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Violation of Bell's inequality by macroscopic states generated via parametric down-conversion
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We show that correlated photon-number states predicted to violate a Bell's inequality of the Clauser-
Horne-Shimony-Holt type might be generated from parametric arnplification. The test is potentially one
of macroscopic quantum mechanics in that violations are predicted for situations where a large number

of photons are detected in a single detector at one time. The traditional amplifier and detectors allow

violation only for regimes where the probability of generation of a- macroscopic state is very small. We

suggest that this probability may be dramatically improved with the use of squeezing and photon-
number-state-preparation techniques.

PACS number(s): 42.50.Wm, 42.65.Ky, 42.50.Dv

I. INTRODUCTION

The correctness of quantum mechanics has been
verified in numerous experimental situations. A particu-
larly strong test of quantum mechanics was suggested by
Bell [1] who showed that the predictions of all classical
theories, based as they are on the "common-sense" as-
sumptions of local realism, contradict those of quantum
mechanics. Experimental tests that have been performed
support quantum mechanics [2]. However, such tests
have been so far restricted to microscopic systems in the
sense that a measurement is made on one particle at a
time. There has been a developing interest in tests of
quantum mechanics for macroscopic systems. These in-
clude proposals by Leggett and co-workers [3] to test
whether one can generate a superposition of two macro-
scopically distinct states. There have been recent sugges-
tions to prepare similar states in optical systems [4]. So
far, however, there has been no experimental
confirmation.

Our interest here is in tests of quantum mechanics
against local realistic theories in macroscopic or meso-
scopic systems where there is a significant number of par-
ticles incident on each measurement apparatus. In these
tests, quantum mechanics predicts a violation of a Bell' s
inequality which is derivable from the assumptions of lo-
cal realism. Such a test for an optical system was origi-
nally proposed by Drummond [5] who considered states
generated by cooperative atomic fluorescence. Mermin
[6] first presented, we believe, a related Bell's test for
higher-spin states and, more recently, Braunstein and
Caves [7] have proposed new tests. However, the obvious
experimental situations corresponding directly to these
proposals are currently difficult to realize. Oliver and
Stroud [8] suggested using correlated Rydberg atoms,
which has the advantage of excellent detection
efficiencies, but the atomic state is not so readily pro-
duced. Here we suggest producing macroscopic quantum
states which violate a Bell s inequality in optical paramet-

ric down-conversion or similar four-wave-mixing process-
es, thus obtaining a test of quantum mechanics against
classical theories for situations of large particle numbers.
We point out that the multiparticle tests described in this
paper are different from those proposed recently by
Greenberger et al. [9], and Mermin [9], and Yurke and
Stoler [9] in that we have large particle numbers at each
analyzer or measurement apparatus. Thus impinging on
each analyzer is a wave packet with X quanta. In the
Greenberger-Horne-Zeilinger proposals, the particles are
each spatially separated so that there is only one particle
incident on each analyzer, although we have recently
considered [ 9] how one might achieve the Greenberger-
Horne-Zeilinger phenomenon with more than one parti-
cle per analyzer.

Correlated signal-idler photon pairs have been generat-
ed via parametric down-conversion [10] and shown to
give violation of Bell's inequalities in the experiments of
Ou and Mandel [11],Shih and Alley [12], and Rarity and
Tapster [13]. Here we show that correlated multiphoton
and even macroscopic states which violate a Bell's in-
equality are also generated in parametric down-
conversion and that experimental arrangements similar
to the above can be used in principle to contradict the
classical predictions. Our analysis here relates primarily
to the scheme used by Ou and Mandel [11]. We show
that with the traditional arrangements the probability of
generation and detection of these quantum states de-
creases with increasing number of particles detected,
making true macroscopic experiments difficult. The
achievement, however, of a violation of a Bell s inequality
for situations of X quanta per wave packet where N =2
may well be possible with current techniques and would
represent a test of quantum mechanics in a new regime.
We discuss how the use of quantum-noise-reduction tech-
niques such as squeezed light and photon-number-state
preparation may improve the feasibility of generating
nonlocal quantum states with still higher particle num-
bers.
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II. VIOLATIONS OF BELL'S INEQUALITIES
USING CQRRKLATKD PHC)TAN-NUMBER STATES

We being by examining the properties of a correlated
photon-number state

(2.1)
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We will show that this state exhibits distinctive quantum
features even for large n by way of a violation of Bell's in-
equality, and then discuss how a similar state may be gen-
erated using parametric down-conversion. The orthogo-
nal modes are referred to as signal and idler modes with
boson operators a& and a2 respectively. These fields have
a differing frequency or polarization or k direction so
that they may be spatially separated. The parametric in-
teraction has been used to generate correlated photon-
number states which correspond to (2.1) with n =1 and
to demonstrate violations of Bell s inequalities in this mi-
croscopic regime [11—17]. A schematic interpretation of
the scheme used by Ou and Mandel is depicted in Fig. 1.
The final detected modes are c+,c,d+, d, where the
polarizers and/or beam splitters produce the following
transformations of the signal and idler output modes:

c+ =a+ cos8+ a sinO, d+ =b+ cosP+ b sing,

c = —a+ sin9+a cos8, d = —b+sinP + b cosP,
(2.2)

a+ =(a, +ic, )/&2, a =(a2+ic2)/&2,

b+ =(ia, +c, )/&2, b =(ia2+c2)/&2 .

FIG. 1. Schematic diagram of the transformations involved

in the experimental arrangement to test Bell s inequalities (BS
denotes beam splitter).

developed by Mandel [18] and Kelley and Kleiner [19].
We examine here the simplest and experimentally
relevant situation where the detection time T and the
detection efficiency are sufficiently small that only the
1owest-order terms in the formulas contribute. The prob-
ability then becomes

P (g, y)= (:ctNcNdtNdN (2.3)

PN(8, )='g(:c+c+ (d+d+ +d d ) (2.4)

Similarly, if the polarizer preceding A is removed, we
have

P ( —y)=21(.(ct c +ct c )Nd™dN.
& (2.5)

where g is an efficiency factor assumed small and the::
denote normal ordering. We also define the joint proba-
bility of detecting N photons at A and N photons at 8 if
the polarizer preceding B is removed. Quaritum mechan-
ics predicts

Here the c
&

and c2 are modes for the input vacuum states
at the 50-50 beam splitters. These transformations used
in conjunction with the parametric amplifier were pre-
dicted originally by Reid and Walls [14] to give violations
of a Bell's inequality. In the apparatus of Ou and Man-
del, the nonoverlapping modes a, and a2 are incident at
different input ports of the same beam splitter, and the
emerging a+ and b+ are transformed using two spatially
separated polarizers.

The original experiments measure the joint photon-
count probability for detecting a photon at the spatially
separated locations A and 8 corresponding to c+ and

d+, respectively. Here we follow the idea introduced by
Drummond [5] and consider the joint probability
PN(8, $) of detecting X photons at A and X photons at B.
The probability may be written in terms of the correla-
tion functions by way of the photon-count formula

I

The joint probabilities can be measured experimentally
and resu1ts compared to the predictions of local realistic
theories. The classical assumptions of local realism along
the lines first discussed by Bell lead to the following
Clauser-Horne-Shimony-Holt (CHSH) [1] inequalities:

PN(0, $) PN(8, $')+PN—(0', P)+ PN(0', P')

PN(&', —)+PN( —,P)

(2.6)

All classical theories are constrained by this inequality.
We investigate in this paper the quantum-mechanical
predictions for 8&, beginning with the idealized correlat-
ed photon-number state (2.1).

The moments are readily calculated using the transfor-
mations (2.2):

N N N N
P (g y) ( tNdtN NdN

&
iNy y y I'

r =0 r'=0 r"=Q r'"=0

g (Sing)r'+ r (COSy)2N
—r' r"'(a t2N —r —r'a fr+ r'a 2N —r" r'"a r"+ r'"—&—

(2.7a)
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N N
P~(8, —)- (:c+c+ (d+d+ +d d ):&

=—,
'

r =0 r'=0 r"=0
(cos8) " " (sin8)"+"

~ I fN —r+r' tN+r —r' N —r"+r' N+r" —r' ~XyQ2 Q~ Q2 Q] (2.7b)

The correlated photon-number state (2.1) gives for the correlated moments in the original modes

nI n~

(a}'a]a2 a2 &= n i—! n —k! '

0, otherwise . (2.8)

This puts a constraint on r"' (r"'=r +r' —r") in (2.7a)
and r" (r"=r) in (2.7b).

Results for Bz for optimal choices of angles 8, P, 8',
and P' are plotted in Fig. 2 for various n and N (see Table
I). A contradiction with the classical result is possible
even for large particle numbers, provided the number of
particles N detected at A and B is equal to n, the number
of particles incident initially on each beam splitter. As N
reduces below n, the violation of the classical inequality is
lost. Although violation with N=n is possible with a
particular choice for angle for large n, the range of angles
allowing a violation reduces as n increases (Fig. 2). A
similar effect was pointed out by Mermin [6] in his study
of higher spin states violating Bell's inequality.

These predictions are very similar to those of Drum-

mond [5] who considered a correlated four-mode state

(a', b', +a' b' )"ia&lo&lo&lo& .
n! n+1

(2.9)

Here one calculates joint probabilities for detecting N
photons associated with mode c+ at A and N photons as-
sociated with mode d+ at B, where

c+ =a+cos8+a sin8, d+ =b+cosP+b sing,
(2.10)

c = —a+sin8+a cos8, d = b+si nP
—+b cosP .

The + and —modes typically designate orthogonal po-

TABLE I. The optimal angles 8, 8', P, P' needed to obtain the maximum violation of the Bell inequal-
ity.

n=N
Nth-order inequality
0' B& (max)

1

2
3
4
5
6
7
8
9

10
30

100

0.393
0.365
0.263
0.235
0.194
0.170
0.140
0.140
0.140
0.130
0.017
0.007

1 ~ 178
3.050

—0.062
—0.033
—0.023
—0.017
—0.014
—0.009
—0.007
—0.005
—0.002

0.000

0.785
—1.662
—1.615
—1.604
—1.548
—1.590
—1.580
—1.580
—1.580
—1.580
—1.571
—1.571

0.000
1.955

—1.260
1.800

—1.375
—1.400
—1.420
—1.450
—1.480
—1.482
—1.487
—1.550

2.414
2.617
2.717
2.780
2.820
2.846
2.863
2.880
2.890
2.898
2.917
2.922

n=N —1

(N —1)th-order inequality
0' B~ ) (max)

2
3
4
5
6
7
8

9
10
30

100

0.13
—0.04
—0.56
—0.60
—0.65
—0.92
—0.91
—0.92
—0.93

0.71
0.82

2.39
0.69

—0.84
—0.83
—0.84
—0.74
—0.74
—0.75
—0.77

0.80
0.78

2.05
1.15

—0.83
—0.82
—0.80
—0.75
—0.76
—0.76
—0.75

0.81
0.78

2.53
0.74

—0.53
—0.57
—0.56
—0.97
—0.96
—0.92
—0.90

0.72
0.82

1.745
1.681
1.694
1.717
1.722
1.731
1.739
1.745
1.749
1.781
1.793
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larizations although they may also refer to different direc-
tions. The best violation of the Bell s inequality is possi-
ble if one detects all n photons at A and all n photons at
B. For X sufficiently small compared to n, the violation
is lost. We present the results of Drummond in Fig. 3.

For the system we discuss here as depicted in Fig. 1,
one may use the unitary transformations equivalent to
the beam splitter and polarizer transformations to write
down the correlated state actually detected at, A and B,
with the signal and idler input state being (2.1). For
n = 1, this state is a linear combination of the states

ll &„ lo&, I»,, lo&, ,

lo&„ lo&, l2&, lo&, , lo&, 12&, lo&, lo&,

ll&, lo&, lo&, ll&, , lo&, ll&, ll&, lo&,

lo&, lo&c ll&„ ll&, , ll&, ll&, lo&, lo&,

I
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n

FICr. 3. Plot of the maximum value of B& for the four-mode
state (a+b++a b )"IO)IO)IO): (i) N=n, (ii) N=n —l. A
violation of Bell's inequality occurs for B~) 1.

Number of Photons (n) in each Mode of the
Correlated State

FIG. 2. Plot of the maximum value of B& vs n, the number of
photons in the correlated state

I
n ), I

n )2 for (i) N =n, (ii)
N=n —1. A violation of Bell's inequality is obtained where
B~) 1. I'(8, $)/P(8, —) =sin (8+(b) . (2.13)

This solution gives a violation of the classical inequality
(2.6), for example, for 8=m. /g, 8'=3m/g, P=n/4, and
P' =0. The angular dependence appearing is a result of
nonzero interference terms of the type (a+& a b+ ).
This term is nonzero, because the state after the beam
splitters may be written, according to quantum mechan-
ics, as the product of two superposition states:

—,'(lo&. Il&, +ll&. Io&, )(lo&, ll&. +Il&, lo&. ).
(2.14)

The interpretation of each superposition state is along the
lines of Dirac s interpretation of the two-slit
experiment —that each photon goes through both slits (in
this case; through both arms) of the beam splitter. The
resulting interference here is reflected in the violation of
the Bell inequality (2.6), which is predicted from classical
theories where the photon must go through one slit or the
other. One could demonstrate the interference by intro-
ducing a phase shift along the arm a+, as indicated in
Fig. 1. Such a shift for fixed choices of 8 and P can des-
troy the Bell-inequality violations.

The state generated for n =1 from the input state (2.1)
followed by the transformations (2.2) is in fact a correlat-
ed superposition state similar to the correlated two-
photon polarization states used in experiments of Aspect
et al. I2] land equivalent to (2.9) with n = 1],

(at bt +a" bt )IO&IO&IO&IO& . (2.15)

If we choose 8=/=0, then the probability of joint detec-
tion of a photon in d and c+ is proportional to the joint
correlation function (a,a, a2taz) of the original beams,
while the probability for joint detection of photons in d
and c is proportional to the second-order correlation
function ( a ", a, ) of the single beam. For the photon
pair I

1 ) I
1 ) state, and similar correlated states where

(a,a, a,a, ) ))&a, a, ),f2 2

we have therefore that the detection of a photon in d is

where the appropriate coefficients are dependent on 0 and
The moments required for B~ are readily calculated

for the n = 1 case directly from the transformations (2.2).
For example,

(:c+c+d+d+. ) =
4 I (a,a, a2a2 )sin (8+/)

+ (a, a[ )sin 8sin P

+ (a Pa& )cos 8cos (b], (2.11)

(:c+c+(d+d++dt d ):)
=—,

'
I &a,a, at2a, &+(at, 'a', &sin'8+ &a,"'a,' &cos'8] .

(2.12)

Here we have assumed that (a,a, azar') and (a, a, ) are
the only nonzero moments of the original beams. For the
n =1 case here, where (a:t a; ) =0, we get for our final

relative probabilities results, such as
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(2.16)

This explains why the violation of the Bell-CHSH in-
equality is identical for n =1 for these cases (compare
Figs. 2 and 3).

The solutions for n = 1 suggest to us why the violations
of classical inequalities diminish or vanish for N = 1 if we
use an input field In ) n ) where n ) 1. The self-
correlation ( a i a i ) increases relative to the cross corre-
lation (a ia, a 2a2 ), and there is a significant joint proba-
bility for detecting photons at c+ and d+ as well as at c+
aiid d

For larger initial photon numbers n, the quantum state
after the first set of beam splitters is a superposition of a
"macroscopic" number of states. Some of these states are
macroscopically distinct but most are only microscopical-
ly distinct. We may write this state as

at"at" I0) = (at+ ibt+ )"(at —ibt )"I0)—,
1

2'
(2.17)

where IO) denotes the product of the vacuum state for all
relevant modes. The number of photons detected at each
output can range from 0 through to 2n in steps of one
photon. The optimal situation (X =n) examines the sub-
set of results where n photons are detected at c+ and c
combined, and n photons are detected at d+ and d
combined. The terms in the state (2.17) contributing to
this measured subensemble are

x=0

2

a txafn —xbtn —xbfx I0) (2.18)

much more strongly correlated with the detection of a
photon in c+ than in c . Careful examination of our
quantum state tells us that the conditional probability of
detecting a photon at c+ given that one is detected at d
has only a maximum value of 0.5. This is because the
paired photons may go through the second arm of the
beam splitter to produce a photon at d+. The implica-
tion of this is that the stronger inequality [1] derived orig-
inally by Bell cannot automatically be violated from an
experiment of this type (such as the Ou and Mandel [11]
experiment), even with perfect detection efficiencies.
However, the modified CHSH inequalities which we use
in (2.6) involve measurement of a relative probability.
The joint probabilities P (8,p ) are normalized with
respect to the joint probabilities of the type P(9, —

)

which involve detection of two photons but with one po-
larizer removed (as compared to normalization with
respect to the true marginal probability where only one
photon is detected). This relative probability relates to
the probability of detecting a photon at c+, given that a
photon is detected at d and that a photon will be
detected at either c+ or c . The measured correlation is
then equivalent to the correlation of the state (2.15) of
Aspect et al. , and (2.9) with n =1:

I0&. I» I». I» +I»., I» I0&. I»

Here again a strong correlation exists between the gen-
eration of n photons at a+ (or a ) and the generation of
n photons at b (or b+ ). The state (2.9) considered by
Drummond can be expressed as

n n
a 1'xa fn —xb txb tn —x

I
0 )Xx=0

(2.19)

and we see that the same terms contribute (at least for
X = n ) upon exchanging b and b+, although with
different weightings. The cross terms such as
a+a b+b are more significant compared to terms

~ ~

such as a+b for the situation (2.18) we discuss primar-
ily in this paper. This explains the quantitative
differences for n ) 1 between the results presented in
Figs. 2 and 3. In the case (2.9) of Drummond, the proba-
bilities (2.3)—(2.5) depend only on the difference @=8—P
so that the violation may be parametrized with respect to
a single angle y. At large n, the violation (always obtain-
able) is obtained at small values of y. The optimal angu-
lar choice for the state (2.18) generated via the apparatus
of Fig. 1 is tabulated in Table I.

To conclude this section, our calculations show that
the interference produced from the quantum superposi-
tion states (2.18) is sufficient to contradict all classical in-
terpretations of this experiment even at large n where
large numbers of photons are detected. This macroscopic
set of superposition states may be generated with the
correlated number state

I
n ) In ) incident as the modes a i

and a2 on the apparatus depicted in Fig. 1.

III. GENERATION OF THE MACROSCOPIC
QUANTUM STATES VIA

PARAMETRIC DOWN-CONVERSION

The correlated number state (2.1) itself is an idealized
state and we must consider how it might be prepared in
an experimental situation. We begin here by considering
parametric down-conversion. The simplest model in-
teraction Hamiltonian for this process is written

Ht = —iris'(a 3a, az+a3a, az) . (3.1)

Here g is a coupling coe%cient proportional to the y' '

nonlinear susceptibility of the medium, and the a, are bo-
son operators for modes at frequencies co;, respectively,
where ~3=coi+~2 for frequency matching. For down-
conversion, mode a3 is the pump and a„a2 the signal
and idler fields, respectively. This Hamiltonian applies
most rigorously if the interaction occurs inside an optical
cavity resonant at all three frequencies. It is an approxi-
mate description only of traveling-wave amplification
[20].

The traditional parametric down-conversion employs a
laser field for the pump. This is analogous to a classical
pump of amplitude c which is of suKciently large intensi-
ty that it may be assumed to be undepleting. The proto-
type Hamiltonian is

HJ= —AyE(a2ai+a2a i ) . (3.2)
We note now that this state for n ) 1 is similar yet
different to the state (2.9) considered by Drummond [5]. This simplistic Hamiltonian has been used extensively to
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ability of actually detecting the N photons where X & 1

becomes small, and the experiment becomes more
difficult. The maximum value of r allowing a violation
for N =2 corresponds to an experimental situation where
the probability of detecting two photons simultaneously
is 0.05 times the probability of one-photon detection.
This is potentially compounded by the problem of poor
detection efficiencies, which may further reduce the actu-
al probability of detecting N, where 1V ) 1, photons.

The expansion (3.4), as sketched in Fig. 4(b), gives
some insight as to why violations of higher-order inequal-
ities are lost. If we examine the infinite expansion for the
parametric amplifier with the classical (coherent) pump
at low pump intensities, we see that the first two terms
dominate, giving the Bell-inequality violation at N =1.
Increasing c. brings into importance the higher n terms,
yet the higher-order inequalities are not violated at
higher c because of the significant contribution, for fixed
N, of the higher-order states

~
n ) ~

n ) where n )N. We
recall from Sec. II that violation of Bell's inequalities was
lost for the ~n ) ~n ) state if the number N of photons
detected was smaller than n. For small c, where viola-
tions of higher-order (N & 1) inequalities are possible, the
reduction in magnitude of each successive c„ is
significant.

Thus we have established that the use of the traditional
amplifier directly may allow a feasible test of the higher
multiparticle inequalities only for smaller N values. The
above interpretations, however, suggest how one might
modify the experiment to allow a better probability of
generation of the state

~
n )

~
n ) where n ) 1. First, as

mentioned above, the use of ideal photon counters (along
with double-channel polarizers or beam splitters) to
count the total number of photons emerging at the out-
puts would enable determination of the signal-idler pho-
ton input number n. One could increase the probability
of obtaining a larger number n of signal-idler photons by
increasing y, select a fixed N =n, and restrict attention to
the reduced ensemble where n photons are detected at
each output A and B. With the traditional amplifier, the
fluctuations in the photon number of the output signal
and idler fields are super-Poissonian. Thus one has
inefficient preparation of the particular N =n correlated
number state. This efficiency may be improved by em-
ploying a squeezed intensity pump for the down-
conversion process. A cavity configuration may be more
favorable to increase the effective value of y. Indeed, em-
ployment of a squeezed pump for nondegenerate para-
metric oscillation has been predicted recently [22] to gen-
erate high-intensity signal and idler beams which show
reduced intensity fluctuations [23,24] in each beam in ad-
dition to an intensity correlation between the beams. It
may also be possible to generate the

~
n )

~
n ) state using

two down-conversions [9]. Preparation of a photon-
number state has been achieved by Hong and Mandel
[25] using the down-conversion process. The detection of
n photons in an idler field k

&
prepares the corresponding

signal field k', in a state of photon number n, since the
photon numbers of the signal and idler are correlated.
Using a second down-conversion, with signal and idler
fields k2 and k2, and waiting until detection of n photons

g 3 ( g ) g 2 + b i Q ~ ) +g 3 ( g i g 2 +b ) b 2 ) ] (3.6)

as a means of generating the four-mode states (2.9) con-
sidered originally by Drummond [5]. Violation of Bell' s
inequalities using entangled states generated from such a
four-mode Hamiltonian has been studied previously by
Reid and Walls [14] and Horne Shimony, and Zeilinger
[15]. Here g3 is the pump mode. Calculations with a
classical pump give similar results to the two-mode situa-
tion shown in Fig. 4. The two-mode case has been
presented in this paper because it relates directly to a
traditional amplifier down-converting into a particular
frequency and k-vector signal-idler combination. The
multimode signal-idler output interaction of the type (3.6)
however, is a realistic description of the parametric pro-
cess where there is a range of frequencies and k vectors
available. It may be preferable to use a cavity
configuration to enhance the down-conversion into the
chosen set of modes. The four-mode interaction (3.6) is
thus achievable; has the advantage of being able to test,
at least in principle, the original stronger form of Bell' s

inequality directly; and appears less sensitive to detection
loss since Fig. 3 shows that an n —1 violation is possible
for n =60.

IV. THE EFFECT OF LOSS

The states and Hamiltonians discussed in Sec. III do
not account for losses which for the most part are una-

in the idler k2, one may prepare an ~n ) ~n ) state in both
signal fields. Our calculation here, however, assumes
simultaneous incidence of the two n-quanta wave packets
on the apparatus, so care must be taken to ensure this.
While one can use recently developed quantum-noise-
reduction and photon-number-state-preparation tech-
niques to improve the feasibility of generating the macro-
scopic quantum state, the current inefficiencies involved
in photon counting will be a limiting factor. For N =2,
for example, one must wait until the joint detection of the
two photons at each location A and B is achieved. In
practice, one may be required to detect the two photons
using a beam splitter and two single-photon detectors.
This reduces the detection efficiency. For larger photon
number n, one can measure the intensity at each output
more efficiently. The predicted sensitivity (Figs. 2 and 3)
of the results, however, to the detection of precisely n

photons (with n —1, the violation is diminished) indicates
that determination of the intensity is required to the ac-
curacy of a few photons in order to obtain a violation of
this particular Bell's inequality.

The effect of dissipation as the fields propagate through
the medium has been ignored in the calculations so far,
and will clearly diminish the value of the probability of
detecting n photons. We will discuss these effects in Sec.
IV with the view that the parametric down-conversion
experiment could be performed for smaller n values.

So far in this section we have discussed a two-mode
output parametric amplifier. It is possible to consider in-
teractions describable by the following Hamiltonian:
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voidable in real physical systems. Loss is well known to
rapidly destroy macroscopic quantum coherence [26] and
its a major reason macroscopic superposition states or
"Schrodinger-cat" states are difficult to prepare experi-
mentally. Thus we must examine how loss may diminish
or destroy the contradiction with the macroscopic classi-
cal inequalities.

In fact, this question is already important to Bell-
inequality tests at the microscopic level, because the very
poor photodetection efficiencies imply a very large
effective loss of photons and a real reduction in correla-
tion [1]. The implication of this is that Bell s original in-
equality has never been violated in any real system. This
problem has been bypassed by the introduction of the
modified inequalities of Clauser and Horne [1]. Although
these inequalities are weaker in their test of quantum
mechanics in that they employ auxiliary assumptions,
they have been violated in experimental situations [2].
These weaker inequalities replace the true marginal prob-
abilities (such as the probability of detecting N photons at
A) with joint probabilities of the type PJv(8, —) (the
probability of detecting X photons at 3 and N photons at
8 with the polarizer at B removed). This results in a re-
normalization which enables violation of the classical ine-
qualities to be possible in spite of the very poor photo-
detection efficiency. In fact, these comments are applic-
able to many other forms of loss. The use of the modified
inequalities means that one can still expect violations
even with significant loss. The poor photo detection
efficiency is a significant form of loss in the experimental
arrangements we consider here. The difficulty with the
tests at large X is therefore not so much obtaining a
violation, which one can do with the Clauser-Horne-
Shimony-Holt (2.6) inequalities, but overcoming the fact
that the probability of actually detecting the X photons,
where X is macroscopic, becomes negligible. One needs
sufficient data in order to calculate the appropriate aver-
ages.

We wish to illustrate these points with respect to our
parametric systems. The coupling of our ideal modes to
other modes, which is the mechanism of loss, brings
about an uncorrelated loss of individual signal and idler
photons, and hence the correlation which is implicit in
solutions of the type (3.4) is reduced. We will now have
included in our expansions asymmetrical terms such as
~n ) ~n

—1). This means that if N photons are detected at
A, one can no longer conclude that X photons will be
detected at 8. The implication is a reduction in the viola-
tion of Bells original strong inequality. However, the
modified Clauser-Horne inequalities may still be violated
under certain circumstances because it is the relative size
of the joint probability (:c+c+d+ d+ ..) compared to

(:ct~~c~~ (dt+d++dt d ):)

[Ht,p]+ —(2aipa
&

—a iaip —pa &ai )
~A

+ ~(2a2p2 —a2a2p —paza2), (4.2)

where y is the damping constant, assumed equal for both
modes. We choose to expand p in terms of a positive P
representation [27],

p= JP(a;,a;, t) t t d aid a2d aiaq .
~2

(4.3)

Here o.;,a; are independent complex c numbers corre-
sponding to operators a;,a;, respectively. The integra-
tions are defined over the entire complex plane of each
o.;,o.;. The equation of motion for P can be derived
readily from the master equation and the time-dependent
solution evaluated (see the Appendix) for the vacuum ini-
tial condition for the signal and idler fields. It is seen
that a,. and o, are constrained so that az = cz

&
and

az=a& and the integrals are thus readily evaluated. The
probability of detecting n photons in a

&
and m photons in

a2 is given by

I pl

t (n/a, (&a ti/n)( m/a, ) a(tom &

that a photon detected at 3 does not imply a photon will
be at 8 even with 100% detection efficiencies.

We present calculations from a model which incorpo-
rates the effect of loss as the fields propagate through the
medium. Consider the traditional parametric amplifier
with a classical pump. We rewrite the Hamiltonian as
follows:

2

H=Ht+ g a;I, +a; I;,
(4.1)

H, = t'RE(a 2a 1 a2a i )

Here we have chosen for convenience the pump phase so
that E is real and we note that ~E = ~yE~. The I, sym-
bolize reservoir modes into which the modes az, a, may
lose energy. The correlation functions are probably most
readily calculated by solving operator equations of
motion with noise included. However, because we later
find it useful to actually calculate the probability for
detecting n photons, we choose to use c-number tech-
niques where one can obtain the solution to the density
operator p itself. The master equation in the interaction
picture in the Markovian approximation is

which is important.
The two-mode example (depicted by Fig. 1) is interest-

ing in that it is reliant on the form of the CHSH inequali-
ties to get a contradiction with quantum mechanics at all,
i.e., one cannot obtain a violation of Bell s original ine-
qualities with this arrangement. Put simply, the reason is

Xd cx(d 0!) (4.4)

where the integrations are over the complex plane of a,
and a&, these being independent complex variables, and
P (ai, ai ) is given in the Appendix. The moments needed
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to evaluate B~ and (a a ) may be calculated either by
taking the appropriate averages over the Gaussian solu-
tion for P(a&, aj) or by evaluating averages from the
solutions of the linear stochastic equations given by the
(Al) in the Appendix, or by solving operator equations of
motion derived directly from the Hamiltonian (4.1).

The values of B~ and the mean photon number ( a a )
are presented in Fig. 5 for varying degrees of loss. As we
expected, violations of the higher-order CHSH inequali-
ties are still possible. Not surprisingly, the contradiction
with the classical prediction, however, is lost at lower
mean photon numbers. To obtain violations of the Nth-
order inequality, we need to choose r so that the prob-
ability of the higher photon number states
~N + 1 ) ~N + 1 ), . . . , etc. is small compared to the proba-
bility P» of ~N) ~N). The states with photon number
lower than N do not contribute to the statistics since they
give zero probability of detecting N photons. With loss
present, the probabilities will change. Figure 5(a) illus-
trates the change in relative probabilities with the loss pa-
rameter y. The higher-order probabilities are more sensi-
tive to loss and for fixed r the violation is improved. The
absolute probability of obtaining the higher-order state
~N ) ~N ), however, has diminished and the mean photon
number decreased [Figs. 5(b) and 5(c)j.

1.05 V. CONCLUSION
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FIG. 5. The effect of loss in the traditional amplifier with a
classical pump: (a) 81 vs r for various y (the loss parameter): (i)
y/pc=100, (ii) y/pc=7, (iii) y/yE=S, (iv) y/gc, =3.5, (v)
y/pc=2, (vi ) y/pc=1. 1, (vii) no damping. A violation of the
Bell's inequality is possible for 8& & 1. (b) 8& vs the mean pho-
ton number for various y: (i) y»gc, , (ii) y=0. A violation of
the Bell's inequality is obtained for 8& & 1. (c) Plot of P„, the
probability that the signal-idler outputs have exactly n and m
photons, respectively, for r =~/2&2. The unshaded region in-
dicates P„with y=0. The shaded region indicates P„ for
y/X~=1-

We have shown how multiparticle macroscopic states
predicted to violate a Bell's inequality may be generated
from a correlated photon-number state ~n ) ~n ). The in-
equality is tested by the measurement of joint probabili-
ties where X photons are detected at one space-time
point. The violation is evident for N=n photons but
reduces dramatically for N & n.

The correlated state
~
n ) ~

n ) may be generated via
parametric down-conversion. The violation of the Nth-
order Bell s inequalities is predicted for the output of the
amplifier operating at small gain. However, the sensitivi-
ty of the violation to the value of N means that at larger
gains the output of the parametric amplifier gives no
violation. This is because the probability of the amplifier
generating ~n +i ) ~n +i ) (where i )0), rather than
~n ) ~n ), is significant. Hence, violations are predicted
only for regimes where the probability of actually gen-
erating the ~n )

~
n ) state where n is large is very small.

We point out that the use of intensity-squeezed pumps
or photon-number-state-preparation techniques may im-
prove the situation by allowing violations of Bell s ine-
qualities were there is a significant probability of genera-
tion of the macroscopic state. Loss will effect a reduction
in this probability.

APPENDIX

A Fokker-Planck equation for the positive P function
may be derived from the master equation (4.2) assuming
that certain boundary terms vanish. The Fokker-Planck
equation is equivalent to the linear stochastic equations
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a, = —ya, +Eaz+ I (t),

a, = —ya, +Eaz+1 t(t),~ f—
1

a2= ya—2+Ea, + I (t),
(A 1)

P(a„a„t)=N expI2a (ata, +at, *a&*)

—2a ~ ( lail'+ la, l') ],
where a+ =a+/E(a+ —a ),

a 2t= ya—2+Ea, + I t(t),
2

(1—e
Qy

2A,

where nonzero noise correlations are

( I (t)1,(t') ) = ( I &(t)l t(t') ) =E&(t —t') .
1 2

Careful examination [28] reveals to us that with the vacu-
um initial condition a, =a, =o,'2=a&=0, the variables
are constrained to satisfy f2=a*, and a& =a&*. A reduc-
tion in the number of dimensions for the positive P repre-
sentation was first pointed out by Wolinsky and Carmi-
chael [29]. The Fokker-Planck equation has the follow-
ing time-dependent solution for the positive P function:

and A, ~=y+lEl. Here N is a normalization constant,
2

given by

N ' = exp 2a o,~&a&+a~&*a*,

—2a+(la~I'+ la~ I
)]d'a, d'a, . (A3)

(A4)

The integration is over the entire complex plane of the in-
dependent variables a& and o, &. We see from the solution
(A2) that the boundary terms do indeed vanish and the
integrals (A3) are readily calculated to yield

E2(a2 a2 )
4 +
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