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Entropy and attractor dimension as measures of the field-atom interaction
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We have examined the population oscillation amplitudes, associated attractors, and the order-1 Renyi
entropy of Bloch-vector trajectories for a two-level atom interacting with an electromagnetic field, whose
phase varies in a two-frequency quasiperiodic manner. Distinct differences in these quantities are ob-
served as the strength of the exciting field varies from weak (nonadiabatic dynamics) to strong (adiabatic
dynamics). We find, though, an underlying homology. In all cases the response is two-frequency quasi-
periodic with a resulting two-dimensional attractor for the quantum system. Additionally, correlated
with observed Rabi resonances, there are abrupt increases in the entropy of the system. A key finding is
that Rabi resonances are more than simple increases in the amplitude of a quantum system’s population
oscillations; the atomic dynamics abruptly becomes more disordered at these resonances.

PACS number(s): 32.80.—t, 42.50.Md, 05.45.+b

I. INTRODUCTION

The response of a simple quantum-mechanical system
to a quasiperiodic electromagnetic perturbation is an area
of much present activity. Initially, interest in this area
was generated by a motivation to understand better the
phenomenon of quantum chaos [1]. Now, however, it is
recognized that independent of chaos (quantum or classi-
cal), atomic interactions with quasiperiodic perturbations
result in novel dynamical features, interesting in their
own right. An atom’s response to a quasiperiodic field is
often extremely complex, and techniques developed to
characterize chaos have been fruitfully applied to the
study of these complicated quantum-mechanical dynam-
ics [2]. Specifically, a number of authors have investigat-
ed atomic systems subjected to electromagnetic fields
with quasiperiodic amplitude modulation [2,3], and have
found that the atomic density-matrix elements have rap-
idly decaying autocorrelation functions.

In a previous paper (to be referred to as I), we analyzed
the dynamics of a two-level atom subjected to a field
whose phase variation was quasiperiodic: a superposition
of a sinusoid and a square wave with the frequencies
chosen to be incommensurate [4]. In the present work,
we have continued to utilize the analytical techniques of
nonlinear dynamics in the study of complicated, albeit
not classically chaotic (lacking positive Lyapunov ex-
ponents) atomic dynamics. We have investigated the
response of a two-level atom to a field with a simpler
form of phase modulation, two sinusoids with incom-
mensurate frequencies. For this simpler form of modula-
tion, the time scale of phase variations is well defined,
and hence adiabatic and nonadiabatic quasiperiodic per-
turbations can have clearer meanings. In the case of
square-wave modulation, the phase changes instantane-
ously, and thus the time scale of the phase variations can
never be slower than the time scale associated with the
field-atom interaction. As in I, the atomic dynamics are
studied as a function of the perturbing field strength,
which can be thought of as a control parameter. Here,
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however, the dynamics are characterized through the
computation of Bloch-space entropies in addition to at-
tractor dimensions. Furthermore, we compute Bloch-
vector trajectories in a reference frame defined by the
phase of the field, which is related to the standard rotat-
ing frame of radiation problems by an instantaneous
transformation in the rotating frame’s XY plane. Though
the atomic dynamics can be extremely complicated, the
three-dimensional (3D) portraits of the Bloch-vector tra-
jectories in this instantaneous frame yield relatively sim-
ple geometrical entities.

Our results demonstrate that even though the atomic
population dynamics are erratic in the quasiperiodic field,
the atom’s behavior can nonetheless be quantified by the
above-mentioned measures. We find that in general, the
3D portraits of Bloch-vector trajectories can be described
as one of three distinct geometrical objects depending on
whether the dynamics are classified as nonadiabatic, tran-
sitional (i.e., between nonadiabatic and adiabatic), or adi-
abatic. The entropy associated with these Bloch-space
attractors peaks in the transitional regime, and moreover
shows enhancements at the Rabi resonances. Finally, re-
gardless of how the entropy and Bloch-space attractors
change with field strength, our results show that there is
a homology to the dynamics that is manifested in the
quantum system’s Hausdorff dimension D,. In all cases
of this two-frequency (incommensurate) quasiperiodic
perturbation that we have examined, we find evidence
that D,=2, and we believe that in all these cases the
quantum system attractor is homeomorphic to a 2-torus.

II. DESCRIPTION OF SYSTEM UNDER ANALYSIS

To describe the atom’s response to the field we em-
ployed the optical Bloch equations (i.e., two-level atom
density-matrix equations) (la)—(lc) including phenome-
nological relaxation rates ¥, and y, [5]:

X=—y,X —AY +QZsin[0(1)] , (1a)
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Y=AX—y,Y +QZ cos[0(1)] , (1b)
Z=—QXsin[6(2)]— QY cos[0(1)]+y(Z,—Z) .  (lo)

In these equations () is the Rabi frequency, A is the de-
tuning of the field from resonance, and X, Y, and Z are
the coordinates of the Bloch vector in the rotating coor-
dinate frame. Under steady-state conditions the Bloch
vector precesses about an effective field, whose orienta-
tion in the rotating coordinate frame’s XY plane is de-
scribed by the angle 6. As noted in I the inclusion of re-
laxation in the optical Bloch equations insures that the
atomic dynamics will, after a sufficient period of time,
reach an attractor.

In order for the field variations to be nontrivial, yet to
have a well-defined time scale, the field’s time-dependent
phase was given by

0(1)=0,(t)+ 6,(t)=msin(wt)+ 7 sin(w,t) . )

Two incommensurate modulation frequencies were typi-
cally employed, with w, equal to », multiplied by five
times the golden mean [golden mean=(V'5—1) /2], with
®0;=10.0, ®,=30.90. .. . This choice of relative modu-
lation frequencies insured that their ratio was strongly ir-
rational [6]. The number of phase-space variables associ-
ated with the atomic dynamics is the sum of the three as-
sociated with the Bloch space and contributions from the
modulation frequencies. For incommensurate modula-
tion frequencies each frequency contributes one phase-
space variable to the sum [7]. Consequently, our analysis
dealt with five-dimensional phase spaces for the full dy-
namics of the atomic system.

Following the procedures of I the time scale was nor-
malized to the intrinsic relaxation time 1/y
(y=v,=2y,), A was taken as 0, Z,= —1 [4]. The equa-
tions were solved using a fourth-order Runge-Kutta algo-
rithm with adaptive step size. In the present analysis,
step size was controlled by requiring the relative error in
the computation of any Bloch-vector component at each
step to be less than 107!, To insure that transients had
died away, and that the computed trajectory had reached
the attractor, the solution was propagated to t =12 prior
to accumulating data. Typically, 50000 arbitrarily
chosen data points were collected between ¢ =12 and
100, so that roughly 10% cycles of the long period 6, oscil-
lation were sampled and about 10? data points were dis-
tributed over the short 8, period.

III. RESULTS

A. Rabi resonances and attractor dimensions

As a first step in analyzing the response of the atomic
system, Bloch-vector trajectories were calculated for a
range of field strengths. We found that the three-
dimensional plots of Bloch-vector trajectories were most
informative when viewed in the instantaneous reference
frame described by Avan and Cohen-Tannoudji [8]. In
this frame, the X' axis is taken along the direction of the
effective field [i.e., 6(2)], rather than along a fixed direc-
tion in the rotating frame (i.e., 6=0). As our calculations
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employed A=0, only a simple, time-dependent rotation
of the X and Y components, generated by solution of Egs.
(1a)—(1c), was required to produce the X’ and Y’ coordi-
nates of the instantaneous frame. The advantage of view-
ing the dynamics in the instantaneous frame is that the
orientation of the effective field is a constant in this
frame, and so attention is focused on the atomic variables
of interest; the trivial angular variations associated with
0(t) are removed from the Bloch-vector trajectories by
the coordinate system transformation.

In Fig. 1 we display the Bloch-space attractors for
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FIG. 1. Bloch-space attractors in the three-dimensional, in-
stanteous frame. Two incommensurate frequencies (10.0 and
30.9...) employed for phase modulation as per Eq. (2). (a) Adi-
abatic atomic response =2000; (b) transitional response
Q=100; (c) nonadiabatic response Q=1. :



5

3.0

POPULATION OSCILLATION AMPLITUDE (arb. units)

0.0 . TR TN R R T
1 10 100 1000

RABI FREQUENCY

FIG. 2. Amplitude of population oscillations as a function of
Rabi frequency.

three different field strengths. The phase of the field was
modulated according to Eq. (2) with two incommensurate
frequencies. With a Rabi frequency of 2000 [Fig. 1(a)] we
obtain the system’s nominal strong field, adiabatic
response. The basic pattern of adiabatic trajectories
shown in the figure is essentially independent of field
strength for Rabi frequencies above 500, though its abso-
lute size becomes smaller as the Rabi frequency is in-
creased. The system’s nominal weak-field nonadiabatic
response is obtained at a Rabi frequency of 1 [Fig. 1(c)].
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The basic pattern of nonadiabatic trajectories is unchang-
ing for Rabi frequencies below 2, while the absolute size
again decreases with decreasing Rabi frequency. In the
transition regime between the adiabatic and nonadiabatic
dynamics, a highly disordered pattern of trajectories in
Bloch space results. For a single modulating frequency,
we have also found that the pattern of trajectories
changes significantly in shifting from the strong- to
weak-field regimes of atomic dynamics. However, as one
might expect, the trajectories lack the complexity ob-
served with two incommensurate modulation frequencies.

Cappeller and Mueller [9] have recognized that, when
an atomic system is exposed to a driving field with a par-
ticular modulation pattern (like ours), abrupt increases in
the amplitude of population oscillations are often ob-
served at specific Rabi frequencies. These increases are
referred to as “Rabi resonances” [9,10]. In Fig. 2 we
display the magnitude of the population oscillations, the
difference between the maximum and minimum attractor
Z values, as a function of Rabi frequency. Several sharp
features (=142, 125, 100, and 70), as well as a broad
amplitude enhancement (peaking at (1 =25) are observed
in or about the dynamical transition region. In Fig. 3 we
display the Bloch-space attractors across the transition
region. Of particular interest is the abrupt alteration of
the trajectories between the Rabi frequencies of 90 and
110 associated with the sharp feature at =100 of Fig. 2:
the trajectories appear more disordered at =100, and
the mean value of the Y coordinate has shifted from a
negative value to zero. These figures clearly show that a
Rabi resonance not only affects the amplitude of the os-

FIG. 3. Bloch-space attractors for Rabi frequencies in the transition region. The abrupt change in dynamics between =90 and
110 represents an entropy resonance. Additionally there is a gradual evolution in the system dynamics from the primarily adiabatic
response observed at {1 =110 to the largely nonadiabatic response observed for Q=35.
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cillation, but also the details of the Bloch vector’s trajec-
tory.

To better understand the specifics of the dynamics un-
der adiabatic and nonadiabatic conditions of interaction,
as well as the extremely complex behavior at Rabi reso-
nances, we have calculated generalized dimensions of our
quantum system attractors using the generalized correla-
tion integral approach discussed by Pawelzik and Schus-
ter [11]. Of particular relevance to our following discus-
sion are D, D, and D,, the Hausdorff, information, and
correlation dimensions, respectively. Attractors in the
full five-dimensional space were studied, with the atomic
variables obtained from the rotating coordinate frame
(i.e., foregoing the time-dependent transformation leading
to the instantaneous frame). However, initial attempts to
directly analyze attractor dimensions in the five-
dimensional space were unsuccessful: with a tractable
50 000 points spread over the attractor, systematic mises-
timates of dimension resulted.

To reduce the dimension of the entity to be analyzed,
while preserving the information of the full five-
dimensional attractor, a two-step process was employed.
As the first step, we projected the five-dimensional attrac-
tors onto a three-dimensional space. From the projection
theorem [12], we know that for a projection onto almost
any (in a measure theoretic sense) three-dimensional
space, the Hausdorff dimension of the projected set will
be the same as that of the initial set if the dimension of
the attractor in the five-dimensional space is less than or
equal to 3. By proceeding in this direction, a tacit as-
sumption is made that the dimensions of the full attrac-
tors are indeed less than 3. This is confirmed at the con-
clusion of the calculation. The basis vectors for the
three-dimensional space e;, e,, and e; (1,—1,1,—1,1),
(4,6,4,1,—1), (0,0,0,1,1) (X,Y,Z,6,,6,), were obtained
via the Gram-Schmidt procedure from three linearly in-
dependent vectors (1,—1,1,—1,1), (1,1,1,0,0), (0,0,0,1,1),
which together reflected both angular and atomic charac-
ter. Projections were also made onto other three-
dimensional spaces with no substantive effect on the di-
mension calculations. Application of the intersection
theorem [12] further reduces the dimension of the
analysis. For almost any nonempty intersection between
a simple plane and the projected set, the Hausdorff di-
mension of the projected set will be equal to that of the
intersection plus unity. Consequently, adding one to the
Hausdorff dimension of this intersection should produce
the dimension of the full five-dimensional attractor. The
plane employed to generate the intersection set was
defined by requiring its projection onto e; to equal the
average value of the e; component for the projected set.

Prior to performing the correlation integral analysis,
much information concerning the system’s dynamics was
obtained by direct inspection of the intersection sets.
Badii and Meier [2] have used this simple approach to
demonstrate that the complicated response of a two-level
quantum system to a bichromatic exciting field is quasi-
periodic rather than chaotic. In Fig. 4, 4096 points from
the intersection sets for Rabi frequencies of 2000 and 1
are presented. The sets appear one dimensional, indicat-
ing the full response of the system in either limiting case
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FIG. 4. Intersection sets (see text for definition). (a)
0 =2000; (b) Q2=1.

is two dimensional (i.e., Dy=2). The intersection set for
the case of a Rabi resonance (2 =100) is similarly one di-
mensional. Additionally, following Romeires and Ott
[13], stroboscopic sections generated by plotting the Z
component of the Bloch vector Z(¢,) versus
I'(t,)=wt,mod(27) with t, =2mn /w,+ 12 were simple
one-dimensional curves for each of the three cases. Our
results then suggest that the motion is always two-
frequency quasiperiodic, independent of whether the dy-
namics are classified as nonadiabatic, transitional, or adi-
abatic.

On close inspection, the intersection sets appear
nonuniform, which warrants the calculation of their gen-
eralized dimensions D,. For this task, the generalized
correlation integral approach was applied using 50000
points from each intersection. The resulting generalized
dimensions for Rabi frequencies equal to 1 and 2000 are
presented in Fig. 5. For the adiabatic case D, is found to
be 0.981+0.03, consistent with the expectation that the di-
mension of the full attractor is 2. Error bars express our
confidence in the D, value, which in part is limited by
our ability to find the appropriate linear portion of the
log[correlation integral]’s dependence on the log of the
scaling length. However, the clear change in dimension
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FIG. 5. Generalized dimensions obtained from analysis of
the intersections sets of Fig. 4. Circles, =2000, and triangles,
Q=1. The dashed line represents generalized dimensions, re-
duced by unity, of a set with coordinates defined by the angular
variables sin(w,?) and sin(w,?).

with g shows quantitatively that at least the intersection
set and probably the full attractor have multifractal
characteristics. (We note parenthetically that nonuni-
form attractor coverage implies that D,5~D,, and conse-
quently that a noninteger value of D, cannot be taken as
evidence of a strange attractor as hypothesized in I [4].)
In Fig. 5, the triangles are the generalized dimensions for
the nonadiabatic case. Even after reducing the dimension
of the analysis to two, we obtain a relatively high value
for Dy, 1.10, which we believe is systematically too large
by 10%. This error arises from difficulties in fitting the
correlation integral data to straight lines for certain
values of ¢, and so for the nonadiabatic case it is our con-
tention that the entire range of dimensions suffers from a
systematic offset no larger than about 10%. Neverthe-
less, it is clear that in the nonadiabatic regime the D, do
not vary as significantly with g as they do in the adiabatic
regime. Attempts to calculate the generalized dimensions
when the Rabi frequency was 100 were not particularly
successful, though D, was found to be 1.15, similar to the
nonadiabatic case.

The nonconstant D, obtained from these sets could
derive from an underlying multifractal characteristic in
the system under study, or they could merely be the re-
sult of some distortion introduced by the projection pro-
cedure. If the latter is the case, then the observation of
nonconstant D, has little physical significance. This ex-
planation, however, is unlikely. The variations in D, ap-
pear to derive from the characteristics of the phase
modulation pattern. This is demonstrated by the dashed
line in Fig. 5, which shows the generalized dimensions,
all reduced by unity, of 50000 points selected from the
[6:,0,] trajectory. The value of D for this set is found
to be 2.0, consistent with our expectations, while the lim-
iting values of D, as ¢ — — c and ¢ — + o are ~2.2 and
~ 1.1, respectively. The phase modulation pattern thus
provides an underlying multifractal characteristic in the
system that is still apparent in the intersection sets.
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In itself the multifractal nature of the phase modula-
tion pattern may be unexpected. However, the following
observations, while not unambiguous, shed light on the
issue. Simple D, calculations performed on the two-
dimensional points [8;,sin(6,)], with 6, distributed uni-
formly between O and 27, confirm an expected value of
unity for all D, ’s. When similar calculations are per-
formed in one dimension on only the sin(6,) values,
though, a nonconstant set of D,’s is obtained, with D, =1
for ¢=0 and D,=0.5 as g goes to + . Using the
definition of D, (Ref. [14]), simple analytical manipula-
tions may be performed in limiting cases for the one-
dimensional example, and these yield the same results:
D__,=Dy=1and D, =0.5. Since nonconstant values
of D, result from the analysis of sin(8,), it is probably not
surprising that nonconstant D, ’s are obtained in our
two-dimensional case with the points defined by
(sin(6,),sin(6,)). We consider this, however, far from a
definitive explanation, and therefore a topic for future in-
vestigation.

Given that the attractors, analyzed in the rotating
frame, were found to have geometries to which the 6, and
6, variables make significant contributions, it remains to
be seen what contributions the atomic variables by them-
selves make to the attractors of the system. In going
from the laboratory frame to the rotating frame the prob-
lem has been moved from a stationary frame to one that
rotates uniformly in time, independent of any compara-
tively slow phase modulations that might be applied. In
this manner, uniform rapid rotation of the X and Y
Bloch-vector components is removed from the problem.
In contrast, transformation into the instantaneous frame
has dynamical significance. The nonuniform nature of
this rotational transformation is derived from the varia-
tions in the phase modulation variables, quantities of
dynamical interest. Therefore, we anticipate that the
gross effects of the angular variables can be removed by a
transformation to the instantaneous frame, allowing more
detailed inspection of the dynamics resulting from the
atomic portion of the system.

In Fig. 6 we show generalized dimensions produced by
the analysis of 50000 points from the intersection of the
three-dimensional Bloch-space attractors in the instan-
taneous frame and a plane defined by the average value of
Z (t) for each Rabi frequency. The adiabatic, high Rabi
frequency response shows generalized dimensions virtual-
ly independent of g, indicating that the “residual” atomic
motion generates a uniformly covered, two-dimensional
attractor. We attributed this behavior to the fact that
under adiabatic conditions the Bloch vector follows the
motion of the angular variables of the field very closely.
By going into the instantaneous frame, under adiabatic
conditions, this angular motion is removed virtually en-
tirely from the system and with it the underlying mul-
tifractal nature. In contrast, under nonadiabatic condi-
tions, as shown in Fig. 6, the atomic motion still main-
tains multifractal characteristics, with D again equal to
2. Under these conditions the Bloch vector does not
closely follow the angular variations. The attempt to re-
move the effects of the angular variables through trans-
formation to the instantaneous frame is ineffective and in-
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FIG. 6. Generalized dimensions of intersection sets formed
by Bloch-space attractors in the instantaneous frame and a
plane defined by Z equals the average value of Z(z). Circles,
Q=2000, and triangles, Q=1. At present we do not have a
good explanation for the discontinuity in the D, values that
occurs at ¢ =1.5 for =2000

dications of a multifractal remain. Consequently, our
findings are consistent with the multifractal nature being
a true characteristic of this system (not an artifact of the
generalized dimension analysis procedures) with its origin
in the phase modulation pattern.

In the absence of phase variations and in steady state,
the attractor for the Bloch-vector trajectory in the rotat-
ing frame is a point. Naively, when phase variations are
introduced into the field, one might imagine that in the
instantaneous frame the attractor would also be a point,
since the Bloch vector follows the effective field in the
adiabatic regime, and the orientation of the effective field
is a constant in this frame. An attractor with zero di-
mension in the instantaneous frame would suggest that
the transformation to this frame has allowed the
atom—phase-varying-field problem to be couched in the
steady-state form of an atom’s interaction with a mono-
chromatic field. Our results, however, show this to be
untrue. Even though the volume that the Bloch-space at-
tractor encloses in the adiabatic regime shrinks as the
field strength gets ever larger, the Bloch-vector trajec-
tories remain confined to a surface. This in turn implies
that even for infinitely large field strengths, there is no
coordinate frame which can be chosen to trivialize the
atom-phase-varying-field interaction problem: there is no
coordinate frame which will allow the radiative problem to
be solved exactly by considering a monochromatic field in-
ducing steady-state Bloch-vector components.

B. Entropy calculations

While the basic nature of the atomic system’s response
is independent of the Rabi frequency, it is apparent from
the Bloch-space attractors that the precise nature varies
with field strength. Crudely, the trajectories in the in-
stantaneous frame appear more complicated in the transi-
tion region and particularly near a Rabi resonance. To
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provide a quantitative measure of the change in the com-
plexity of the Bloch-vector trajectories observed in the in-
stantaneous frame, we calculated the order-1 Renyi en-
tropy (sometimes referred to as the Shannon information
or entropy). This is in contrast to the Kolmogorov entro-
py which is more closely related to the dynamical charac-
teristics of the atomic system’s phase-space trajectories
[15]. The order-1 entropy was chosen for study, since it
has a close similarity to the standard statistical thermo-
dynamic entropy [16] and as such may be thought of as a
measure of the trajectory’s “disorder.” The evaluation of
entropy was performed via a simple box counting
method. Laying grids of approximately 10° cubes with
sides € over the Bloch-space attractors, the probability of
a point on the trajectory falling in the ith cube p; was cal-
culated. The entropy is then given by

N(e)
Srie)=3 p;n(p;) . (3)

i=1

As the absolute sizes of the attractors, hence box dimen-
sions, vary, the values of Si,(€) cannot be directly com-
pared. To provide a scale-independent measure of com-
plexity Sg(0) was calculated for each Rabi frequency
employing [15]

SRI(O):SR1(6)+D11H(E) . (4)

The generalized dimension calculations for adiabatic con-
ditions (Q=2000), to which we assess our highest
confidence, yielded a value for D, of 1.94. As our results
indicate that D, is nearly constant relative to D,
(perhaps changing by ~3%) for all Rabi frequencies, we
used the same value of 1.94 for D, in all cases.

Entropies for the Bloch-vector trajectories along with
the oscillation amplitudes are displayed in Fig. 7. The
transition region, as might be inferred from Figs. 1 and 3,
displays an increased entropy relative to strong- and
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quency. Note the exact coincidence of the Rabi resonances and
the entropy enhacements.
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weak-field conditions. Note though, that superimposed
on the gradually changing entropy background of Fig. 6
are sharp, resonancelike entropy increases. These entro-
py resonances occur at precisely the same Rabi frequen-
cies as do the Rabi resonances. The correlation between
the entropy and Rabi resonances is extremely robust: it
is apparent when variations in the Sg,(€) versus Rabi fre-
quency are viewed, as well as when the Bloch-vector tra-
jectories are analyzed in the rotating frame. Further-
more, for a single phase modulation frequency the
entropy’s dependence on Rabi frequency is dominated by
a single resonance feature, again occurring at the same
Rabi frequency as the anticipated Rabi resonance [9].
These results show for the first time that Rabi resonances
are more than simple increases in the amplitude of popu-
lation oscillations. Rabi resonances are intimately associ-
ated with changes in the system’s overall dynamics, sig-
naling increased complexity or “‘disorder” in the atom’s
response to the field.

IV. SUMMARY AND CONCLUSIONS

We have examined the population oscillation ampli-
tudes, quantum system attractors, and Renyi entropies
for a two-level atom interacting with an electromagnetic
field, whose phase varies in a two-frequency quasiperiodic
manner. Significant variations in these quantities are ob-
served as the field strength passes from weak to strong.
The Bloch-space attractors assume relatively simple
geometrical forms in the instantaneous frame under the
limiting cases of both weak (nonadiabatic) and strong
(adiabatic) levels of excitation, while in the intermediate
regime the trajectories become disordered, apparently
displaying a higher degree of complexity. Calculation of
the Renyi order-1 entropy for the Bloch-vector trajec-
tories is consistent with a higher degree of complexity in
the transition region, and this should be noted in light of
recent experiments which demonstrate the difficulty of in-
terpreting resonant phenomena in this regime [17]. The
transition region is also characterized by the presence of
a number of Rabi resonances: at a number of specific
Rabi frequency values, significant increases in the ampli-
tude of population oscillations are observed. Additional-
ly, at these exact same Rabi frequency values, we calcu-
late significant increases in the entropy of Bloch-vector
trajectories. A key finding of this study is then that Rabi
resonances are more than simple increases in oscillation
amplitudes; associated with them are distinct disorder-
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ings in the dynamics of the two-level system.

While there are clear variations in the precise response
of the atomic system as the field strength is varied, the
dynamical systems approach we have employed here
clearly reveals an underlying homology in the general na-
ture of this response. Under all levels of excitation, the
full 5D quantum system produces attractors that are two
dimensional (Hausdorff dimension); more specifically, the
response is always two-frequency quasiperiodic,
homeomorphic to a 2-torus. In the strong-field case, the
quasiperiodic quantum system response displays general-
ized dimensions similar in nature to those associated with
the phase of the exciting field. As the system is highly
adiabatic under these conditions, with the Bloch vector
closely following the effective field, this is perhaps not too
surprising. However, since in the instantaneous frame
the adiabatic Bloch-space attractors have D,=2 (i.e.,
Hausdorff dimension greater than 0), the full SD quan-
tum system’s attractor geometry should not be interpret-
ed as a trivial consequence of mixing the atomic system
with the 2-torus of 6, and 6,. It should of course be
recognized that the coincidental equivalence of D, values
for the full quantum system attractor and the Bloch-
space attractors is due to our choice of two incommensu-
rate sinusoids for the phase variation. If, for example,
four incommensurate sinusoids had been chosen for the
phase variation, then in the adiabatic regime at least we
could have expected the full 7D attractor’s Hausdorff di-
mension to also be four. However, the Bloch-space at-
tractor must always have D, =< 3.

As a final point, it is worth recognizing that in this
work we have relied heavily on the analysis tools of
dynamical systems, which are typically reserved for non-
linear problems. The present study demonstrates that
these tools, even when applied to an inherently linear
quantum-mechanical system, supply new insights into
that system’s interactions. Specifically, in this work these
tools have allowed us to uncover a homology with re-
gards to an atom’s interaction with a phase varying field,
and they have allowed us to demonstrate that atomic sys-
tems become disordered at Rabi resonances.
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