

If in some period of time the medium will become time
independent again; then the physical states will be de-
scribed with monochromatic mode functions of the type
(2.6), which will not coincide in general with the basis
functions of expansion (2.12). Therefore we have two
different decompositions of the field operator: expansion
(2.12) over the states corresponding to the physical pho-
tons in remote past, and an expansion like (2.10) over the
physical states arising in future. Designating the “physi-
cal” states with the superscript 0, we can expand each set
of basis functions into a series with respect to another
one:

A, =3 [ AR+ Bum A*] (2.13)
m
The corresponding expansion of “new” creation and an-
nihilation operators over the set of “old” ones is as fol-
lows:
4= 3 (@, +81Bm ] -

n

(2.14)

All values entering this relation do not depend on time.
Remember that the initial state of the quantized field
was determined with respect to the set of “old” operators
(without the superscript 0). Then using expansion (2.14)
we can calculate all quantum statistical characteristics of
the field in the final state. Taking into account conditions
(2.11) and the evident properties of the scalar product

(2.5),
(A, A))=((Ay, A)*=—((AS,AY)), (2.15)

one can express the coefficients of expansions (2.13) or
(2.14) as
A =((A,, A?)), B, =((AX, ADN*. (2.16)
If an external current J(r,?) is present, then the basic
second-order equation (2.4) becomes nonuniform,

1 d
+__
c? ot

JA

¢ __ 47
at

c

rot -1—rotA (2.17)
u

Let us designate by A{J} its unique solution, which is
proportional to J (i.e., which goes to zero when J=0).
Then only minor changes are necessary: it is sufficient to
add A{J} to the right-hand side of (2.12) and extract
A{J} from functions A, and A, in the right-hand side
of formula (2.5) defining the scalar product.

The quantization scheme based on introducing ‘“‘old”
and “new” Heisenberg operators connected with some
linear canonical transformation is rather usual for the
quantum field theory. For example, this is the main tool
in the theory of particle creation in an external field or in
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a nonstationary universe (see, e.g., [13—15] and references
therein). However, it was not applied to the electro-
dynamics in nonuniform and nonstationary dielectrics
until recent years [10,12].

II1. SPECIFIC EXAMPLES FOR
FACTORIZED MEDIA

To calculate the coefficients of the canonical transfor-
mation (2.14) (through which all physical quantities relat-
ed to the system under study can be expressed), one needs
the explicit form of the field mode functions satisfying
Eq. (2.4) and determining scalar product integrals (2.5)
and (2.16). Unfortunately, the complete explicit set of
mode functions can be found only for rather simple spe-
cial cases. One of them corresponds to the electromag-
netic field inside an empty resonator with ideal walls
moving according to the given law of motion [13,16—19].
Here we want to consider another case admitting exact
solutions, namely, the case of media with factorized elec-
tric and magnetic permeabilities:

e(r,t)=g&(r)x(t), plr,t)=p(r)v(t) (3.1)

(the boundaries do not move). Then mode functions can
be also sought in a factorized form:

A(r,t)=g(r)§(t) , D(r,t)=¢&(r)glr)n(t) . (3.2)

Let us demand the function g(7) to satisfy the equation

rot(i'rotg)=k%l(r)g , k=const . (3.3)

Then Egs. (2.2) and (2.4) result in the following ordinary
differential equations for time-dependent factors of the
vector potential and electric displacement:

‘fi—’]=k2c§/v(t) L UE
Equations (3.4) resemble equations of motion of an oscil-
lator with time-dependent mass and frequencies. The
role of the generalized coordinate is played by the electric
displacement time-dependent factor, while the vector po-
tential time-dependent factor plays the role of generalized
momentum. Equations (3.4) can be replaced by the fol-
lowing second-order differential equation:

(3.4)

2
4 44N 4+ 021 =0 ,

Y
dt? dt
- (3.5)
_ladv 2 _ke”
v dt ’ v(t)x(t)

We shall consider the field inside a resonator. Then solu-
tions of Eq. (3.3) can be chosen to be real vector func-
tions satisfying the orthogonality conditions

[ e(r)gi (D), ()d* r=k2,, . (3.6)
Complex solutions of Eq. (3.5) can be normalized as fol-
lows:

v(t) |m (3.7)

«dn ___dn* = _9;
dt 77dt] 20

This means that we choose the solution of Eq. (3.5) in the
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stationary case in the form of

No(t) = (voQg) ™1 2exp(—iQyt) . (3.8)

Because of (3.6), coefficients (2.16) are not equal to zero
only for coinciding indices (intermode interactions are
absent), so we may omit the indices. Taking into account
Egs. (2.5), (3.4), and (3.8), one can represent these
coefficients as

172
1| % .d .
a= o Qon+17?_ exp(iQqt) , (3.9)
L 172 d
0 . .
/3:E b—o 9077_‘7;7 exp(—iQqyt) . (3.10)

Let us introduce the quadrature components and their
variances as follows:

X,()=2""[ayexp(—iQyt)+alexp(iQy)],
X,(0)=i27"?[alexp(iQgt) —@gexp(—iQyt)] ,

=L(R,%,+8,%,) —(2,)(%;) .

(3.11)

(3.12)

Q

ij
Suppose for simplicity that initially the field was in the

coherent quantum state. Taking into account Eq. (2.14),
one can easily obtain the expressions

on(t)=1tlaexp(—iQyt)+PLexp(iQ)|?

:%Voﬂohﬂz s (3.13)
op(t)=1aexp(—iQyt)—PBexpliQyt)|?
2
_ild
=%V0Qo1 d—? , (3.14)
op(t)=Im[af*exp(—2iQt)]
=lyRe n*idztl (3.15)

We see that a time-dependent medium transforms an ini-
tially coherent state to a ‘“correlated quantum state”
characterized by a nonzero covariance (3.15) and unequal
variances (3.13) and (3.14).

This state minimizes the generalized uncertainty rela-
tion by Schrdodinger and Robertson [20]:

01op—0h,= 1 (3.16)

[the equality takes place in the case under study due to
Eq. (3.7)]. For a detailed review of various forms of un-
certainty relations, see [21]. Properties of correlated
quantum states were investigated in [22-25]. These
states can be considered as a generalization of ‘“‘squeezed
states,” properties of which were investigated (although
they were known under different names, especially in the
earliest papers) by many authors; see, e.g., original papers
[26-32] and reviews [33-36].

It is worth noting that for a quite arbitrary dependence
Q(?) the combination I =0 ,0,,— 3, does not depend on
time because of (3.7). This combination is in fact the sim-
plest example of so-called universal quantum invariants,
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i.e., certain functions of variances which are conserved in
time independently of the concrete parameters of quan-
tum canonical transformations. For a general multidi-
mensional canonical transformation (2.14) such invari-
ants were studied in [37]. For vacuum or coherent initial
states I = 1.

The invariant I has a simple geometrical interpretation
[37]. Suppose we have some Gaussian distribution in the
phase space (x;,x,). Then the curves of equal (quasi-)
probability have the form of ellipses. If one calculates
the area confined within such a curve, it appears propor-
tional to I'/2. Therefore conservation of invariant I is
equivalent to the conservation of the phase volume in the
process of evolution due to the famous Liouville theorem
of classical mechanics.

In the case of a harmonic oscillator with time-
independent frequency all equal-probability ellipses ro-
tate in the phase space without changing their shapes.
This means that any Glauber’s coherent state which is
represented by a circle in the phase space cannot be
transformed into a squeezed or correlated state
(represented by an ellipse) in the processes with time-
independent parameters of the system. Consequently,
generation of correlated or squeezed states from an initial
vacuum or coherent state requires time dependence of the
system’s parameters.

Thus let us consider as the first example the case of a
parametric excitation when the properties of the medium
harmonically oscillate at twice the frequency with respect
to some (resonance) field mode. This can be achieved, for
example, by means of a change in the density of the medi-
um due to the action of a powerful external mono-
chromatic classical pumping wave going in the transverse
direction. Since the magnetic effects are extremely weak,
we can write

Q%(1)=Q3[1+xcos(2Q4t)] , (3.17)

vy=0.

We look for the solution of Eq. (3.5) in the form
()= (veQo) " [u(t)exp( —iQot)+v(t)exp(iQqyt)]

(3.18)

with slowly varying time-dependent amplitudes. Substi-
tuting (3.17) and (3.18) into (3.5), neglecting the second-
order derivatives of slowly varying amplitudes, and per-
forming averaging over fast oscillations with frequency
Q, [this approximation is valid provided the depth of
modulation in (3.17) is small, i.e., |«| <<1], we arrive at
the equations

du

dv
LX = == =i 3.
i Qv /4, a0 iQoku /4, (3.19)
whose solutions are
u(t)=cosh(Qgkt /4) , v(t)=isinh(Qy/4) . (3.20)

The variances (3.13) and (3.14) oscillate with twice the
resonance frequency, but their ratio (the so-called squeez-
ing coefficient) is confined at every instant between the
values

exp(—Qukt) =01, /0., =exp(Qext) . (3.21)
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If the initial quantum state of the field was a vacuum,
then the number of photons generated in the mode under
study is equal to

N=(a"9"a @y =y |2=[sinh(Qut /4) ], (3.22)

and for large values of parameter yx¢ the number of
photons increases exponentially with time. In real cases
of resonators with finite Q factor, formula (3.22) is valid
provided time ¢ is less than the relaxation time 7=Q /.
Then the maximal number of photons created from the
vacuum state is

Nmax :% CXP(%KQ)

Certain inequalities for the squeezing coefficients can
be found for arbitrary time dependence of the frequency
in Eq. (3.5) (for nonmagnetic medium) if one takes into
account that these equations turn into the Helmholtz
equation describing the one-dimensional wave propaga-
tion through a nonhomogeneous medium after the re-
placement t—x, Q(¢)—k(x). Suppose that function
Q(t) assumes constant values ); in the remote past and
Q, in the future and the initial value of %(¢) is
Q; 2exp(—iQt) when t— —oco. Then for t—o we
have

7()=Qy " aexp(—iQut)+Bexpli Q)]

kQ>>1. (3.23)

(3.24)

with time-independent coefficients satisfying the relation
lal>—1BI*=1, (3.25)

resulting from (3.7). The ratio B/a can be treated as the
amplitude reflection coefficient from the effective “poten-
tial barrier” represented by function Q%(¢). For the ener-
gy reflecting coefficient we get from (3.24)

2 Q0’77|2 an _2Q0
B dt
R= ; , (3.26)
92|n|2 {%tﬂ +20,

where relation (3.7) (with v=1) was taken into account.
Let us introduce the notation

s=(o /o), r=o0,/(0,,05)"?
From (3.7) and (3.13)-(3.15) we get
an " ©
2 S 1. 2\—1/2 an | 0., 2y-1,2
= 1 s =—1 .
Inl QO( r?) ‘dt (1—r?)
(3.27)
Then (3.26) and (3.27) result in the relation
_ 2124 .2 21172
_(+R)A—=r?)""£[4R —r*(1+R)’] ' (3.28)

1—R

As a consequence we obtain the limitations on the possi-
ble values of the “correlation coefficient” » and the
“squeezing coefficient” s for the given value of the energy
reflection coefficient from the effective barrier [25]:
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7 leiR , (3.29) 1, t<0
x(t)= lexp(—kt), 0=t=t¢, (3.38)
1_R1/2 1+R1/2
1+R1/2——Ss5 I—R172 (3.30) exp(—«kty) , t>1tg .

Thus we see that neither squeezing nor correlation can
be obtained for the reflectionless “barrier.” However,
one should remember that the time-dependent barrier is
in a sense inverse with respect to the space-dependent
one: function Q*(t) is proportional to 1/e(t), whereas the
analogous function k*(x) in the usual Helmholtz equa-
tion is proportional to e(x).

If the initial quantum state of the field was a vacuum,
then the number of photons generated in the mode under

study is uniquely related to the energy reflection
coefficient due to Egs. (3.22) and (3.23) (v=1),
N=(2""2)=|pl= . (3.31)

The maximal squeezing coefficient can be expressed in
terms of the number of quanta due to (3.30) and (3.31) as
follows:

Smax =[N+ (1+N)1272, (3.32)
so that

1—2N'2<5<14+2N'? for N <<1 (3.33)
and

(4N)"!1<s<4N for N>>1. (3.34)

If dielectric permeability varies with time more or less

monotonously and sufficiently slow, so that

dQ 2

— <0,

dt

then Eq. (3.5) can be solved in adiabatic approximation
corresponding to the approximation of geometrical optics
for the Helmholtz equation. The solutions of the zeroth
order have the form

(3.35)

7()=Q"12(t)exp (3.36)

+i fotQ('r)d'r] .

The first-order corrections to these solutions yield the
reflection coefficient (see, e.g., [38])

dQ/dr

o dr d
%f dr | Q3

R=
— 01/2(7.) dr

2
(3.37)

Xexp [—21‘ fOTQ(x)dx]

This formula holds provided R <<1. Then the average
number of created photons is also given by (3.37), as well
as the probability to register a photon.

As an example let us consider the case when the time-
dependent factor in dielectric permeability (3.1) decreases
in time according to exponential law in the interval
0 S t S tO:

In this case the main contribution to the integral (3.37) is
given by two delta functions 6(¢) and 6(¢ —¢,) arising due
to the discontinuity of d{}/dt at points t =0 and t=t¢,.
The number of created photons is

_©
N(to)—a[l-i-exp(—xto)

—2exp(—«ty/2)cos(2¢))(ke) ™2, (3.39)

<p=%[exp(:cto/2)-l](kc) .

This formula is valid provided « <<kc.

Yablonovich [39] proposed to use a medium with re-
fractive index decreasing in time (the so-called “plasma
window’’) to simulate the Unruh effect, i.e., creation of
quanta in an accelerated frame of reference. Using some
heuristic reasoning he claimed that the spectrum of pho-
tons created in such a plasma window would resemble
Planck’s spectrum with effective temperature proportion-
al to [(1/x)/(dx/dt)|, i.e., parameter k in the example
discussed. Equations (3.39) show that the real spectrum
of photons created in the exponential model of a “plasma
window” when (1/x)Xd)/dt)=const has nothing in
common with Planck’s spectrum even in the asymptotical
limit of infinitely long time, t;— . An exponentially
small reflection coefficient, as is known from the theory
of adiabatic invariants, is possible only for those func-
tions x(¢) that have continuous derivatives of all orders
[40]. The analytical solution of (3.5) for smooth functions
Q(t) of such kind are known, e.g., for the symmetric Ep-
stein profile [38,41]:

QX(t)=(kc)*{1—M[cosh(yt/2)]7?} .

(3.40)
If y%/(4kc)*<M <1, then the energy reflection
coefficient is given by the expression [38,41]
R— cosh?(7rd,;) (3.41)
cosh[m(d,+s)]cosh[7(d,—5)] ’
where
s=2kc/y , dy=[M2kc/y)—1+]"". (3.42)
The number of created quanta due to (3.31) equals
_ [cosh(md,) |’ 543
sinh(rs) '

and in the adiabatic limit, since M <1, we get indeed
“Wien’s spectrum” with effective temperature” propor-
tional to v,

N(k)=exp[—(1—M®)arkc /y], 4mke/y>>1.
(3.44)

It should be mentioned, however, that the case M >0
corresponds not to a plasma window, but to a “dielectric
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window,” since in this case €(¢) > ¢€;,. In the plasma case
of M <0, the following formula is valid instead of (3.41)
cos*(7d,)

~ cos¥(wd, )cosh?(ms)+sin?(wd, )sinh*(ms)
(3.45)

dy=[+—M(2kec/y)?]"% .
This leads to the strongly oscillating number of quanta
| cos(md;) (3.46)
sinh(7rs)
In the adiabatic limit
N=4cos*(2wkc|M |2 /y )exp( —4nke /y) ,
(3.47)

2mke | M|V >>1 .

We see that in certain modes photons are not generated
at all due to a peculiar “interference in time.” In the case
of a rapid change of dielectric permeability, when
y?/(4kc )* >>|M|, oscillations disappear and (3.46) yields

N=(2kcM /y)*<<1, (3.48)

which resembles the “Rayleigh-Jeanes spectrum,” but
with effective temperature inversely proportional to the
square of parameter ¥ characterizing the rate of change
of dielectric permeability.
Another exactly solvable case corresponds to the tran-
sitional Epstein’s profile:
Q%)= (ke [1—p~—?’~—e"1" 2 ] : (3.49)
1+exp(yt)

which can be considered as a smoothed variant of the ex-
ponential dependence (3.38). The reflection coefficient is
given by [38,41]

[ sinh{ims[1—(1—p)'"?)}
| sinh{ims[1+(1—p)'"2]}

2
] , §s=2kc/v .

(3.50)
Consequently,
(sinh{ims[1—(1—p)'2]})?

sinh(7rs )sinh[7s(1—p)1/?]

(3.51)

In the adiabatic limit we have again Wien’s spectrum
N=exp[ —4nkc(1—p)'2/y], 4mkc/y>>1. (3.52)

The opposite limit ¥y — oo transforms (3.49) into the sharp
step-function barrier. Such a frequency-jump case was
considered in connection with the problem of squeezed-
state generation in [42-44]. If the ratio of the final
dielectric permeability to the initial one is €, then the
reflection coefficient is given by the usual Fresnel formu-
la, and the number of created quanta equals

N=(€"2—1)*/(4€'?) , (3.53)

without any dependence on the wave number. But an in-
teresting effect arises if in some time 7 the dielectric per-
meability restores (also instantly) its initial value. This
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situation is described by the usual formulas for the ideal
Fabry-Pérot resonator, and after simple algebra we get
_(e—1) .,

N =
de Sin

ket
€l”?

(3.54)

(one should remember that the effective refractive index
in the time-dependent case is not €!/2 but € 17?). We see
again that due to a kind of temporal interference photons
in certain modes are not created at all, as well as in the
case of a smooth barrier (3.46).

In the case when dielectric permeability varies accord-
ing to (3.38) the exact solution of (3.5) can be obtained as
a linear combination of Bessel’s functions with argument
z=2kc exp(kt /2)/k:

n(z)=a,Jy(z)+a,Yy(z),
(3.55)

n(zg)=1, %:L(zo)=—i , zog=2kc/k .

Substituting (3.55) into (3.10) and then into (3.31) we can
get the coefficient B and, consequently, the occupation
number

2

an | ,a,

N= dt

Qlnl2+ (3.56)

1
5 -

In the limit k << kc the decomposition of (3.55) for z—
produces the same result as (3.39). In the opposite limit
(k >>kc) of rapid permeability decrease to zero [it would
correspond to €=0 in (3.53)] the adiabatic condition
(3.35) is no more valid. The expression for the photon
number can be obtained on decomposing (3.55) over
zy—0. Taking into account the initial condition
n=~Jy(z) one can see that for t — o0, which is equivalent
to z— oo, the number of quanta tends to the constant (al-
though large) asymptotic value

kK
4mke

(3.57)

IV. CONCLUSION

Here we list the main results of the paper. We have
shown that in the case of space-time factorized media the
problem of generating squeezed and correlated states of
an electromagnetic field is reduced in fact to the problem
of harmonic oscillator with a time-dependent frequency,
which in turn is intimately related to the problem of one-
dimensional wave propagation in a medium with variable
refraction index. Using this analogy we have expressed
the number of created quanta in terms of the energy
reflection coefficient from a certain effective potential
barrier. In addition, we have derived inequalities es-
timating the maximal possible degrees of squeezing and
correlation in terms of the same parameter.

Using both approximate (adiabatic) and exact solutions
we have considered several important specific time
dependences of dielectric permeability. These examples
show that the number of created quanta (as well as corre-
lation and squeezing coefficients) depends, in general, on
rather fine details of the dielectric permeability time
dependence. In particular, this quantity can strongly os-
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cillate and go to zero for certain values of the wave num-
ber due to a kind of temporal interference.

In real experiments time dependence of the dielectric
permeability arises as a result of action on the nonlinear
medium by an external pumping field. Thus the situation
considered in this paper, when the dielectric permeability
is some function of time prescribed beforehand, is in fact
a model of real experimental situations. However, this
model presents a correct qualitative description of the
processes of squeezing and photon creation. It is seen,
e.g., in the example of the parametric resonance at the
twice resonator eigenfrequency. In this case our results
relating to the rate of photon generation are in qualitative
agreement with the results of [45], where the pumping
field was taken into account explicitly (the case of classi-
cal pumping was investigated in detail, e.g., in [46]).
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APPENDIX

Here we want to discuss some interesting features re-
lating to the electromagnetic wave propagation in spatial-
ly uniform but time-dependent media. The electric dis-
placement for traveling waves can be expressed as

D, (x,t)=e™n, (1), (A1)

where the time-dependent factor satisfies the equation

2

d
77'2"+k2c2nk/e(t):o.

(A2)
Suppose €(¢t)=1 for ¢t <0. Then the traveling-wave solu-
tion is

D'(x,t)=exp[ik(x —ct)], t<0. (A3)

If the dielectric permeability changes in the interval
0<t < T but assumes some constant value €, for t>T,
then function (A3) will be transformed for ¢ > T, into the
superposition of two waves traveling in opposite direc-
tions,

DY (x,t)=aexp[ik(x —ctey 1/?)]

+Bexplik(x +ctey /2] . (A4)

We see that the ratio |8/al?, which was treated in Sec.
III as the reflection coefficient from some conventional
“potential barrier,” appears in the case under study as a
genuine reflection coefficient, since the wave going in the
opposite direction really exists. This is seen distinctly in
the simplest example of an instant change of the dielec-
tric permeability (which can be used by an instant change
of the medium density, temperature, or other parameters
due to some external action; see, e.g., [47]). Then an arbi-
trary initial wave packet D(x —ct), t<0, will be
transformed due to the nonstationary wave equation
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3’D _ e(t) 3°D
dx? B c? 9or? (435

and the continuity conditions into the function (z > 0)

D(x,t)=1[(1+€}/*)D(x —cte)’?)

+(1—el)Dx +cte)?)] . (A6)

Since we consider nondispersive media, this solution is
physically acceptable provided g,> 1. It is interesting to
notice that transmitted wave packet [the first term on the
right-hand side of (A6)] is amplified in comparison with
the initial one. Moreover, for €,>9 the reflected wave
packet is amplified too. The forms of both transmitted
and reflected impulses are the same as the form of the ini-
tial packet, since the reflection coefficient does not de-
pend on the wave number.

Now suppose that in time T function e(t) restores its
initial unit value. Then coefficients ¢ and 3 in (A4) be-
come dependent on the wave number:

a=7exp(ikd_)—7_exp(ikd ),

(A7)
B=plexp(—ikd_)—exp(—ikb,)],
where
(e)/?+1)? 61 A
T+= 466/2 y PT 46(1)/2 ’ Bi:CT(liEO ).

(A8)

The reflected wave disappears provided the condition

k(6,—8_)=2mm , m=1,2,... (A9)

is fulfilled. However, this is true only for a mono-
chromatic initial wave (with an infinite extent in space).
For packets bounded in space the situation can be eluci-
dated in the frame of an exactly solvable example of a
Gaussian initial packet

Dm(x,t)=exp[*(x—-ct)2/02+ik0(x——ct)] . (A10)
Calculating the Fourier transform of (A10) (which is a
Gaussian exponential again) and replacing each Fourier
component by expression (A4) with coefficients given in
(A7) and (A8) one can easily obtain the following explicit
expressions for the transmitted D, and reflected D,
waves:

D (x,t)=7,exp[ —(x —ct +8_)2 /02 +iky(x —ct +5_)]
—7_exp[ —(x—ct+8,)*/0?

+ikg(x —ct+86,)], (A11)
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D,(x,t)=pfexp[ —(x +ct—8,)2 /o +iky(x +ct—8,)]
—exp[—(x+ct—86_)*/0?
+iko(x +ct—8_)]} . (A12)

We see that the initial impulse is split into four packets
with the same shape: two transmitted and two reflected
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packets. This phenomenon manifests itself in the most
distinct form for narrow packets satisfying the condition
0<<8,—8_=2cTe;'?. (A13)

In this case no disappearance of the reflected wave is ob-
served.
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